(1) Publication number:

0 217 571

A2

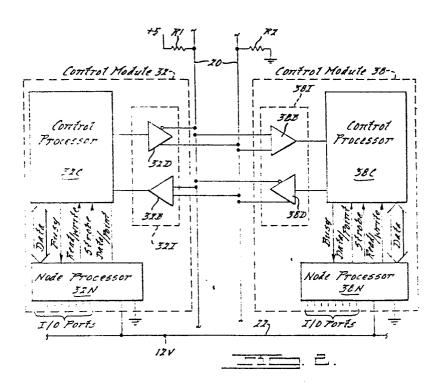
(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86306980.3

(51) Int. Cl.4: H 04 L 11/16

(22) Date of filing: 10.09.86


- 30 Priority: 23.09.85 US 779200
- Date of publication of application: 08.04.87 Bulletin 87/15
- (84) Designated Contracting States: DE FR GB
- 7) Applicant: FORD MOTOR COMPANY LIMITED Eagle Way
 Brentwood Essex CM13 3BW(GB)
- Beginning States:
- (1) Applicant: FORD-WERKE AKTIENGESELLSCHAFT Ottoplatz 2 Postfach 21 03 69 D-5000 Köln 21(DE)
- Designated Contracting States:
 DE
- (1) Applicant: FORD FRANCE SOCIETE ANONYME 344 Avenue Napoléon Bonaparte B.P. 307 F-92506 Rueil Malmaison Cedex(FR)

- Designated Contracting States:
- (72) Inventor: Crawford, Robert Dennis 9629 Russell Plymouth Michigan 48176(US)
- (72) Inventor: Kimber, Theo 10019 Nadine Drive Huntsville Alabama 35803(US)
- (2) Inventor: Volk, Jack Raymond 912 Pomona Road Ann Arbor Michigan 48103(US)
- (72) Inventor: Johnson, Wayne Jon 1044 Charlesworth Dearborn Michigan (US)
- (72) Inventor: Nolff, Douglas 4944 Green Nolls Scio Township Michigan 48103(US)
- (72) Inventor: Franks, Donald Charles 630 Hidden Valley, Apt. 115 Ann Arbor Michigan 48104(US)
- Representative: Messulam, Alec Moses et al, A. Messulam & Co. 24 Broadway Leigh on Sea Essex SS3 1BN(GB)

54 Data transfer communication system.

(5) A data transfer communication system capable of handling both node-to-node data transfer messages originating at any transmitter and transmitted to a specific receiver on the network and functional command messages originating at any transmitter and broadcast transmitted to an unspecified number of receivers on the network. Receivers are programmed to receive and acknowledge receipt of correspondingly addressed node-to-node type messages and certain correspondingly addressed functional command type messages with their unique addresses in a predetermined field location of the transmitted message. By utilizing pulse width modulation techniques, binary logic signals and a unique start signal are defined and have a dominant hierarchy that allows for bit-wise contention of the common data bus. In that manner,

when contention of the data bus is resolved a higher priority message continues to be transmitted while the losing contender delays its transmission until after the higher priority message is completed.

DATA TRANSFER COMMUNICATION SYSTEM

The present invention relates to the field of , electrical communication networks and more specifically to the area of such networks ideally suited for the control of electrical functions in the vehicular environment.

5

10

15

Several protocols have been proposed for use in vehicle data communications over the past several years in order to efficiently replace the massive wiring harness that is presently used to provide electrical interconnection of the various switches, sensors, lights, motors, and electronic control modules located throughout the vehicle.

One such protocol proposed in the prior art is based on Time Division Multiplexing (TDM) in which a master timing node is used as a controller to provide a synchronized set of dedicated time slots for which each slave node is obliged to synchronize with and obtain its communication data therefrom. The dedicated time slots in the TDM each provide control information of a 20 prescribed type and those slave nodes which are programmed to perform the prescribed function must be synchronized in such a way so as to extract information from the time slot correspondingly dedicated to that 25 function. Each "receiver" slave node must know exactly then its control function occurs in the data stream.

7

Accordingly, such a system is vulnerable to a failure in the master node since, in such case, the entire network will be unable to communicate.

In addition to the TDM's dependence on the 5 master node operation. TDM systems generally have poor flexibility due to the limited allocation of time slots in the data stream. Accordingly, additions or deletions of types of receivers in a particular network require a reallocation of the time slots through programming of the 10 master control node.

TDM systems also operate on an open loop system in which there is generally no positive acknowledgment that a particular control function has been received. Consequently, TDM systems usually provide a continuous 15 update of control data as long as a particular function is being instructed.

Some master/slave network architectures use a polling technique. This is considered an improvement over traditional TDM systems since the master can 20 dynamically reassign time slots. However, all network transactions are dependent on a master node and redundant master nodes are required if the system is to be reliable.

A significant improvement over Time Division Multiplex networks is provided by a Bus Contention (BC) 25 network architecture. A Bus Contention network is characterized by a unified system of nodes, each capable of accessing the network based on its own requirements. There are no "master" nodes, nor any dependence on any particular nodes for network operation.

Instead of the dedicated time slots used in TDM, BC nodes have an "address" by which they are identified. This address uniquely identifies a node to all other parts of the network system. Control messages are directed by the address to the specific node that is 35 responsible for a particular control function.

The BC system has far greater efficiency than TDM systems because network activity is directly related to requests for activation. The bus is not burdened with the constant repetition of control signals which are not active. Messages flow between the nodes, as needed, without the intervention of a master controller. Such a method allows for greater adaptability and expandability of the network. New nodes are simply connected to the bus. No reallocation of time slots is required and existing nodes are not affected.

A requirement for the BC type of network architecture is for media access resolution. Because all nodes are capable of network access (i.e., "transmitting") based on their individual needs, a method of resolving 15 conflicts arising from simultaneous transmitter activations is required. Several different solutions are in widespread use for Local Area Network (LAN) applications. CSMA/CD (Carrier Sense Multiple % cess with Collision Detection) and Token Passing schemes are 20 most common. These, however, are optimized for physically (and electrically) large networks where message propagation delay between nodes is large. Collisions often are not detected until both transmitters are well into their individual message sequences. An 25 "abort and retry" scheme is used to resolve the conflict, whereby, both messages are aborted and both transmitters must make attempts to retransmit at a later time.

A different and more efficient method of message collision resolution has been found to be suitable for small networks. It is called the "bit-wise contention resolution" technique. An example is the Philips/Signetics D²B network protocol as disclosed in "The D²B a One Logical Wire Bus for Consumer Applications", by C. H. Kaplinsky, et al., IEEE

Transactions on Comsumer Electronics, Vol. CE-27, Feb. 1981, pg. 102-116; "Serial Bus Structures for Automotive Applications", by A. J. Bozzini, et al., SAE Technical Paper Series No. 830536, Feb. 28, 1983; and "A Small Area Network for Cars", by R. L. Mitchell, SAE Technical Paper Series No. 840317, Feb. 1984.

The D²B method relies on small network propagation delays, being much less than a single bit period. For a given size network, this places an upper 10 bound on the potential frequency response or bit rate of the network. Because the network "looks" small electrically, each bit of a message exists at all points on the network simultaneously. Each transmitter, therefore, is aware of network activity on a bit-by-bit 15 basis in real time. This allows a technique of message arbitration which resolves conflicts "on the fly". Messages are not destroyed in the arbitration process; rather, the network "sees" one of the conflicting messages as being valid. The losing transmitter detects 20 this and tries again as soon as the first message has passed.

The general BC network architecture described above, where each node has a unique address, is characterized by messages which have specific transmit 25 origins and receive destinations. These "node-to-node" messages contain specific references to the physical address of both the transmitter and receiver, along with a data field which contains an encoded description of a particular activity to take place. While BC network 30 configurations are a significant improvement over TDM systems, there are still aspects of network operations unique to automotive requirements which are not completely addressed by the node-to-node schemes.

