(19)
(11) EP 0 208 894 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
21.01.1987  Patentblatt  1987/04

(21) Anmeldenummer: 86107585.1

(22) Anmeldetag:  04.06.1986
(51) Internationale Patentklassifikation (IPC)4H01J 49/40
(84) Benannte Vertragsstaaten:
DE FR GB

(30) Priorität: 10.07.1985 DE 3524536

(71) Anmelder: Bruker Analytische Messtechnik GmbH
D-76287 Rheinstetten (DE)

(72) Erfinder:
  • Frey, Rüdiger, Dr.
    D-2803 Weyhe (DE)
  • Schlag, Edward William, Prof. Dr.
    D-8000 München 4 (DE)

(74) Vertreter: KOHLER SCHMID + PARTNER 
Patentanwälte Ruppmannstrasse 27
70565 Stuttgart
70565 Stuttgart (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Flugzeit-Massenspektrometer mit einem Ionenreflektor


    (57) Der lonenreflektor des Flugzeit-Massenspektrometers weist zwischen den das Bremsfeld definierenden Bremselektroden (27, 28) und der Reflektorelektrode (29) eine zusätzliche Fokussierelektrode (30) auf. Ebenso wie die Fokussierelektrode (30) sind auch die Bremselektroden (27, 28) vorzugsweise als gitterlose Ringblenden ausgebildet. Ferner hat vorzugsweise die am Eingang des lonenreflektors angeordnete, vordere Bremselektrode einen größeren Lochdurchmesser als die dahinter angeordnete Bremselektrode (28). Die Anordnung der Brems- und Fokussiereiektroden sowie die daran angelegten Pontentiale sind so gewählt, daß im Bereich dieser Elektroden ein inhomogenes elektrisches Feld entsteht, das die Wirkung einer Linse hat und nicht nur in Verbindung mit dem sich anschließenden, bis zur Reflektorelektrode (29) reichenden, homogenen Feld eine zeitliche, sondern auch eine einwandfreie räumliche Fokussierung des lonenstrahies am Detektor gewährleistet.




    Beschreibung


    [0001] Die Erfindung betrifft ein Flugzeit-Massenspektrometer mit einem Ionenreflektor, der eine Reflektorelektrode und zwei mit Abstand davor angeordnete, ein Bremsfeld definierende, parallele Bremselektroden aufweist.

    [0002] Ein solches Flugzeit-Massenspektrometer ist aus der US-PS 37 27 047 bekannt. Ein ähnliches Flugzeit-Massenspektrometer ist auch in der DE-OS 34 28 944 beschrieben. Der von Gitterelektroden gebildete Ionenreflektor dieser bekannten Flugzeit-Massenspektrometer hat den Zweck, Flugzeitdifferenzen auszugleichen, die auf unterschiedliche Anfangsenergien der beschleunigten Ionen zurückzuführen sind, um dadurch das Massen-Auflösungsvermögen des Spektrometers zu verbessern.

    [0003] Auch mit einem solchen Ionenreflektor versehene Flugzeit-Massenspektrometer erfüllen jedoch noch nicht die Forderungen bezüglich Empfindlichkeit und Auflösungsvermögen, wie sie an ein Gerät zu stellen sind, das als allgemeines Laborgerät geeignet sein und auch dem nicht besonders spezialisierten Fachmann massenspektrometrischen Untersuchungen erlauben soll. Der Erfindung liegt daher die Aufgabe zugrunde, die bekannten Flugzeit-Massenspektrometer so zu verbessern, daß sie bei einfachem Aufbau eine verbesserte Auflösung und Empfindlichkeit besitzen.

    [0004] Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß zwischen der der Reflektorelektrode benachbarten, hinteren Bremselektrode und der Reflektorelektrode eine Fokussierelektrode angeordnet ist, die als gitterlose Ringblende ausgebildet ist und auf einem höheren Potential liegt, als es dem linearen Potentialanstieg von der hinteren Bremsfeldelektrode zur Reflektorelektrode entspricht.

