(19)
(11) EP 0 214 679 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
24.03.1993  Patentblatt  1993/12

(45) Hinweis auf die Patenterteilung:
21.12.1988  Patentblatt  1988/51

(21) Anmeldenummer: 86201344.8

(22) Anmeldetag:  31.07.1986
(51) Internationale Patentklassifikation (IPC)5C22C 29/06

(54)

Korrosionsfeste Hartmetall-Legierung

Oxidation-resistant hard metal alloy

Alliage dur résistant à la corrosion


(84) Benannte Vertragsstaaten:
BE CH DE FR GB IT LI NL SE

(30) Priorität: 08.08.1985 AT 2315/85

(43) Veröffentlichungstag der Anmeldung:
18.03.1987  Patentblatt  1987/12

(73) Patentinhaber: METALLWERK PLANSEE GESELLSCHAFT M.B.H.
6600 Reutte, Tirol (AT)

(72) Erfinder:
  • Kny, Erich, Dr.
    A-6600 Pflach (AT)
  • Schmid, Lothar
    A-6600 Reutte (AT)

(74) Vertreter: Lohnert, Wolfgang, Dr. 
Plansee Aktiengesellschaft
6600 Reutte
6600 Reutte (AT)


(56) Entgegenhaltungen: : 
EP-A- 0 121 769
DE-A- 1 783 061
DE-A- 3 339 582
DE-C- 706 249
GB-A- 1 085 041
JP-A- 563 648
JP-A-56 136 952
JP-A-58 141 359
US-A- 2 607 676
US-A- 3 322 513
US-A- 3 746 519
US-A- 3 993 446
WO-A-80/02569
DE-A- 2 534 919
DE-B- 2 129 789
FR-A- 2 036 654
GB-A- 1 142 255
JP-A- 5 767 165
JP-A-56 139 647
US-A- 2 147 329
US-A- 3 215 510
US-A- 3 628 921
US-A- 3 916 497
US-A- 4 497 660
   
  • R. Kieffer, F. Benesovsky "Hartmetalle", Springer-Verlag Wien, 1965
 
Bemerkungen:
The file contains technical information submitted after the application was filed and not included in this specification
 


Beschreibung


[0001] Die Erfindung betrifft eine Hartmetall-Legierung, die neben hoher mechanischer Festigkeit und hoher Verschleißfestigkeit äußerst korrosionsfest ist.

[0002] Es ist eine Vielzahl von Hartmetall-Sorten der unterschiedlichsten Zusammensetzung von Karbid- und Bindephase bekannt. Die bisher am häufigsten, vorzugsweise bei der Zerspanung eingesetzten Hartmetall-Sorten sind diejenigen auf Wolframkarbid-Basis mit einer Bindephase aus Kobalt oder Nickel. Diese Hartmetall- sorten weisen eine gute mechanische Festigkeit und Verschleißbeständigkeit auf, sind jedoch insbesonders in sauren Medien nicht sehr korrosionsbeständig. Dabei ist besonders der Kobalt- oder Nickelbinder einem starken Korrosionsangriff ausgesetzt, was zu einer selektiven Auflösung der Bindephase führt. In der weiteren Folge vermindert sich dann die Festigkeit des verbleibenden Karbidskeletts sprunghaft.

[0003] Es hat in der Vergangenheit nicht an Versuchen gefehlt, die Korrosionsbeständigkeit von Hartmetall zu verbessern. Ein Versuch in dieser Richtung war, den Kobalt- oder Nickelbinder durch korrosionsfeste Metalle wie Gold oder Platin zu ersetzen. Derartige Hartmetall-Legierungen haben sich jedoch allein schon aufgrund der hohen Kosten in der Praxis nicht durchsetzen können. In der weiteren Folge wurde versucht, die Korrosionsfestigkeit von Hartmetallen durch Zulegieren von korrosionsfesten Elementen wie Chrom und Molybdän zu verbessern.