According to the present invention, there is provided a common data bus (20);

5

10

15

20

25

a plurality of communication control modules (30,32,34,38) each connected to said data bus (20) and each containing means (32B, 38B) for receiving and means (32D, 38D) for transmitting data messages from or to other control modules on said common data bus:

each control module includes means (32N, 38N) for formatting data messages for transmitting on said common data bus into one of at least two types of messages each of which includes in sequence, a common but unique START signal of a predetermined field length to indicate the start of a data message transmission, a PRIORITY signal of a second predetermined field length to indicate the code of the relative degree of priority the formatted data message has for transmission on a predetersaged hierarchy of priority, a TYPE CONTROL signal of a third predetermined field length to indicate the code of which of said at least two types of data messages being formatted for transmission, a FUNCTION or RECEIVER ADDRESS signal of a fourth predetermined field length indicating the code of the function to be performed by other control modules connected to said data bus or the unique address of a specific control module intended to receive the data message; and

means (32C,38C) for storing the unique address of its corresponding control module and function codes of the specific predermined functions controlled by the said corresponding control module.

5

10

15

The protocol employed by the present invention allows each node to be treated as equal participants on the network since there are no specific transmitters, receivers, or timing masters. In this system, all nodes are capable of receiving and initiating commands, and informational data transfers on either a node-to-node basis or a global network transmission basis.

The present invention utilizes a distributed control environment whereby any control module programmed as having the ability to make global (broadcast) transmission of functional commands across the network may do so and other control modules that are programmed to receive such functional commands receive, acknowledge and act on the transmitted functional commands.

In the present invention, each function or data message includes an independent priority field wherein each type of message that is allowed to be transmitted is identified according to as predetermined priority hierarchy for bus access. The priority field guarantees network access in less than one massage period for high priority messages. High priority functions on an automotive vehicle may be, for example, a functional

command from the control module monitoring brake pedal to the control modules which are preprogrammed to respond to "brake light on" functional commands and turn on the brake lights. Typically, lesser but also high priority function commands would involve the switching on of headlamps, the dimming of high beam headlamps, the actuation of door locks and the actuation of a horn.

The present invention increases the message transmission/reception reliability by providing for a 10 fully acknowledged communication protocol. In this system, each message period includes a positive acknowledgment portion through which each receiving control module will provide its unique address on the data bus. In this way, a systemwide handshaking 15 technique gives positive indication to the transmitting module that the message was received and the identity of each receiver.

Fach message sent on the system is also protected by a message-wide checksum for error

20 detection. The checksum is transmitted as part of the message and receiver acknowledgments are only made after the checksums accumulated by the receiver and in the received message are compared and found to correspond. The receiver acknowledgments are protected by a parity bit to force the receiver address to a predetermined odd or even sum.

Message contention on the network bus is handled on a bit-wise contention basis. Therefore, for every collision of messages on the network, the one with the highest priority will win and continue to be transmitted. No bus time is lost due to collisions, because each message type is arbitrated on a bit-by-bit basis for each bit transmitted on the bus and the dominant bit prevails. This way, a valid message will be transmitted while the lower priority message is inhibited from

further transmission. The losing transmitter simply waits until the higher priority message is finished before attempting to transmit. Therefore, the present invention allows for 100% bus utilization during high traffic periods.

The invention will now be descrived further by way of example with reference to the accompanying drawings in which:

Figure 1 is a conceptual drawing of the present invention as intended for a typical installation in an automotive vehicle.

Figure 2 is a more detailed diagram of a pair of accessory control modules connected to the data bus shown in Figure 1.

Figure 3 illustrates the basic message format.

Figure 4 illustrates the function command

15 message format with multiple receivers acknowledging as employed in the present invention.

Figure 5 illustrates a function data transfer message format, as employed in the present invention.

Figure 6 illustrates a node-to-node data 20 transfer message format, as employed in the present invention.

Figure 7 exemplifies the method of providing checksum generation for each message.

Figure 8 is a waveform diagram illustrating a 25 "zero" bit signal.

Figure 9 is a waveform diagram illustrating a "one" bit signal.

Figure 10 is a waveform diagram illustrating a "start" bit signal.

Figure 11 illustrates the bitwise message arbitration as it occurs in the present invention.

Figure 12 is a flow diagram of a control processor in its power-up and idle state.

Figure 13A-13C provide a flow diagram of a control processor receive message routine.

Figure 14 is a flow diagram of a control processor receive message lookup routine.

Figure 15 is a flow diagram of a control processor transmit ackowledgment routine.

Figures 16A and 16B provide a flow diagram of a control processor message transmit routine.

Figure 17 is a flow diagram of a control 10 processor receive message acknowledgment routine.

Figure 18 is a flow diagram of a control processor node communication routine.

Detailed Description of the Preferred Embodiment

The present invention is viewed as being ideally 15 suited for installation in an automotive vehicle, such as that shown in Figure 1. In the vehicle 10, an engine 12 is shown in order to give perspective to the overall layout of the vehicle with respect to the present invention. The data communication system is shown as 20 utilizing a single data bus communication link 20 that is routed to various control modules around the vehicle. In this instance, a twisted wire medium is used as the data bus 20. However, it is foreseen that other transmission mediums such as fiber optics, acoustical carriers or 25 coaxial cables may be substituted.

In Figure 1, a control module 30 is illustrated as being located at the forward right corner of the vehicle. The control module 30 is intended to receive functional commands and control the operation of 30 headlamps, parking lamps, highbeams, turn signals, warning flasher lamps and a horn located in that general area of the vehicle. Correspondingly, a control module 32 in the forward left portion of the vehicle functions

in a manner similar to control module 30 to provide control of the various lamps at that location. Control module 34 resides on or close to the engine 12 so as to provide information from such engine mounted sensors as oil level, water temperature and engine speed to the data bus for transmission to other control modules connected thereto. Control module 36 is located in the area of the instrument panel of the vehicle 10 in order to control instrument lighting and provide appropriate information

- 10 to instruments thereon regarding the various sensed operational parameters within the vehicle. Control module 38 is shown connected to the steering column of the vehicle 10 and is intended to have inputs from various associated switches to control many of the
- 15 functions which take place in the vehicle. For instance, headlights, parking lights, turn signals and horn actuation would most likely be controlled by switches connected to the control module 38. A brake pedal sensor switch may be connected to either control module 36 or 38
- depending upon the vehicle configuration. Control modules 40, 42, 50 and 52 are shown as located in the doors of the vehicle 10 to provide interconnection to the various window raising and lowering motors, the door lock actuators, door open/close sensor switches, convenience
- 25 lighting and in the case of the control modules 40 and 52 on the front doors, power seat control switches. The control module 54 is shown as being located central to the vehicle, perferably under the front seats of the vehicle in order to supply control information to the
- 30 seat adjustment motors and seatbelt connection sensors.

 Control modules 46 and 48 are shown as located in

 opposite corners at the rear of vehicle 10 in order to

 control the functional operation of the various lamps

 located at the rear of the vehicle including stop lights,

back up lights, running lights, turn signals, emergency flashers and to provide fuel level sensor information to the data bus.

While the above described functions are

5 exemplary of those capable of being handled by the
communication system of the present invention, it should
be seen that the system is flexible enough to accommodate
additional control modules or added functions to present
modules, including diagnostic capabilities without
10 reprogramming the unaffected control modules.

The following discussion concerns the protocol employed by the present invention and illustrates the unique flexibility to accommodate such modifications.

Figure 2 is an example of a relationship of two
15 control modules 32 and 38 connected to the data bus 20.
In addition, each control module is connected to a power
bus 22. (Although the power bus 22 is not shown in
Figure 1, it is understood that the power by 22 would
run throughout the vehicle to supply the necessary
20 electrical power to the various accessories that are
controlled by the control modules.)