    [0005] Der Einbau der gitterlosen Ringblende und das Anlegen eines erhöhten Potentials an diese Ringblende hat die Ausbildung eines inhomogenen elektrischen Feldes im Bereich der Fokussierelektrode zur Folge, das durch richtige Bemessung von Innendurchmesser der Ringblende und Potentialen zusätzlich zu der Zeitfokussierung auch eine massenunabhängige geometrische Fokussierung des Ionenstrahles bewirkt, die es gestattet, die Detektoroberfläche zu vermindern. Dadurch werden die durch eine mangelnde räumliche Fokussierung bedingten Wegunterschiede für die einzelnen Ionen vermindert, die sonst ebenfalls zu einer Unschärfe der Massenauflösung beitragen, und es wird gleichzeitig das Signal/-Rausch-Verhältnis und damit die Empfindlichkeit des Flugzeit-Massenspektrometers verbessert.

    [0006] Bei den bisher bekannten Flugzeit-Massenspektrometern wurde es als erforderlich angesehen, die Bremselektroden als Gitter auszubilden, weil ein sehr homogenes elektrisches Feld als notwendig angesehen wurde, um eine über den gesamten Strahlquerschnitt gleiche Zeitfokussierung zu gewährleisten. Tatsächlich hat sich jedoch herausgestellt, daß die durch die Fokussierelektrode bedingte Inhomogenität so eingestellt werden kann, daß sowohl eine optimale zeitliche als auch optimale geometrische Fokussierung erzielt werden kann. Solche optimalen Verhältnisse lassen sich auch dann erzielen, wenn die Bremselektroden ebenso wie die Fokussierelektrode als gitterlose Ringblenden ausgebildet sind. Die Ausbildung der Bremselektroden als gitterlose Ringblenden ist nicht nur möglich, sondern vielmehr auch höchst vorteilhaft, weil dadurch kostspieliege und hochempfindliche Bauelemente, wie sie Gitter darstellen, vermieden werden und darüber hinaus die durch solche Gitter bedingten Transmissionverluste vermieden werden. Selbst wenn solche Gitterelektroden ein so hohes Transmissionsvermögen wie 80 % für den Ionenstrahl aufweisen, erleidet der Ionenstrahl bei viermaligem Passieren solcher Gitter eine Schwächung auf 40 % der ursprünglichen Intensität, was zu einem entsprechenden Empfindlichkeitsverlust führt. Durch die Ausbildung der Bremselektroden als gitterlose Ringblenden wird infolgedessen sowohl eine Vereinfachung als auch eine Erhöhung der Empfindlichkeit des Flugzeit-Massenspektrometers erzielt. Die bewußte Erzeugung eines inhomogenen elektrischen Feldes im Bereich der Bremselektroden bietet auch die Möglichkeit, durch die Geometrie der Bremselektroden Einfluß auf die Inhomogenität des elektrischen Feldes zu nehmen. Dabei hat es sich als besonders vorteilhaft erwiesen, wenn die vordere Bremselektrode einen größeren Lochdurchmesser aufweist als die hintere.

    [0007] Im Hinblick darauf, daß die zur geometrischen Fokussierung notwendige Inhomogenität des elektrischen Feldes nach Größe und Form genau definiert sein muß und weiterhin die Zeitfokussierung wie bei den bekannten Flugzeit-Massenspektrometern eine Flugstrecke mit homogenem Feldverlauf umfassen muß, kann auch bei dem erfindungsgemäßen Flugzeit-Massenspektrometer eine Anzahl Linearisierungselektroden vorhanden sein, die sinngemäß nicht zwischen der hinteren Bremselektrode und der Reflektorelektrode, sondern zwischen der Fokussierelektrode und der Reflektorelektrode angeordnet ist.

    [0008] Die Festlegung der Elektrodenpotentiale kann in bekannter Weise durch die Widerstände eines Spannungsteilers erfolgen, durch welche die jeweils einander benachbarten Elektroden des Ionenreflektors elektrisch miteinander verbunden sind.

