BACKGROUND OF THE INVENTION
[0001] The present invention relates to an apparatus for controlling an engine in accordance
with engine operating conditions, and more particularly to an apparatus for controlling
fuel injection quantity, ignition timing or the like in accordance with intake air
flow quantity.
[0002] In an engine of an automobile, for instance, fuel injection quantity, ignition timing
or the like is controlled by an electronic control unit (ECU) utilizing a microcomputer.
In such electronic control unit, detection signals from sensors sensing engine operating
conditions are applied to the control unit to be used therein for controlling the
engine. For instance, the sensors sense respectively engine rotational speed, coolant
temperature, throttle opening, air-fuel ratio and battery voltage of an engine. Further,
intake air flow quantity which is most relevant to engine control, fuel injection
quantity control, is sensed by an air flow sensor and detection signal thereof is
applied to the control unit. As the air flow sensor for measuring intake air flow
quantity used in engine control, various ones such as heat-wire type disclosed in
US patent 4,279,146 are known.
[0003] In the heat-wire type air flow sensor, a heater resistor having a specified temperature-resistance
characteristic is provided in an intake passage of the engine so that the heating
of the same is controlled by heating electric power supplied thereto. The temperature
rising speed of the heater resistor supplied with the heating electric power is monitored.
Since the heater resistor is exposed in the intake air flow, heat dissipation from
the heater resistor corresponds to the intake air flow quantity. That is, if the
intake air flow quantity increases, the temperature rising speed becomes slow. To
keep the temperature condition of the heater resistor at a reference temperature,
larger heating electric power is required as the intake air flow quantity increases.
[0004] In this type of air flow sensor, temperature condition of the heater resistor is
sensed in relation to the temperature of air flowing through the intake passage sensed
by a temperature sensitive resistor. However, in fact, the temperature measurement
characteristic of the heater resistor is greatly influenced by the temperature of
the environment. For instance, in a cold condition where the temperature is lowered
to -20 °C, it becomes difficult to accurately measure intake air flow quantity. To
compensate for dependency on the air temperature, a compensation resistor is connected
to the temperature sensitive resistor. However, the compensation resistor only compensate
for the temperature dependency linearly with respect to the sensed air temperature.
This means that it becomes difficult to control the fuel injection quantity, ignition
timing or the like precisely.
SUMMARY OF THE INVENTION
[0005] It is a primary object of the present invention to eliminate the above-described
disadvantages.
[0006] It is a further object of the present invention to eliminate dependency on air temperature
in measuring intake air quantity so that engine control is performed precisely.
[0007] In an apparatus for controlling an engine according to the present invention, as
an air flow sensor for measuring intake air flow quantity, a heater resistor having
temperature-resistance characteristic and a temperature sensitive resistor for sensing
air temperature are provided in an intake passage, and heating electric power is supplied
to the heater resistor in response to a start signal generated periodically. The heating
electric power is cut off when the temperature of the heater resistor is raised to
a specified reference temperature predetermined in accordance with the air temperature,
so that an output signal indicative of the time width in which the heating electric
power is supplied is applied to an electronic control unit to measure air flow quantity
therefrom. Further, compensation coefficient stored in a memory is derived in correspondence
to the intake air temperature sensed by the temperature sensitive resistor, and the
output signal is compensated for by the compensation coefficient to compensate the
measured air flow quantity. Based on the compensated air flow quantity, fuel injection
quantity, ignition timing or the like is computed in the electronic control unit.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] In the accompanying drawings:
Fig. 1 is a schematic view showing an engine control apparatus according to an embodiment
of the present invention;
Fig. 2 is a waveform chart showing waveforms of signals developed in the embodiment
shown in Fig. 1;
Fig. 3 is a graph showing compensation coefficients relative to air temperature;
Fig. 4 is a graph showing compensation coefficients stored in a memory relative to
air temperature;
Figs. 5 through 7 are flow charts showing interrupt routines performed by an electronic
control unit shown in Fig. 1; and
Fig. 7 is a schematic view showing another embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0009] The present invention will be described hereinbelow with reference to embodiments
shown in the drawings.
[0010] As shown in Fig. 1, a heater resistor 13 and a temperature sensitive resistor 14
are provided within an intake passage 12 of an engine. The heater resistor 13 such
as a platinum wire positioned downstream the resistor 14 has temperature-resistance
characteristic by which resistance thereof is varied in accordance with the temperature
thereof and generates heat by heating electric power supplied thereto. The heater
resistor 13 is exposed to the intake air flowing through the intake passage 12. The
temperature sensitive resistor 14 such as a platinum wire varies resistance thereof
in correspondence to the intake air temperature.