In this embodiment, each wire of the data bus 20 is biased to separate passive levels. A first wire is biased through a resister Rl to a regulated voltage

25 supply of approximately 5 volts. The other wire of the data bus 20 is biased through a resister R2 to ground. Therefore, in the passive state, one wire is at approximately 5 volts DC and the other wire at ground potential. Accordingly, when a logic bit signal is

30 placed on the data bus, and the data bus is energized to its dominate state for a period of time, the normally 5 volt biased line will be driven to approximately ground potential and the normally zero biased line will be driven to approximately a 5 volt level. This technique

allows for increased reliability of signal transmission and reception via differential drivers and receivers.

In the configuration shown in Figure 2, each control module contains an interface circuit 32I (38I) 5 which includes a differential driver 320 (38D) and a differential receiver 32B (38B). Each control module includes a control processor 32C (38C) and node processor.

The present embodiment of the invention utilizes

10 Intel 8751 microcomputers for respective control and node
processors. Of course the control processor, as
described above, controls the network communication tasks
while the node processor controls the local tasks or
functions. While the control microprocessors on the

15 network all utilize identical programming to accomplish
the network control task, each contains a unique address
to identify that particular control module and unique
function codes stored in its memory that correspond to
the particular functions handled by its associated node

20 processor. The control processor, besides communicating
with the network through the interface circuit, also
communicates through a parallel interface with the node
processor.

The node processor interfaces with various

25 devices in an area of its physical location through its various I/O ports to provide appropriate interconnection to the power bus 22. Resident software in each node processor gives the particular processor a specific "personality" since each node processor controls or 30 responds to different elements in the vehicle.

Architecturally, the control processor appears to the node processor as a series of read/write registers which contain various status and data information. The node processor initializes and performs network trans35 missions by writing information to those registers and

receives messages by reading other registers. All register read/write operations take place over a parallel data bus interconnecting the two processors. The process for reading and writing those registers is coordinated by the four control lines designated as "data/pointer", "read/write", "strobe" and "busy". All but the busy line are inputs to the control processor. The busy line is used to indicate that the control processor is occupied performing some task relative to the node processor. In order to achieve a message transmission between the control and node processors, the control processor receives through the parallel interface to the node processor, information, in byte form, to be formed into the protocol for transmission on the data bus 20.

15 The control processor is also responsible for recognition and decoding of formatted messages from the bus.

The basic unit of communication in the network protocol of the present invention is the message format. Each message is intended to be from 40 to 121 bits long.

20 depending on the message type. For a five kile ertz bit clock rate, the message period requires from 8 milliseconds to 24.2 milliseconds, depending upon the message length. Typical message periods are approximately 10 milliseconds long, resulting in a 100 message per second network capacity. Of course, utilizing a higher bit clock rate would increase the message capacity of the network.

The present invention uses two general types of messages. First, a node-to-node type message is

30 designated with a specific transmitter and receiver address contained in the message. A second general type of message is a functional message which is intended for global broadcast distribution on the network. A first type of functional message is termed herein as a

35 "functional command" message, where the entire message is

transmitted and acknowledged as received by one or more other control modules programmed to receive the particular function command contained in the message. A second type of functional message is termed herein as a "functional data transfer" message which is an expansion of the functional command message to include informational data following the receiver acknowledgment portion for global distribution on the network.

Figure 3 illustrates the basic message format as 10 employed in the present invention. The basic format contains a message descriptor segment and a receiver acknowledgment segment. A data segment may also be provided in certain types of messages (node-to-node and functional data transfer). In the message descriptor 15 segment, a unique start bit is first provided followed by a priority code. The priority code is utilized for message arbitration on a bitwise basis and will be discussed below with respect to Figure 11. Following the priority code, is a type control code that indicates 20 which of the two general types of messages is being transmitted. The following field contains either a function address as is employed in the broadcast functional messages or a specific receiver address in the event the message is a type intended for node-to-node 25 communication. The following field contains the transmitter address followed by a message checksum field.

The receiver acknowledgment segment of the basic message format shown in Figure 3 is either variable in length, when the message type is a broadcast functional type message so as to accommodate any number of receivers attempting to acknowledge receipt of the message, or of a fixed length, if the transmitted message is a node-to-node type message to accommodate the acknowledgment by one particular receiver of its unique address.

The data segment follows the receiver acknowledgment segment in the event the message is a node-to-node type or a functional information type and includes a string of data up to a predetermined limit.

5

The present invention has the advantage of providing global network messages that can replace several node-to-node messages. On the other hand, where node-to-node messages need to carry sensor information such as engine speed, vehicle speed or temperature to a 10 specific control module, such messages are also accommodated. In the case of a message for turning on or off emergency flashers on a vehicle, it is seen as most efficient to provide a functional command that is broadcast to all of the control modules. Only those 15 control modules connected to the lamps which serve as emergency flashers will, of course, respond to the functional command message on a single transmission of the message. Such an accommodation eliminates the necessity to broadcast four separate node-to-node 20 messages to control the four separately located and controlled flasher lamps.

In order to provide a secure system, acknowledgment must be accommodated. Since there is an unspecified number of receivers that will receive and 25 respond to a particular functional type message, the present system provides for a variable period in the receiver acknowledgment segment of each message.

The function command message format is shown in Figure 4 as including the unique start signal occupying a 30 two bit field. A three bit field for the priority signal follows the start signal and a two bit field for the control signal follows the priority signal. The control signal will indicate a function command type message being transmitted. The following eleven bit field 35 contains a generic function address in the first seven

bits and a specific function address in the remaining four bits. A generic function might appear as "headlamps" while the specific function may appear as "on" or "off". Another generic function command may 5 appear as "door locks" while the associated specific function may appear as "lock" or "unlock". Following the function command, a seven bit field conveys the transmitting control module's unique address while the immediately succeeding seven bit field includes the 10 message checksum of the message. Following the end of the message checksum, the transmitting control module reverts to its receiver mode of operation to await acknowledgments by receiving control modules that are programmed to respond to the function command contained 15 in the message. A receiver having the highest priority unique address will prevail as the first to acknowledge and, following the appropriate protocol, any other receiver that lost out in accessing the bus to transmit its acknowledgment address will change the exception bit 20 from a passive state to a dominant state and contend for the bus to transmit its unique address as an acknowledgment. Such acknowledgment continues until all receivers of the function command have acknowledged receipt and the exception bit is left at its passive 25 state for one bit length. At the end of the exception bit being left in a passive state for one bit length, any other control module having a message to be sent may attempt to access the bus by providing a start bit and contending for the transmission of its complete message. 30 The function data transfer type message shown in

The function data transfer type message shown in Figure 5 is very similar to the function command message format shown in Figure 4 except that after the receiver acknowledgment segment of the message period is utilized, the transmitting control module reverts back to its transmitting mode of operation and transmits data in

eight bit bytes. An end of data signal is followed by a data checksum signal occupying eight bits.

The node-to-node data transfer message format is shown in Figure 6 and differs from the function data

5 transfer message shown in Figure 5 by providing a different type signal code in the two bit control field and a specific receiver address in the seven bit field following the control field. The node-to-node data transfer message provides for a single receiver

10 acknowledge field in the acknowledge segment followed by a number of data byte fields of eight bits each in the data segment.

A typical need for a node-to-node type message may occur where a control module 52 is connected through its associated node processor to a set of power window control switches and the switch assigned to command the movement of the right front window is actualed. In such a case the message would be sent specifically to control module 40 which is associated with the right front window motor. In that instance, the control field would indicate a node-to-node type message is being sent, the unique address of the control module 40 would occupy the receiver field and the data field would contain instructions to move the specific window up or down.