    [0009] Die Erfindung wird im folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Die der Beschreibung und der Zeichnung zu entnehmenden Merkmale können bei anderen Ausführungsformen der Erfindung einzeln für sich oder zu mehreren in beliebiger Kombination Anwendung finden. Es zeigen

    Fig. 1 die schematische Darstellung eines Flugzeit-Spektrometers nach der Erfindung,

    Fig. 2 die Elektrodenanordnung des Ionenreflektors einer ersten Ausführungsform der Erfindung,

    Fig. 3 die Elektrodenanordnung des Ionenreflektors einer zweiten Ausführungsform der Erfindung und

    Fig. 4 eine schematische perspektivische Darstellung einer weiteren Ausführungsform eines Ionenreflektors.



    [0010] Das in Fig. 1 schematisch dargestellte Flugzeit-Massenspektrometer umfaßt eine Ionenquelle 1 und einen Detektor 2, die durch einen spitzen Winkel miteinander bildende Flugstrecken 3, 4 miteinander verbunden sind. Im Bereich des Schnittpunktes der beiden Flugstrecken 3, 4 befindet sich ein Ionenreflektor 5. Alle Bauelemente befinden sich innerhalb eines evakuierbaren Gehäuses 6. Der Ionenreflektor 5 umfaßt zwei Bremselektroden 7, 8, die sich am Eingang des Ionenreflektors 5 befinden und von denen die vordere Bremselektrode 7 die Flugstrecken 3, 4 begrenzt, in denen das elektrische Feld keinen Gradienten aufweist. Zwischen den Bremselektroden 7, 8 befindet sich ein elektrisches Feld, durch das die Ionen stark abgebremst werden, bevor sie in die eigentliche Reflexionsstrecke eintreten, die sich zwischen der hinteren Bremselektrode 8 und der Reflektorelektrode 9 befindet. Erfindungsgemäß ist zwischen der hinteren Bremselektrode 8 und der Reflektorelektrode 9 eine Fokussierelektrode 10 angeordnet, welche die Ausbildung eines inhomogenen elektrischen Feldes zur Folge hat, das eine elektrostatische Linse zur geometrischen Fokussierung des Ionenstrahles auf den Detektor 2 bildet.

    [0011] Bei der in Fig. 2 dargestellten Elektrodenanordnung sind die beiden Bremselektroden 17, 18 als Gitterelektroden ausgebildet. Zwischen der hinteren Bremselektrode 18 und der von einer ebenen Platte gebildeten Reflektorelektrode 19 befindet sich die als Ringblende ausgebildete Fokussierelektrode 20. Zwischen der Fokussierelektrode 20 und der Reflektorelektrode 19 befinden sich zwei Linearisierungselektroden 21 und 22. Der Außendurchmesser aller Elektroden beträgt 200 mm. Im übrigen ist der Aufbau des Ionenreflektors durch die folgenden Werte gekennzeichnet:



    [0012] Der in Fig. 3 dargestellte Ionenreflektor weist anstelle der als Gitter ausgebildeten Bremselektroden 17, 18 Bremselektroden 27, 28 auf, die ebenfalls als Ringblenden ausgebildet sind. Ferner sind zwischen der Fokussierelektrode 30 und der Reflektorelektrode, die wieder als geschlossene Platte ausgebildet ist, drei als Ringblenden ausgebildete Linearisierungselektroden 31, 32, 33 angeordnet. Für die Elektroden des Ionenreflektors nach Fig. 3 gelten die folgenden Werte:



    [0013] Beide Ionenreflektoren ergeben eine einwandfreie zeitliche und räumliche Fokussierung für eine Ionenenergie von 680 V, einen Einfallswinkel der Ionenbahn von 4° und eine Länge der Driftstrecke von 165 cm. Der zur Fokussierung führende Verlauf der Äquipotentialflächen, welche eine Linsenwirkung ergeben, und die fokussierende Wirkung auf den Ionenstrahl sind in den Fig. 2 und 3 durch die Potentiallinien 34 bzw. die Bahnlinien 35 wiedergegeben.