[0011] A resistor 15 having a low fixed resistance is connected to the heater resistor 13
in series, and resistors 16 and 17 having high fixed resistances are connected to
the temperature sensitive resistor 14 in series. The resistors 13 through 17 constitute
a bridge circuit. An electric power source +B from an electronic control unit 11 is
connected to the bridge circuit through a heating electric power switching device
constituted by a transistor 18.
[0012] A junction A between the resistors 13 and 15 and a junction B between the resistors
16 and 17 used as output terminals of the bridge circuit are connected to a comparator
19. The comparator 19 generates a positive output signal when the bridge circuit is
balanced, that is, temperature of the heater resistor 13 is raised to a reference
temperature predetermined by the air temperature sensed by the temperature sensitive
resistor 14. The output signal from the comparator 19 is applied to a reset terminal
of a flip-flop circuit 20 functioning as a bistable circuit. The flip-flop circuit
20 is driven into a set condition by a start signal Tin generated from the control
unit 11. Under the set condition, a positive output signal in the form of pulse is
applied to the transistor 18 so that the electric heating power is supplied to the
bridge circuit in which the heater resistor 13 generates heat. The positive output
signal produced when the flip-flop circuit 20 is in the set condition is applied through
a buffer 21 to the control unit 11 as an air flow quantity signal. The start signal
Tin is periodically generated preferably in response to a signal synchronized with
engine rotation.
[0013] The voltage of the heating electric power supplied through the transistor 18 to the
bridge circuit is applied through a resistor to an operational amplifier 22. A reference
voltage signal from a reference voltage source 23 is applied to the operational amplifier
22 to be compared with the voltage of the heating electric power. The base of transistor
18 is controlled by an output signal from the operational amplifier 22 so that the
voltage of the heating electric power is regulated to the reference voltage. An air
temperature signal VK produced from the junction B and corresponding to the temperature
of air in the intake passage 12 measured by the temperature sensitive element 14 is
applied to the control unit 11 to be used for compensating the air flow quantity signal.
[0014] According to the air flow sensor described hereinabove, the start signal Tin is
generated periodically from the engine control unit 11 in synchronizm with engine
rotation as shown in (A) of Fig. 2, and the flip-flop circuit 20 is driven into the
set condition. When the flip-flop circuit 20 is set to produce the output signal rising
positively as shown in (B) of Fig. 2, the transistor 18 is turned on to supply the
heating electric power or the electric current to the bridge circuit including the
heater resistor 13 so that the heater resistor 13 is generates heat by the heating
electric power the voltage of which is controlled constant. Since the heater resistor
13 is exposed to the air flow in the intake passage 12, the heat dissipation from
the heater resistor 13 is determined by the intake air flow quantity. Under the condition
that the heating electric power of the constant voltage is supplied, the temperature
rising speed of the heater resistor 13 becomes slow as the air flow quantity increases.
That is, the temperature of the heater resistor 13 changes as shown in (C) of Fig.
2. As this temperature increases, the resistance of the resistor 13 increases and
the voltage at the junction A decreases responsively. When this temperature is raised
to the reference temperature determined in relation to the air temperature measured
by the temperature sensitive resistor 14, the comparator 19 generates the positive
output signal as shown in (D) of the Fig. 2 and the flip-flop circuit 20 is driven
into the reset condition as shown in (B) of Fig. 2. In response to the resetting of
the flip-flop circuit 20, the heating electric power to the heater resistor 13 is
cut off so that the time width in which the heating electric power is supplied corresponds
to the intake air flow quantity in the intake passage 12. This pulse width is applied
as the air flow quantity signal Tout to the control unit 11. After supply of the heating
electric power to the bridge circuit is cut off, the temperature of the heater resistor
13 decreases until the start signal Tin generated again as shown in (c) of Fig. 2.
[0015] The air flow quantity signal Tout of the air flow sensor has the following characteristic
relative to the intake air temperature Ta.