The checksum generation method is shown in Figure 7 wherein the binary values of the priority field, the control field, the function fields and the transmitter address fields are summed to provide a unique binary number which is included by the transmitting

30 control module in the message checksum field.

Accordingly, a receiving control module can compare the transmitted message checksum received with the binary signals it has accumulated to determine whether or not the received message corresponds to the message 35 transmitted.

The signals transmitted on the data bus utilize a pulse width modulation technique to represent binary logic states as well as a unique start signal. The bit cell time period is subdivided into three subbit-time periods. As shown in Figure 8, a "zero" (0) bit binary logic state is respresented when the data bus 20 is placed in its dominant state for the first two subbit-time periods and in its passive state for the last subbit-time period.

- In Figure 9, a "one" (1) bit binary logic state is illustrated, whereby the data bus is energized to its dominant state for the first one-third of the bit cell time period and allowed to resume its passive state for the remaining two subbit-time periods.
- In this embodiment, the O logic bit transmission is dominant over the 1 logic bit transmission on the bus due to the fact the second subbit-time period is energized during a O logic bit transmission while that same second subbit-time period of a 1 logic bit transmission should have allowed the bus to return to its passive state.

Figure 10 illustrates the unique start signal that occupies two bit cells represented by the bus being energized to its dominant state for the first four 25 subbit-time periods while the remaining two subbit-time periods allow the bus to return to its passive state. An alternative method of providing a start signal would be to energize the bus to its dominant state for the first five subbit-time periods followed by one subbit-time 30 period with the bus in its passive state.

Utilizing the pulse width modulation technique of conveying binary bit signals on the data bus, the bitwise message arbitration technique that occurs in the present invention is shown in Figure 11. In that Figure 35 11, a transmitter "A" and a transmitter "B" have

attempted to transmit respective messages at approximately the same time on the data bus following a period of at least one bit cell of no bus activity. In Figure 11, it is assumed the transmitter A is the first 5 to apply a start bit to the data bus. However, since transmitter B synchronizes to the leading edge of each signal placed in the data bus, its start bit will occur at approximately the same time and its synchronization will cause the rest of the B start bit and subsequent 10 bits to coincide with those transmitted by transmitter

- A. The resulting signal on the bus appears as a valid start bit and all other control modules connected to the data bus recognize the start bit and are automatically synchronized to the leading edge.
- In the example shown in Figure 11, the most significant bit in the three bit priority field of the messages transmitted by both transmitter A and transmitter B are each at a 1 logic state and therefore, the resulting logic bit signal on the bus is a 1. The
- 20 second bit within the priority field is at a 0 logic state in the case of both transmitter A and transmitter B. The resulting logic bit signal on the bus is a 0. However, in the least significant bit portion of the priority field, the transmitter A attempts to provide a 1
- 25 logic state signal to the data bus while the transmitter B provides a O logic state signal thereto. Since the O logic state signal in this embodiment dominates the 1 logic state signal, the resulting logic bit signal on the data bus will appear as a O. Accordingly, since the
- 30 transmitter A detects a bit signal which is different than that it formatted for transmission, transmitter A inhibits further transmission of its signal and transmitter B continues to transmit its message on the data bus.

With respect to the issue of priority, a predetermined hierarchy must be established so that messages formatted for transmission will have a known priority. For instance, on a scale of 0 to 7, brake 5 light commands would have the highest priority. Safety related signals, such as trunk ajar or door ajar signals, have the next level of priority. Subsequent order of priority in decreasing value would be the human initiated control signals, such as headlamp control, door lock 10 controls, followed by sensor data information including fuel tank levels, ambient air temperature, speed, etc.

In the event two transmitters provide the same priority message at the same time to the data bus, the bitwise arbitration method employed herein, will continue arbitration through the entire message field and will be resolved as soon as one of the transmitters provides a dominant signal different than the other. In the case of duplicate priority transmissions with duplicate functions, the arbitration will have occurred in the transmitter address portion since each transmitter has a different unique address.

The flow diagram illustrating the operation of the control processors used to receive and transmit information throughout the network is provided in Figures 25 12-18. In Figure 12, the power up and idle flow diagram is presented. Upon power up, the internal registers of the random access memories (rams) are cleared and all timers and message registers are initialized. The processor then waits for either a communication from its 30 associated node processor to begin formatting and transmitting a message onto the data bus 20 or waits for a recognizable start bit to be provided from the data bus 20. It a start bit is received on the data bus 20, the control processor enters its receive routine as is 35 described in Figures 13A-13C. If the control processor

receives a transmit request from its local node processor, it enters its transmit routine which is described in Figures 16A and 16B. On the other hand, if the control processor receives a request for 5 communication with its associated node processor, it enters the node communication routine shown in Figure 18.

In the receive message routine, a receive message look up subroutine is entered after the generic function field is received and stored in an appropriate 10 register location. The receive message look up routine is shown in Figure 14 wherein the control field identifies either a function command (FCMD) type signal, a function data transfer (FDATA) type signal or a node-to-node (NTN) type signal is stored in the next 15 field and compares the contents of that field received with the appropriate message type register in order to determine if the message being received is one which the corresponding control module should receive. If the message is deemed as not appropriate, the module returns 20 to its idle state. On the other hand, if the message is found in the appropriate register and the checksum field is verified, an acknowledgment is made and the routine then notifies the associated node processor it has received a message and will transfer the same. In the 25 transmit acknowledgment routine shown in Figure 15, the receiving control module provides its own unique "node" address in the appropriate acknowledgment field. However, if arbitration is lost it will continue to attempt access and transmit its node address for a 30 predetermined number of times before giving up.

In the transmit routine shown in Figures 16A and 16B, the control module waits for a inactive bus for at least one bit cell period in order to transmit its start bit signal or the occurrence of a start bit signal from 35 another source. In the event a start bit is detected,

the control module synchronizes its current start bit and gets set to send its priority signal in the field following the start bit. If arbitration is lost during the priority field, the losing transmitter inhibits 5 further transmission of its message and switches to a receive mode in order to receive the priority message being sent by another control module. If arbitration is not lost, the control module sends the control field followed by the generic function field, the specific 10 function field and the unique address of the specific transmitting control module followed by a cumulative checksum field signal. In each case of sending the particular fields, the arbitration protocol is followed so that if a transmitting control module detects the bus 15 being at a different logic state than that transmitted, an arbitration loss is indicated. In the event messages are not transmitted due to arbitration loss or transmitted messages are not acknowledged, the transmit mode of the control module is reset and the message is

20 again transmitted.

We claim:

1. A data transfer communication system comprising:

a common data bus (20);

a plurality of communication control modules (30,32,34,38) each connected to said data bus (20) and each containing means (32B, 38B) for receiving and means (32D, 38D) for transmitting data messages from or to other control modules on said common data bus;

each control module includes means (32N, 38N) for formatting data messages for transmitting on said common 10 data bus into one of at least two types of messages each of which includes in sequence, a common but unique START signal of a predetermined field length to indicate the start of a data message transmission, a PRIORITY signal of a second predetermined field length to indicate the 15 code of the relative degree of priority the formatted data message has for transmission on a predetermined hierarchy of priority, a TYPE CONTROL signal of a third predetermined field length to indicate the code of which of said at least two types of data messages being 20 formatted for transmission, a FUNCTION or RECEIVER ADDRESS signal of a fourth predetermined field length indicating the code of the function to be performed by other control modules connected to said data bus or the unique address of a specific control module intended to 25 receive the data message: and

means (32C,38C) for storing the unique address of its corresponding control module and function codes of the specific predermined functions controlled by the said corresponding control module.

2. A system as claimed in Claim 1, wherein each control module also includes means for transmitting the formatted message on said data bus with binary bit

signals having a predetermined bit-time period wherein

5 each binary bit signal is subdivided into at least three predetermined subbit-time periods which when summed equal said bit-time period and said transmitting means provides said binary bit signals to said data bus with one of said binary bits being distinguishably dominant over the other in the event two opposing binary bit signals are being transmitted on said data bus at the same time by different control modules.