[0004] So beschreibt z.B. die EP-A 28 620 eine korrosionsfeste Hartmetall-Legierung auf Wolframkarbid-Basis, bei der maximal 10 % des Wolframkarbids durch Zusatzkarbide ersetzt sein können. Die Binderlegierungen, die zu 5-45 % enthalten ist, besteht aus zumindestens 50 Vol.% Nickel, aus 2-25 Vol.% Chrom und aus 1-15 Vol.% Molybdän. Zusätzlich kann die Bindephase noch eines oder mehrere der Elemente Mn, Al, Si, Cu, Co, Fe und W enthalten.

[0005] Eine weitere korrosionsfeste Hartmetall-Legierung auf Wolframkarbid-Basis beschreibt die DE-A 14 83 230. Der Wolframkarbidgehalt dieser Hartmetall-Legierung beträgt zumindest 88,5 Gew.%. Zusätzlich sind in dieser Hartmetall-Legierung ein oder mehrere Karbide aus der Gruppe der Titan-, Niob- und Hafniumkarbide mit einem Maximal-Anteil von 8,5 Gew.% enthalten. Die Bindemittelphase, die in einer Menge von 3-11,5 Gew.% zur Grundkomponente zugesetzt ist, weist als wesentliche Bestandteile 20-75 Gew.% Kobalt, 4-50 Gew.% Chrom und bis zu 45 Gew.% Nickel auf. Daneben sind ein oder mehrere Zusatzelemente aus der Gruppe W, Mo, Fe, Si, B, C, Ti, Zr, Nb und/oder V enthalten.

[0006] Eine dritte Hartmetall-Legierung, bei der der Binderphase Chrom zulegiert ist, ist in der US-A 3,993 446 beschrieben. Diese Hartmetall-Legierung besteht zu 70-90 Gew.% aus Hartstoffen auf Wolframkarbid-Basis, die teilweise durch ein Zusatzkarbid ersetzt sein können. Die Bindephase, die 10-30 Gew.% beträgt, besteht aus 20-90 Gew.% Nickel, 10-80 Gew.% Kobalt und 5-25 Gew.% Chrom.

[0007] Allen diesen Hartmetall-Legierungen ist gemeinsam, daß es durch das Zulegieren von Chrom und/oder Molybdän zur Bindephase zwar zu gewissen Verbesserungen in der Korriosionsbeständigkeit kommt. Die Möglichkeit der Zulegierung von Chrom und Molybdän ist aus metallurgischen Gründen jedoch begrenzt, da bei höheren Anteilen dieser Elemente die Herstellbarkeit dieser Legierungen erschwert oder sogar unmöglich gemacht wird. Aufgrund versprödender Phasen sinkt darüberhinaus die mechanische Festigkeit dieser Hartmetalle stark ab und führt bei ihrer mechanischen Bearbeitung oder bei ihrem Einsatz häufig zu Bruch und Ausbrüchen.

[0008] Ein weiterer Weg, die Korrosionsfestigkeit von Hartmetall-Legierungen zu steigern, wurde in der Minimierung des Bindemetallgehaltes gesehen. Die Minimierung des Bindemetallgehaltes führte jedoch zu Sinterproblemen und in der Folge zu erhöhter Porösität und bewirkt ebenfalls einen gravierenden Verlust an mechanischer Festigkeit, so daß auch dieser Weg nicht erfolgreich war.

[0009] R. Kieffer, F. Benesovsky "Hartmetalle", Springer-Verlag, Wien, 1965 nennt an einer Stelle eine Reihe von Hartmetall-Legierungen bestehend aus 34-78 % WC, 16-60% Tic und 6-8 % Co-Bindermetall, Gemäß einer anderen Stelle des "Buches kann" man die Korrosionsbeständigkeit erhöhen, indem man in solchen legierungen das Kobalt durch Nickel-Chrom-Legierungen 80/20 oder 70/30 ersetzt.