Tout = a × Ta + b (a and b: variables) This means that the air flow quantity signal
Tout is dependent on the air temperature Ta. To eliminate dependency on the intake
air temperature, the air flow quantity signal Tout must be compensated, for instance,
by multiplying a compensation coefficient KA shown by a curve A in Fig. 3. As would
be understood from Fig. 3, the compensation coefficient KA is expressed as C/Ta (C:variable)
and nonlinear relative to the intake air temperature Ta. The compensation resistor
16 in the bridge circuit is effective to compensate the temperature dependency to
some extent and, in substance, results in compensating the air flow quantity signal
linearly with compensation coefficient KB expressed as d.Ta+e (d and e: variables)
as shown in a curve B in Fig. 3.
[0016] In the circuit configuration of the above-described embodiment, even if the compensation
resistor 16 is used to perform the temperature compensation so that the compensation
error is nullified at intake air temperatures 20 °C and 80 °C, substantial compensation
error still remains at other intake air temperatures as shown by hatching in Fig.
3. Particularly at -20 °C in the cold area, the compensation within the bridge circuit
is insufficient and the air flow quantity signal having a shorter pulse width than
that corresponding to the actual intake air quantity is produced.
[0017] This error in the temperature compensation is a function of the intake air temperature.
Therefore, an air flow quantity signal Tout produced by the air flow sensor is further
compensated by a compensation coefficient K' dependent on the intake air temperature.
Since the voltage V
k at the junction B of the bridge circuit corresponds to the air temperature, the voltage
V
k is applied to the control unit 11. The compensation coefficient K' is determined
to be KA/KB as shown in Fig. 4 and stored in a storage memory such as ROM provided
in the control unit 11 as a data map. The compensation coefficient K' is read out
in the control unit 11 in correspondence to the signal V
k indicative of the air temperature sensed by the temperature sensitive resistor 14.
By multiplying the air flow quantity signal Tout by the compensation coefficient K'
read out from the memory, an air flow quantity measurement with reduced compensation
error is obtained.
[0018] The electronic control unit 11 which primarily performs the above-described temperature
compensation on the air flow quantity signal Tout and controls fuel injection quantity
or the like in accordance with the compensated air flow quantity, is comprised of
a well-known micro-computer having A/D conventer, CPU, ROM, ROM, RAM and so on. The
ROM stores therein the compensation coefficients corresponding to air temperatures
-20°C, 20°C, 50°C and 80°C and a control program shown in Figs. 5 through 7 which
the CPU performs.
[0019] Fig. 5 shows an interrupt routine responsive to rotation N signal for initiating
air flow quantity measuring operation of the air flow sensor. At step 101 the start
signal Tin is produced in response to the signal N synchronized with the engine rotation
so that the heating electric power is supplied to the bridge circuit, and at step
102 an interrupt for A/D conversion of the signal V
k indicative of air temperature is instructed or allowed. In an A/D conversion interrupt
routine shown in Fig. 6, the signal V
k received from the bridge circuit is A/D converted by the A/D converter and resultant
value indicative of the air temperature is stored at step 111 in RAM in the control
unit 11.
[0020] Fig. 7 shows an interrupt routine for measuring the pulse width of the air flow quantity
signal Tout when the above-described air flow quantity measurement cperation is performed
in response to the start signal Tin. At step 121 the pulse width of the air flow quantity
signal in the form of pulse shown in (B) of Fig. 2 is measured. This measurement is
performed by counting clock signals generated within the control unit 11 during the
pulse width. Then at step 122 the compensation coefficient K' is computed by interpolation
of the mapped data shown in Fig. 4 based on the air temperature Ta. At step 123 multiplication
of Tout x K' is performed to compensate the temperature dependency of the air flow
quantity signal Tout and at step 124 the air flow quantity per engine revolution G/N
is computed from the compensated air flow quantity Tout'. In the control unit 11,
control information for the engine such as fuel injection quantity and ignition timing
are calculated from the air flow quantity information G/N and further corrected by
detection signals indicative of other engine operating conditions in the well-known
manner so that engine control is performed.
[0021] Here it should be noted that most appropriate timing for A/D conversion of the temperature
signal V
k is tens of microseconds after the start signal Tin. This timing corresponds to the
sum of a time interval from the start signal Tin to the supply of the heating electric
power to the bridge circuit and the time interval from the supply of the electric
power to the stabilization of the temperature signal V
k.
[0022] Although the compensation resistor 16 is provided in the bridge circuit for initial
temperature compensation in the above-described embodiment, the compensation resistor
16 may be eliminated as shown in Fig. 8. In this case the compensation coefficient
K must be determined to correspond to the value KA shown by the curve A in Fig. 3
and stored in ROM in the control unit 11 so that the air flow quantity signal Tout
can be compensated for temperature solely by the stored compensation coefficient KA.