- 3. A system as in Claim 1, wherein said formatting means formats said data messages into at least either a "function command" type message whereby any other control module having a stored function code which 5 corresponds to the subsequently transmitted FUNCTION code will continue to receive the transmitted data message, or a "node-to-node" type message whereby only the control module having a stored unique receiving address corresponding to the subsequently transmitted RECEIVER 10 ADDRESS code will continue to receive the transmitted data message.
 - 4. A system as in Claim 2, wherein the system further comprises a plurality of additional control means associated with and connected to each control module for providing input signals to said control module
 5 representing functional or informational data and responding to said functional or informational output signals from said control module; and

wherein each control module includes means for receiving and recognizing each START signal transmitted 10 on the data bus, for receiving and recognizing the PRIORITY signal, for receiving and recognizing the TYPE CONTROL signal and receiving and recognizing the FUNCTION or RECEIVER ADDRESS signal,

means responsive to said TYPE CONTROL signal for 15 comparing the received FUNCTION signal with the stored function codes or the RECEIVER ADDRESS signal with the stored unique address code, and

means for formatting and transmitting the unique address on said data bus when said comparing means 20 indicates an identity.

5. A self-arbitrating data communication system comprising:

a common data bus being controllable to assume a distinct dominant state or passive state;

a plurality of control means connected to said data bus having switchable receiving or transmitting modes of operation with respect to said data bus; and

means within each control means for transmitting binary bit signals on said data bus having a bit length 10 of a predetermined bit-time period with each bit-time period subdivided into at least three predetermined subbit-time periods, a first of said binary bit signals being represented byplacing said data bus in its dominant state during the first subbit-time period followed by

- 15 placing said data bus in its passive state for the remaining two subbit-time periods of said bit-time period and a second of said binary bit signals being represented by placing said data bus in its dominant state for the first two subbit-time periods followed by a placing said
- 20 data bus in its passive state for the remaining subbittime period of said bit-time period and a unique START
 bit signal for transmission having a length of two
 bit-time periods and represented by placing said data bus
 in its dominant state for a full bit-time period and at
- 25 least the first subbit-time period of the next bit-time period.

- 6. A system as in Claim 5, wherein each of said control means includes means for comparing each binary bit signal on said data bus with the binary bit being transmitted when the corresponding control means is in its transmitting mode of operation to inhibit further transmission by that control means when the comparing means indicates an inequality.
- 7. A system as in Claim 5, wherein said unique START bit signal for transmission is two bit-time periods in length and is represented placing said data bus in its dominant state for a five subbit-time periods followed by placing said data bus in its passive state for a sixth a sub-time period.
 - 8. A method of transmitting data communication on a common data bus between recipients comprising the steps of:
- providing a binary bit signal format having a

 5 first of two binary bit signals defined as having a
 predetermined bit-time duration and each bit-time
 duration being subdivided into at least three
 predetermined subbit-time periods, a first of said binary
 bit signals being represented by an energization of said

 10 data bus to at least a minimum predetermined level during
 the first subbit-time period followed by deenergization
 of said data bus for the remaining two subbit-time
 periods of said bit-time duration and a second of said
 binary bit signals being represented by an energization

 15 of said data bus to at least said predetermined level
 during the first two subbit-time periods followed by a
 deenergization of said data bus for the remaining
 subbit-time period of said bit-time duration and a unique

START bit signal represented by the energization of said

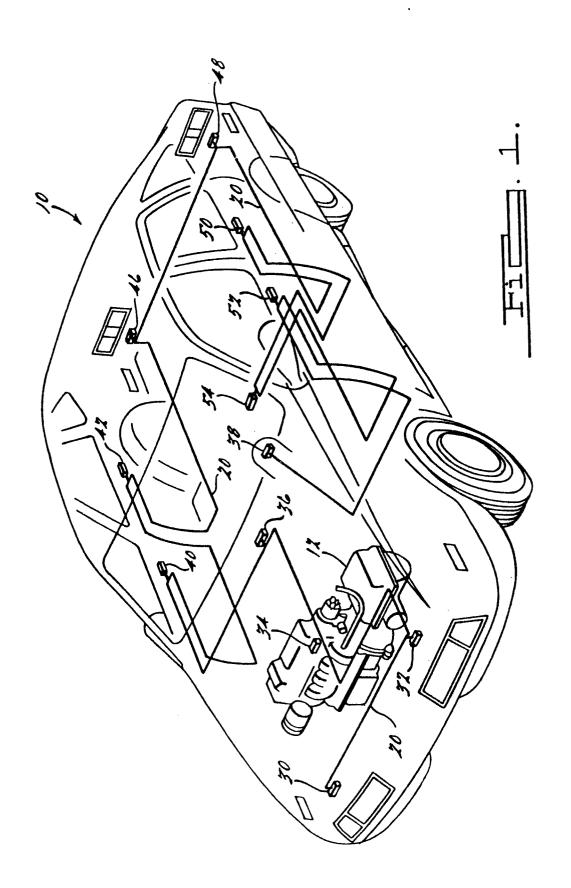
20 data bus to at least said predetermined level for five subbit-time periods followed by one subbit-time period of deenergization;

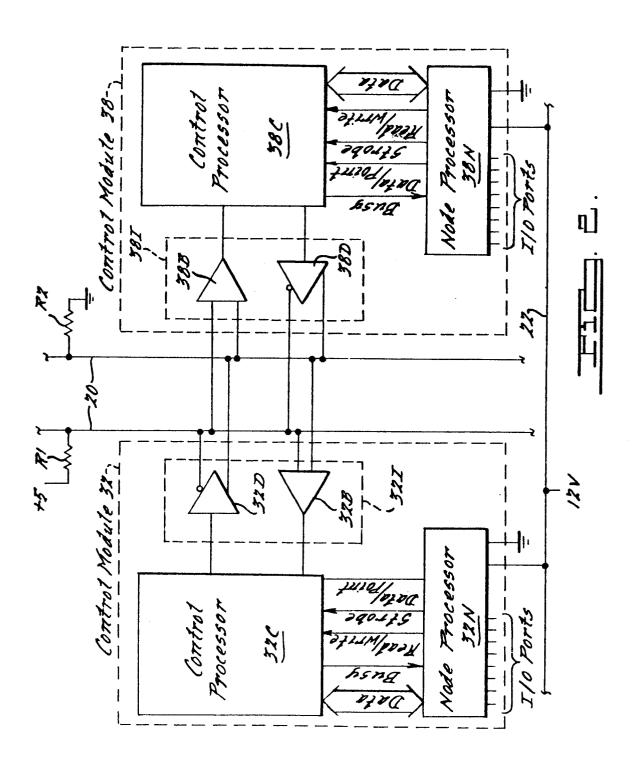
providing a data transmission format utilizing said binary bit signals and said START bit signal to 25 include in sequence a START bit signal to indicate the start of a data message transmission, a PRIORITY signal of a predetermined binary bit field length to indicate the code of the relative degree of priority the formatted data message has for transmission in a predetermined 30 hierarchy of priority, a TYPE CONTROL signal of a predetermined bit field length to indicate the code of at least two types of data messages being transmitted, a FUNCTION or RECEIVER ADDRESS signal of a predetermined bit field length respectively indicating the code of the 35 function to be performed by a recipient of the first type of message or the unique address of a specific recipient of the second type of message, wherein said TYPE CONTROL is provided to define a first message type that is intended for one or more recipients connected to the 40 common data bus and that the following signal field bears a functional instruction, followed by a variable acknowledgment period, or a second type of message intended for a specific recipient connected to the data bus and that the follwing signal field bears a unique 45 address of said specific recipient followed, by a predetermined acknowledgment period;

providing a plurality of control modules as recipients connected to said data bus each having specific predetermined function codes and a unique 50 address stored therein and having switchable transmitter and receiver mnodes or operation;

supplying a control module with a data message; assembling, within said supplied control module, said message according to said data transmission format 55 type;

serially energizing and deenergizing said data bus according to said data transmission and binary bit signal formats


comparing each bit transmitted by said supplied 60 control module with the bit signal present on said data bus and inhibiting further transmission when said comparison indicates an inequality.