[0010] Die Aufgabe der vorliegenden Erfindung ist es, eine hochkorrosionsfeste Hartmetall-Legierung vorzuschlagen, die gleichzeitig eine hohe mechanische Festigkeit und eine hohe Verschleißfestigkeit bzw. Korrosionsfestigkeit gegen chemisch aggressive Medien aufweist.

[0011] Erfindungsgemäß wird diese Aufgabe durch die Verwendung einer Hartmetall-Legierung als Werkstoff für Bauteile mit hoher Korrosionsfestigkeit gegen chemisch aggressive Medien gelöst. Diese besteht aus 44-67 Gew.% Wolframkarbid, 30-50 Gew.% Tantalkarbid und/oder Niobkarbid sowie 3-6 Gew.% einer Bindelegierung, bestehend aus Nickel und/oder Kobalt mit jeweils 2-20 Gew.% Chrom.

[0012] Entscheidend für die vorliegende Erfindung ist, daß die guten Eigenschaften der Hartmetall-Legierung völlig überraschend durch einen hohen Anteil an Zweitkarbiden erreicht wurden. Bisher bekannte korrosionsfeste Hartmetallsorten enthalten demgegenüber nur einen vergleichsweise geringen Anteil an Zusatzkarbiden.

[0013] Die Eigenschafts-Verbesserungen der erfindungsgemäßen Hartmetallsorte sind herausragend und waren in ihrem Ausmaß in keiner Weise vorhersehbar. Dabei zeigen verschiedene Hartmetall-Legierungen innerhalb der erfindungsgemäßen Zusammensetzung durchaus unterschiedliche, nicht immer gegenüber allen korrosiven Medien gleich vorteilhafte Eigenschaften.

[0014] Bei den bekannten Hartmetallsorten auf Wolframkarbidbasis mit Kobalt- oder Nickelbinder bildet die Bindephase ein zusammenhängendes Skelett. Korrosive Medien können also bei genügend langer Einwirkungsdauer die gesamte Bindephase herauslösen. Es bleibt danach ein Wolframkarbid-Gerust über, das eine geringe Festigkeit aufweist und das bei abrasiver Beanspruchung schnell abgetragen wird. Eine korrosionsverbessernde Legierung der Bindephase mit Chrom und/oder Molybdän ändert an dieser unerwünschten Eigenschaft nur wenig. Die Korrosionsbeständigkeit ist zwar erhöht, aber die Bindephase bildet nach wie vor ein zusammenhängendes Gerüst, so daß sich ein korrosives Medium entlang feiner Kanale in das Innere der Legierung vorarbeiten kann. Diese Tatsache führt wie bei den Wolframkarbid-Hartmetallen mit reinem Kobalt-oder Nickelbinder zu einer baldigen Zerstörung der gesamten Hartmetall-Legierung.

[0015] Die hohe Korrosionsfestigkeit der erfindungsgemäßen Legierung ist damit zu erklären, daß infolge des hohen Zusatzkarbid-Gehaltes die Bindephase kein zusammenhängendes Skelett ausbildet. Dadurch ist der Korrosionsangriff in seiner Wirksamkeit entscheidend vermindert, zumal das Wolframkarbid sowie die aufgeführten Zusatzkarbide selbst eine sehr gute Korrosionsbeständigkeit in sauren Medien aufweisen.

[0016] Der erfindungsgemäße hohe Anteil eines bestimmten Zusatzkarbides zum Wolframkarbid in Verbindung mit einer ganz spezifischen Binderlegierung ergibt neben einer sprunghaften Erhöhung der Korrosionsfestigkeit zudem auch mechanische Festigkeitseigenschaften und Verschleißeigenschaften, welche denen bekannter korrosionsfester Hartmetall-Legierungen mit geringem Zusatzkarbid-Anteil nicht nachstehen, bzw. diese und in vielen Fällen sogar übertreffen.