    [0014] Fig. 4 veranschaulicht endlich den mechanischen Aufbau eines nach der Erfindung ausgebildeten Ionenreflektors. Dieser Ionenreflektor umfaßt Elektroden 41 bis 46 in Form von Ringblenden, die mittels kurzer Keramikröhrchen 49 auf einer Trägerplatte 48 montiert sind. Die Trägerplatte 48 mit dem .Elektrodensystem ist innerhalb eines Vakuumgefäßes 52 angeordnet, das einen Rohrstutzen 53 zum Anschluß einer Vakuumpumpe und einen Flansch 54 zum Anschluß des Gehäuses mit den übrigen Komponenten des Flugzeit-Massenspektrometers aufweist. Das Vakuumgefäß 52 weist an dem dem Flansch 54 entgegengesetzten Ende einen Trägerflansch 51 auf, an dem die Trägerplatte 48 mit dem Elektrodensystem befestigt ist und der Vakuumdurchführungen 50 aufweist, die es gestatten, definierte Potentiale an die Elektroden anzulegen. Genauer gesagt, dienen die Vakuumdurchführungen 50 dazu, eine Spannung an einen Spannungsteiler anzulegen, der von Widerständen 47 gebildet wird, von denen jeder zwei der benachbarten Elektroden 41 bis 46 miteinander verbindet. Die Werte der Widerstände 47 sind so gewählt, daß sich die der nachfolgenden Tabelle zu entnehmende Potentialverteilung ergibt. Dieser Tabelle sind auch die Innendurchmesser und die Achsenposition der Elektroden zu entnehmen. Bei einem Innendurchmesser des Vakuumgefäßes 52 von 200 mm beträgt hier der Außendurchmesser der Blenden 170 mm. Die angestrebte zeitliche und räumliche Fokussierung wird wieder für eine Ionenenergie von 680 eV, einen Ionenstrahl-Einfallswinkel von 4° und eine Länge der Driftstrecke von 165 cm erzielt.



    [0015] Die in den oben wiedergegebenen Tabellen enthaltenen Werte wurden mittels eines Computers berechnet. Es versteht sich, daß mittels üblicher Algorithmen auch die optimalen Werte für Blendendurchmesser und -abstände sowie für die Potentialverteilung für andere Randbedingungen ermittelt werden können, die in der Ionenenergie, dem Ionenstrahl-Einfallswinkel und der Länge der Driftstrecke bestehen.


    Ansprüche

    1. Flugzeit-Massenspektrometer mit einem Ionenreflektor, der eine Reflektorelektrode und zwei mit Abstand davor angeordnete, ein Bremsfeld definierende, parallele Bremselektroden aufweist,
    dadurch gekennzeichnet,
    daß zwischen der der Reflektorelektrode (29) benachbarten, hinteren Bremselektrode (28) und der Reflektorelektrode (29) mindestens eine Fokussierelektrode (30) angeordnet ist, die als gitterlose Ringblende ausgebildet ist und auf einem höheren Potential liegt, als es dem linearen Potentialanstieg von der hinteren Bremselektrode (28) zur Reflektorelektrode (29) entspricht.
     
    2. Flugzeit-Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß auch die Bremselektroden (27, 28) als gitterlose Ringblenden ausgebildet sind.
     
    3. Flugzeit-Massenspektrometer nach Anspruch 2, dadurch gekennzeichnet, daß die vordere Bremselektrode (27) einen größeren Lochdurchmesser aufweist als die hintere.
     
    4. Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen der Fokussierelektrode (30) und der Reflektorelektrode (29) eine Anzahl Linearisierungselektroden (31, 32, 33) angeordnet ist.
     
    5. Flugzeit-Massenspektrometer nach einem der vorhergehende Ansprüche, dadurch gekennzeichnet, daß seine jeweils einander benachbarten Elektroden (41 bis 46) durch die Widerstände (47) eines die Elektrodenpotentiale bestimmenden Spannungsteilers elektrisch miteinander verbunden sind.
     




    Zeichnung