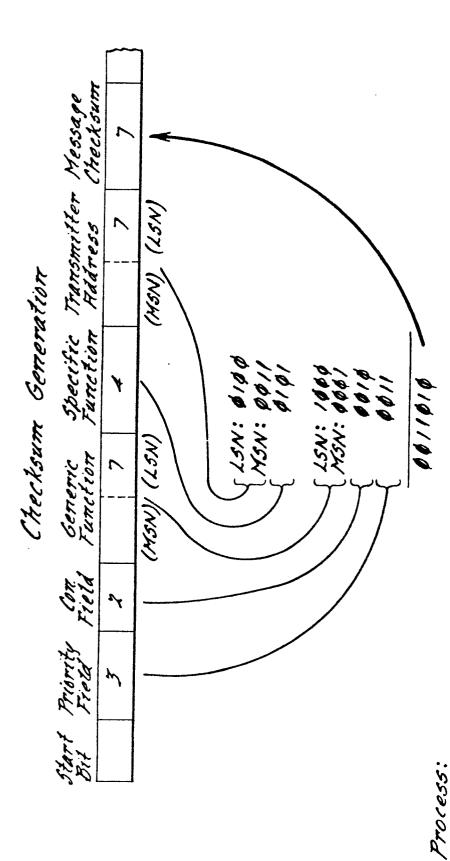

9. A method as in Claim 8, further including the steps of:

5

monitoring the data bus at each control module; recognizing a START bit signal or said data bus; receiving and storing the PRIORITY signal; comparing the TYPE CONTROL along with the FUNCTION or RECEIVER ADDRESS signal with respective stored function codes or unique address;

switching each control moduel, which registers
10 an identity in its step of comparing, to its transmitting
mode of operation and transmitting its unique address on
said data bus as an acknowledgment signal.

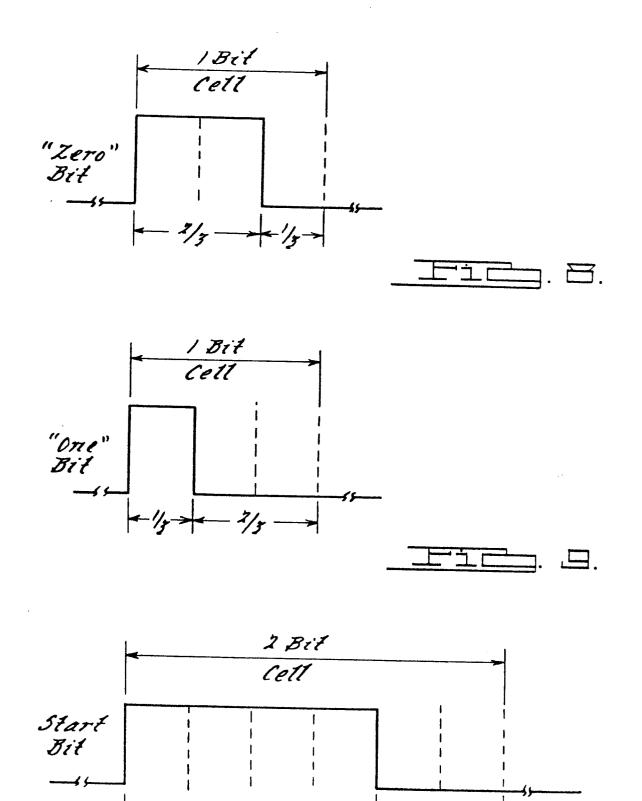
		0 / 1 0	
Vessage Descriptor.	rection Address or Transmitter Hessage Receiver 4" Creiver Address or Address Checksum Acknowledge trot	100 month (Optional) 100 month (Optional) 20 month (Optional) 20 month (Optional) 20 month (Optional) 20 month (Optional)	Basic Message Format TIE To The Termat Termat To The Termat Termat To The Termat Termat Termate Te
Message Descr Segment	Function Address Todo Receiver Address Start Control Det		Basic

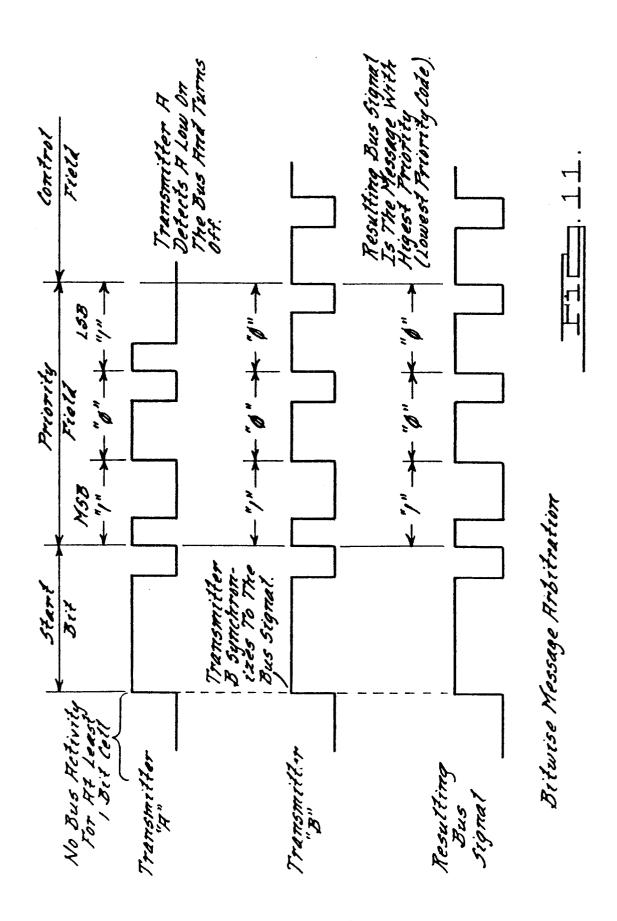

Priority Control Generic Function Specific Transmitter Message (3) (2) (2) (4)	Receiver "A" Receiver "B" Receiver "C" Receiver "C" Acknowledge (8) (8) (8) (8) (8) (8) (8) (8) (8) (8)	Fecerver D' Exception Fixed of Message)	Function Command With Utiple Receivers Acknowledging
Start Prior Bit Frei (2) (3)	T A A		Function Utiple Recei