[0017] Tabelle 1 zeigt die Gegenüberstellung der mechanischen Eigenschaften von Legierungen verschiedener Zusammensetzungen nach dem Stand der Technik und Legierungen verschiedener Zusammensetzungen nach der vorliegenden Erfindung. Aus der Tabelle ist insbesondere zu entnehmen, daß die meisten erfindungsgemäßen Legierungen im Vergleich zur Legierung 6, die hinsichtlich ihrer Korrosionsfestigkeit als beste Legierung nach dem Stand der Technik gilt, wesentlich bessere Werte in Härte und Biegebruchfestigkeit aufweisen.



[0018] Im folgenden ist die Erfindung anhand von Zeichnungen näher erläutert.

[0019] Es zeigen:

Figur 1 ein Diagramm der Korrosionsbeständigkeit der Legierung 1, nach dem Stand der Technik, in verschiedenen korrosiven Medien, bei unterschiedlichen Temperaturen

Figur 2 ein Diagramm der Korrosionsbeständigkeit der Legierung 6, nach dem Stand der Technik, in verschiedenen korrosiven Medien, bei unterschiedlichen Temperaturen

Figur 3 ein Diagramm der Korrosionsbeständigkeit der erfindungsgemäßen Legierung 8 in verschiedenen korrosiven Medien, bei unterschiedlichen Temperaturen

Figur 4 ein Diagramm der Korrosionsbeständigkeit der erfindungsgemäßen Legierung 8 in verdünnter Salzsäure (6N) bei 100°C, im Vergleich mit der Korrosionsbeständigkeit zweier Legierungen mit derselben Binderzusammensetzung, jedoch mit einem wesentlich geringeren Zusatzkarbidgehalt als bei der erfindungsgemäßen Legierung.

Figur 5 ein Mikrofotografie des Gefüges der Legierung 1 nach dem Stand der Technik in 1 500-facher lichtmikroskopischer Vergrößerung

Figur 6 eine Mikrofotografie des Gefüges der Legierung 1 nach dem Stand der Technik in 1 500-facher rasterelektronenmikroskopischer Vergrößerung

Figur 7 eine Mikrofotografie des Gefüges der erfindungsgemäßen Legierung 8 in 1 500-facher lichtmikroskopischer Vergrößerung

Figur 8 eine Mikrofotografie des Gefüges der erfindungsgemäßen Legierung 8 in 1500-facher rasterelektronenmikroskopischer Vergrößerung



[0020] Der Vergleich der Legierungen mit einem niedrigen Gesamtanteil der Bindephase von 3 % (bekannte Legierung 1, erfindungsgemäße Legierungen 7, 8, 9,) zeigt durch die Figuren 1 und 3 beispielhaft, daß die Korrosionsfestigkeit der erfindungsgemäßen Legierungen in allen Medien um vieles besser ist, als bei der bekannten Legierung 1. In ihren Werten für Härte und Biegebruchfestigkeit liegen die erfindungsgemäßen Legierungen im Vergleich zur bekannten Legierung zum Großteil ebenfalls höher, wie aus Tabelle 1 zu entnehmen ist.

[0021] Die Vorteile der erfindungsgemäßen Legierung kommen insbesondere bei ihrer Verwendung als Werkstoff für Ventilteile bei Verbrennungskraftmaschinen und für verschleißfeste Teile im Chemieanlagenbau zum Tragen.

[0022] Durch den hohen Zusatzkarbid-Anteil ist die erfindungsgemäße Legierung trotz niedrigen Bindemittelgehaltes mittels bekannter pulvermetallurgischer Verfahren problemlos herstellbar.

[0023] Bei der Herstellung der Pulvermischungen können die Zusatzkarbide sowohl einzeln als auch in Form von Mischkarbid-Kristallen zugegeben werden. Genauso ist es möglich, das Wolframkarbid als Einzelkristall oder als Mischkristall mit einem Zusatzkarbid einzubringen.