[0023] It is to be noted that the bridge circuit including the heater resistor may be supplied
with a constant current in place of the constant voltage.
1. A control apparatus for an engine having an intake passage comprising:
first means positioned in said intake passage for generating heat when supplied with
electric power and generating a first output signal indicative of the temperature
thereof varying with the supplied electric power and the quantity of air flowing in
said intake passage;
second means for sensing the temperature of air flowing to said first means in said
intake passage and generating a second output signal indicative of a reference temperature
dependent on the sensed temperature of air;
third means for regulating the electric power supplied to said first means in accordance
with a difference between said first output signal and said second output signal so
that the temperature of said first means attains said reference temperature;
fourth means for measuring the quantity of air flowing in said intake passage in accordance
with the electric power regulated by said third means;
fifth means for storing therein compensation values as a nonlinear function of temperature
of air, said compensation values being corresponding to errors in the measured quantity
of air at respective temperature of air;
sixth means for determining a compensation value from the stored compensation values
in correspondence to the sensed temperature of air;
seventh means for compensating the measured quantity of air by the determined compensation
value; and
eighth means for controlling said engine using the compensated quantity of air.
2. A control apparatus according to claim 1, wherein said first means includes a first
temperature-dependent resistor and a first fixed resistor connected in series with
said first temperature-dependent resistor to generate the first output signal at the
junction therebetween, and wherein said second means is connected in parallel with
said first means and includes a second temperature-dependent resistor and a pair of
second fixed resistors connected in series with said second temperature-dependent
resistor to generate the second output signal at the junction between said second
fixed resistors so that one of the second fixed resistors connected to said second
temperature-dependent resistor reduces errors in the measured quantity of air as a
linear function of the temperature of air.
3. A control apparatus according to claim 2, wherein the compensation values stored
in said fifth means correspond to multiplication coefficients proportional to a difference
between the nonlinear function and the linear function of the temperature of air,
and wherein said seventh means compensates the measured quantity of air by multiplying
the measured quantity of air by a multiplication ccefficient determined from the multiplication
coefficients.
4. A control apparatus according to claim 3, wherein said third means includes:
comparator means for comparing the first output signal with the second output signal
thereby to generate a comparator output signal when the first output signal attains
the second output signal; and
switching means for initiating and terminating supply of the electric power to said
first means in response to a start signal generated in synchronism with rotation of
said engine and in response to the comparator output signal, respectively.
5. A control apparatus according to claim 4, wherein said fourth means measures the
interval of time of supply of the electric power to said first means to measure the
quantity of air.
6. A control apparatus for an engine having an intake passage comprising:
a first circuit including a heater resistor disposed in said intake passage and a
fixed resistor connected in series with said heater resistor, said heater resistor
generating heat when supplied with an electric power and varying a resistance thereof
in accordance with temperature thereof thereby to produce a first output signal corresponding
to the temperature thereof;
a second circuit connected in parallel to said first circuit and including a temperature
sensitive resistor disposed upstream said heater resistor in said intake passage
and a pair of fixed resistors connected in series with said temperature sensitive
resistor, said temperature sensitive resistor varying a resistance thereof in accordance
with temperature of air flowing therethrough thereby to produce a second output signal
corresponding to the temperature of air;
a third circuit connected to said first circuit and said second circuit for producing
a third output signal which regulates the electric power supplied to said heater resistor
in relation to said first output signal and said second output signal;
a fourth circuit connected to said second circuit and said third circuit and storing
therein compensation coefficients predetermined in relation to temperature of air,
said fourth circuit including a computer programmed to determine in response to the
second output signal a compensation coefficient from the stored compensation coefficients
and compensate the third output signal by the determined compensation coefficient
so that quantity of air is indicated by the compensated third output signal and said
engine is controlled thereby.
7. A control apparatus according to claim 6, wherein said third circuit includes:
a comparator for comparing the first output signal with the second output signal to
produce a comparator output signal when the first output signal attains the second
output signal;
a bistable circuit set and reset by a start signal periodically produced and the comparator
output signal, respectively, for producing a pulse signal as the third output signal
while the same is in the set condition; and
a switching device connected to said bistable circuit for supplying an electric current
to said first circuit while turned on by the pulse signal.
8. A control apparatus according to claim 7, wherein said fourth circuit is further
programmed to measure the time interval of the pulse signal produced by said bistable
circuit so that the measured time interval is compensated by multiplying the measured
time interval by the determined compensation coefficient.