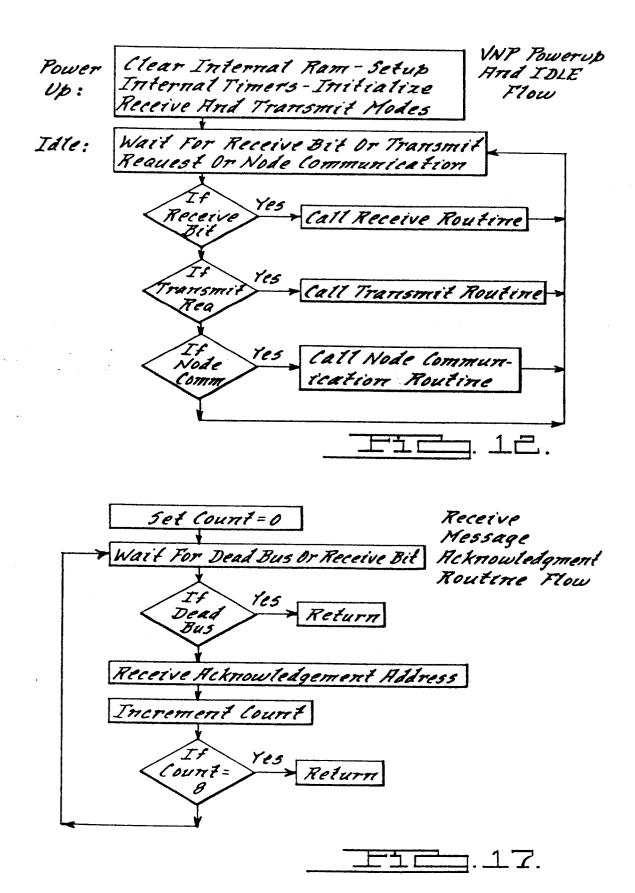
Transmitter Address (7)	$\begin{cases} \frac{1}{2\pi d} & 0 \neq \\ \frac{1}{2\pi d} & 0 \neq \\ 0 & 0 \end{cases}$	Exception	
Specific Data 74/26	Data Byte "A" Exception (7" For Single Receiver)	End of Data Checksum (8)	Ĭ
Generic Data Type	Receiver A Acknowledge (Exc (0)	Byte?	
riority Control restd (3) (2)	Message Re Checksum Hcki	Data Byte'B" Data (8) (End of Data = \$\phi\$	Function Data Transfer (3 Byte)
Start B	N. S. W.	Data	unction D

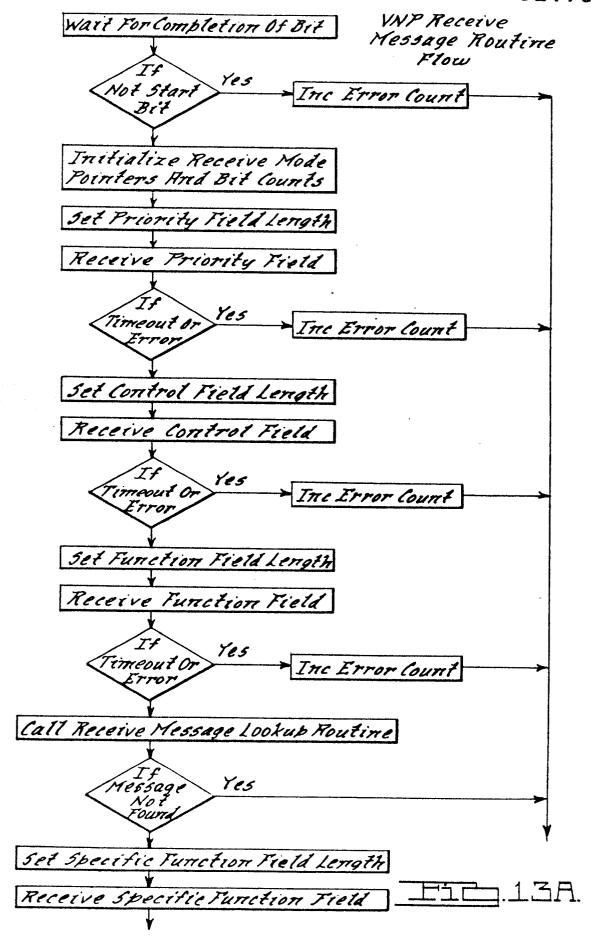
<u>.</u>

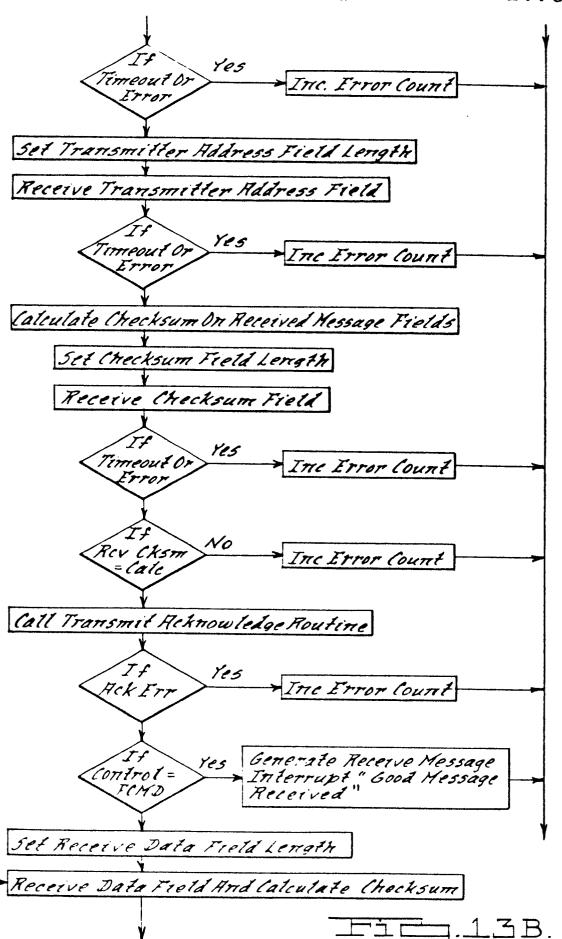
the Officer Bit LException Bit (1 For Good Checksum Ø For Data Error)	rteB" (Ema Date 2019 1918 1918 1918 1918 1918 1918 1918 1	EN AN IN	Exception Exception End of Data Bit = 0 (1)	Acknowledge (8)	•
	رزوته	TAN I	Data Byte Exception =		•
Hessage (Hecksum (7)	Transmitter Address (1)	Receiver Control Field (4)	Receiver Address (7)	Priority Ontrol Field Field (3) (2)	Start Bit (x)

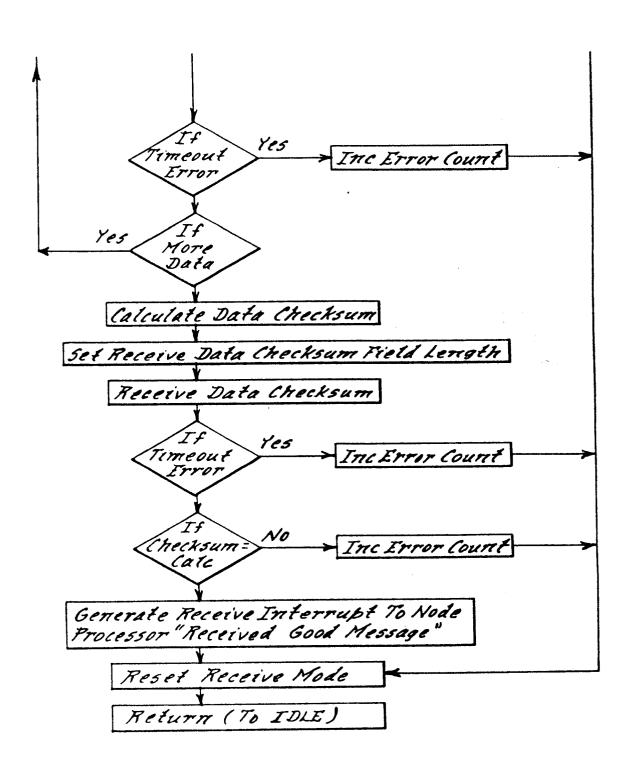

Node-To-Node Data Transfer (4 Byte)