[0024] Durch eine spezielle Optimierung des pulvermetallurgischen Herstellungsverfahrens der erfindungsgemäßen Legierung können die vorteilhaften Eigenschaften noch weiter verbessert werden. Wesentlich bei diesem optimierten Herstellverfahren ist es, die Legierung bei möglichst tiefen Temperaturen während möglichst kurzer Zeiten zu sintern, wobei jedoch die Ausbildung einer Flüssigphase bei der Sinterung nicht verhindert werden darf. Die durch diese Art der Sinterung verbleibenden Restporositäten werden dann durch eine heißisostatische Nachverdichtung geschlossen. Durch dieses optimierte Herstellungsverfahren wird einerseits die gewünschte diskontinuierliche Teilung der Bindephase erreicht, anderseits kann dadurch das Kornwachstum der Karbidphase so gering wie möglich gehalten werden, was zu einer weiteren Härtesteigerung der erfindungsgemäßen Hartmetall-Legierung führt.

[0025] Die Herstellung der erfindungsgemäßen Legierung wird in den folgenden Beispielen näher erläutert, wobei die Endprodukte in diesen Beispielen einzelnen, der in Tabelle 1 aufgeführten Legierungen entsprechen.

Beispiel 1



[0026] Die Hartmetallegierung 8 wurde folgendermaßen hergestellt:

Als Hartstoffkomponenten wurden 2 kg TaC-Pulver mit einem C. ges.-Gehaltvon 6,22 % und einer Korngröße von 1,5 µm nach FSSS und 2,84 kg WC Pulver mit einer Durchschnittslkorngröße von 0,8 µm nach FSSS eingesetzt. Für den Binder wurden 0,025 kg Cr3C2, 0,05 kg Co und 0,075 kg Ni verwendet. Die Rußzugabe betrug 0,007 kg.



[0027] Der Ansatz wurde 120 h in einer Kugelmühle in 2,5 I Aceton gemahlen. Nach der Trocknung des Ansatzpulvers wurden Formpreßlinge hergestellt, aus denen diverse Proben für Korrosionstests, Biegebruchfestigkeitstests u. ä. geformt wurden. Diese Proben wurden 40 Minuten bei 1450°C im Vakuum gesintert und anschließend heißisostatisch nachverdichtet.


Ansprüche

1. Verwendung einer Hartmetall-Legierung, bestehend aus 44-67 Gew.% Wolframkarbid, 30-50 Gew.% Tantalkarbid und/oder Niobkarbid sowie 3-6 Gew.% einer Bindelegierung, bestehend aus Nickel und/oder Kobalt mit jeweils 2-20 Gew.% Chrom, als Werkstoff für Bauteile mit hoher Korrosionsfestigkeit, die chemisch aggressiven Medien ausgesetzt sind.
 
2. Verwendung der Hartmetall-Legierung nach Anspruch 1 als Werkstoff für Ventilteile bei Verbrennungskraftmaschinen und für Bauteile im Chemieanlagenbau.
 


Claims

1. Use of a cemented carbide alloy, consisting of 44 to 67% by weight tungsten carbide, 30 to 50 % by weight tantalum carbide and/or niobium carbide, and 3 to 6 % by weight of a binder alloy consisting of nickel and/or cobalt with 2 to 20 % by weight chromium respectively as material for construction units of high corrosion resistance, which are exposed to chemically aggressive media.
 
2. Use of the corrosion-resistant cemented carbide alloy according to Claim 1 as a material for valve components of internal combustion engines or construction units in chemical plants.
 


Revendications

1. Utilisation de l'alliage dur avec carbures frittés, constitué par 44 à 67 % en poids de carbure de tungstène, 30 à 50 % en poids de carbure de tantale et/ou carbure de niobium, ainsi que par 3 à 6 % en poids d'un alliage liant constitué par du nickel et/ou du cobalt avec à chaque fois 2 à 20 % en poids de chrome en tant que matériau pour des elements de construction résistant à la corrosion, exposée a media chemi- quement agressive.
 
2. Utilisation de l'alliage dur avec carbures frittés, résistant à la corrosion, selon la revendication 1, en tant que matériau pour parties de soupapes dans des machines motrices à combustion, et pour des parties d'installations de chimie.
 




Zeichnung