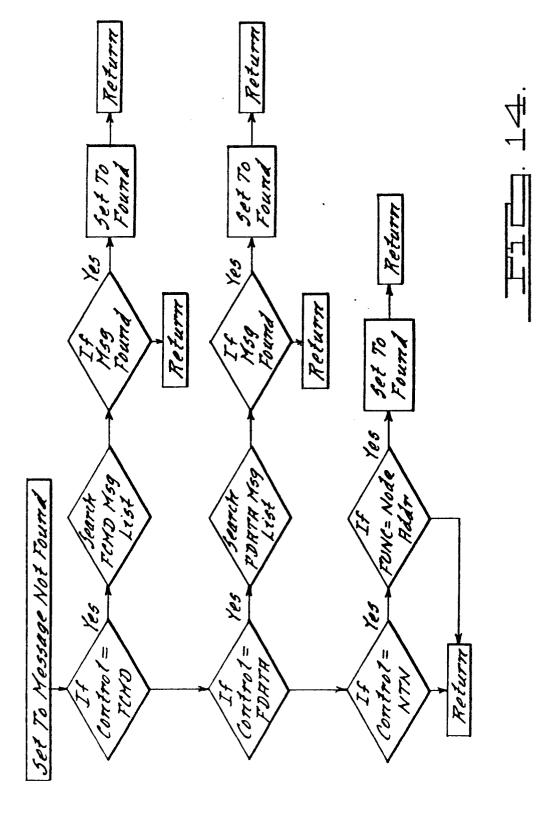


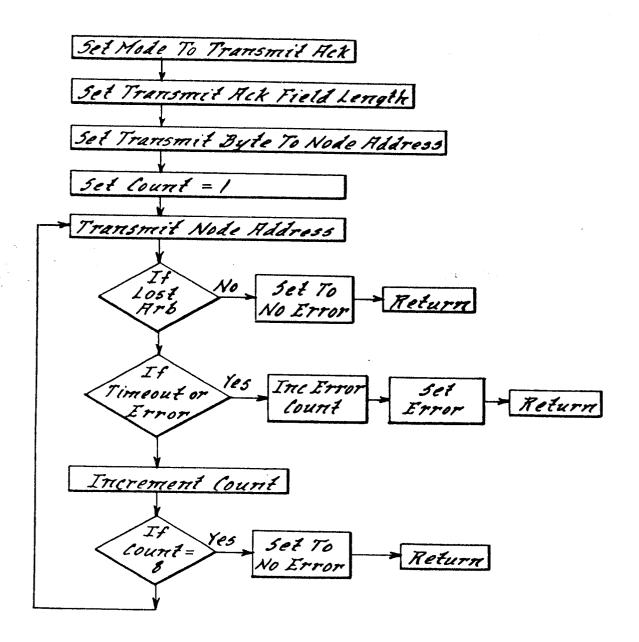

! Individual Fields Are Divided Into 4 Bit Nibbles And Padded With Zeros If Required. (All Fields Are Right-Justified)

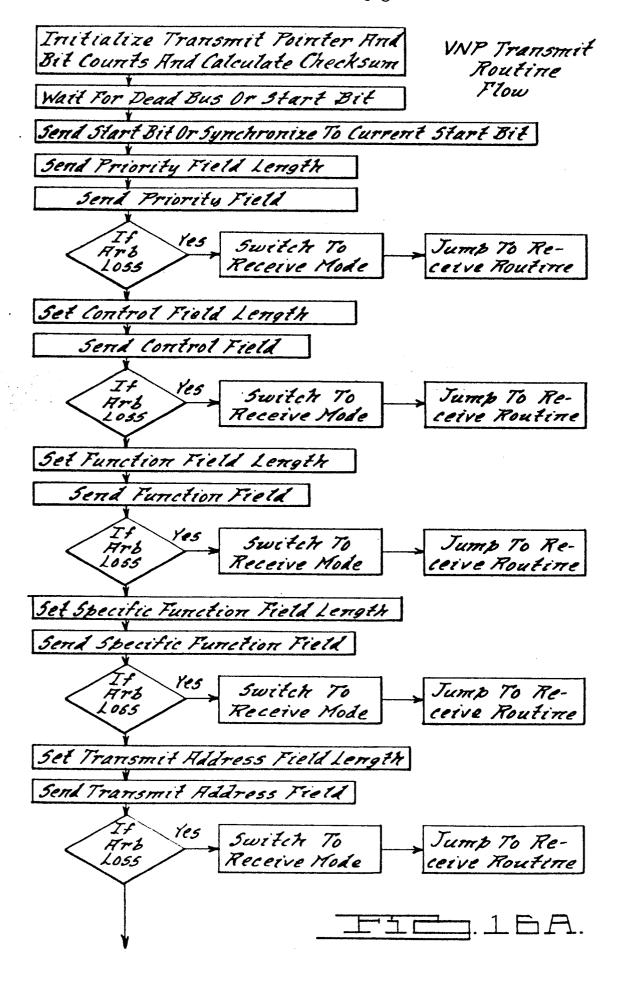

1. These Nibbles Are Summed.

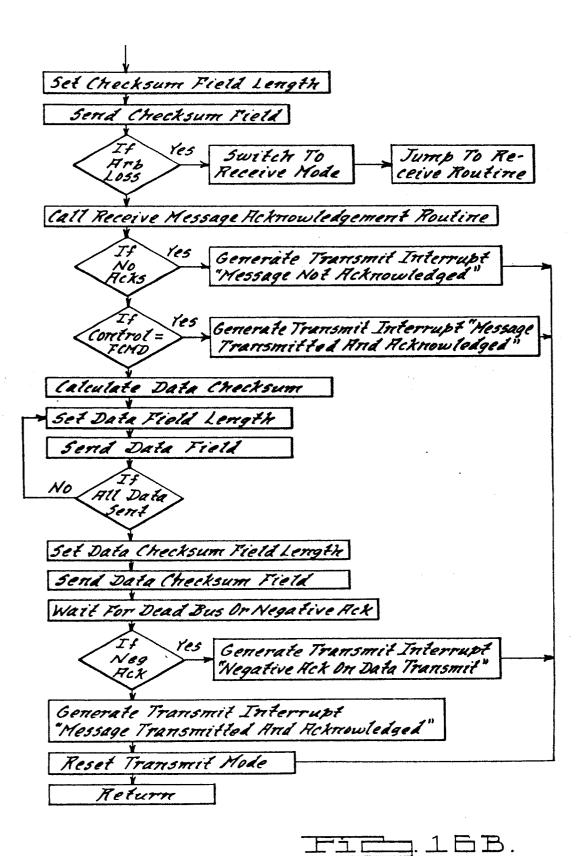

3. The Result (1 Bits long If All larry Bits Are Counted) Is The Message Checksum.



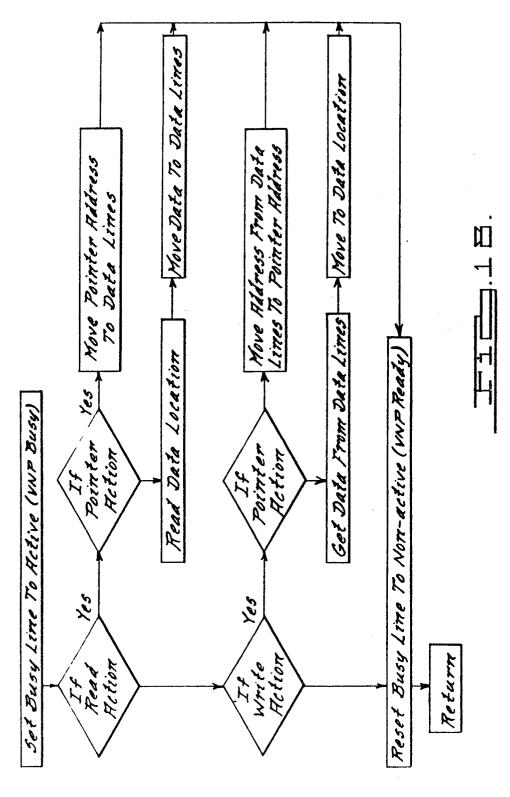





VNP Receive Message Lookup Routine Flow



Transmit Acknowledgment Routine Flow



<u>Fig</u>. 15.

Node Communication Noutine Flow

