EP 0 223 557 A2

Européisches Patentamt
@9 o European Patent Office

Office européen des brevets

Application number: 86308825.8

Date of filing: 12.11.86

0223 557
A2

@) Publication number:

EUROPEAN PATENT APPLICATION

& mtcs GO9G 1/00

@ Priority: 15.11.85 US 798755

@ Date of publication of application: 27.05.87
Bulletin 87/22

@ Designated Contracting States: DE FR GB

@ Applicant: DATA GENERAL CORPORATION,
4400 Computer Drive, Westboro
Massachusetts 01580 (US)

(@ Inventor: O’Brien,Walter A., 66 George Hill Road,
Grafton, MA 01519 (US)
inventor: Rich,David L., 51 Church Street, Grafton,
MA 01519 (US)
Inventor: Hurd,Charles C., 27 Woodleigh Road,
Watertown, MA 02107 (US)
inventor: Pogue,Michael, 1630 Worcester Road,Nr.328C,
Framingham, MA 01701 (US)

Representative: Pears, David Ashley et al, REDDIE &
GROSE 16 Theobalds Road, London WC1X 8PL (GB)

®

@ In a distributed computer system, each CPU (101} ac-
cesses memory via an intelligent memory contro! unit (401)
connected by amemory bus (404) to alocal memory (102} and
video memory (113) and by an interface bus to other memory
control units (401) In the system. A video control unit (406}
relieves the CPU (101) of much of the detailed work of modify-
ing bit maps in the video memory {113). More specifically, in
order to enhance the ability of the system to manage displays,
especially in a technical graphics environment, where a single
physical display supports a plurality of logical displays {win-
dows), machine-language {graphics) instructions are provided
which, in conjunction with logical display descriptors (forms)
that describe each window, enable management and genera-

Display control in a data processing system.

tion of display image data to be performed directly by the.

processing hardware of the digital computer system, minimiz-
ing the need for intervening software. Mechanisms are pro-
vided which gives the hardware the ability to defer complex
protection and creation policies {faults) to operating system
software. Data computed from the logical display descriptors
may be encached, greatly enhancing the speed of consecutive
operations on windows. Graceful creation is enhanced by per-
mitting prosessing control to escape (trap) to software emula-
tion handlers.

1/0 DEVICES 109
AND
COMM.LINES 107

LU

INTEGRATED
1/0 AND
. SYSTEM CONSOLE SYSTEM
v PROCESSOR CONSOLE i04
o {15C) 402
l ~LMB BuS 403
_—MEMORY BUS 403
MEMORY CONTROL VIDEO
AND MEMORY CONTROL
T-BUS INTERFACE, 102 uNIY
(L 9 bt 406
EXPANSION v —
uNIT RAMS —
107 B
1-8ITS 404~
[V)
40
!!
i
il

ACTORUM AG

0223557

-1 -

DISPLAY CONTROL IN A DATA PROCESSING
SYSTEM

This invention relates generally to digital data systems,
and more particularly to techniques for managing the display of
data by such systems in an environment wherein a single display
device may provide for a plurality of logical displays functioning
independently of each other. Each logical display is known as
a "window". Windows may all be displayed concurrently in their
entirety, or some windows may be partially or completely covered
by other windows.

Prior Art
References:

Our European Patent Application 85305716.4 (corresponding

to U.S. Application 623908).

Graphics in Overlapping Bitmap Layers, Rob Pike, ACM

transactions on Graphics, April, 1983,

SMALLTALK-80: The Language and its Implementation,

Adele Goldberg and David Robson, Addison-Wesley, 1983. (Particularly

0223557

chapter 17, 18, 20).

Digital data systems have been equipped with display devices
almost since their advent. The type of display that has taken
pre-eminence as the most flexible for interfacing with the user is
the cathode ray tube display. A recently evolved mode of the use
of such displays is to permit several programs, or several proces-
ses to share the available space on a display, with each such
program, or process being allocated a certain amount of display
area. Each such area is known as a window.

Windows, then, may be thought of as independent logical
displays co-existing on (or multiplexed onto) one physical display.
An analogy is several sheets of paper on a desktop; they may be
arranged so that all are simultaneously visible, or as they are
manipulated some may completely cover (obscure) or partially cover
(occlude) others. When obscured or occluded sheets are again
uncovered, they still contain all the information that was tempora-
rily invisible.

Windows on a display may likewise be manipulated so that some
are sometimes parfially or completely invisible on the display --
i.e., they present the appearance of being "covered" by other
windows. A good embodiment permits the data in windows to be
manipulated even while the affected windows or portions of windows
are not visible on the screen, with subsequent "uncovering" reveal-
ing the manipulations that were performed on a window while
invisible.

Windowing has heretofore been accomplished primarily by

software. While such an implementation of windowing can provide

0223557

»

sufficient capability, it does so at the expense of computational
overhead.

The wuser's requests, taking the form of software calls, must
go through levels of interpretation by software in order to derive
a series of machine-language instructions that the system can
execute, even for wholly visible windows.

The software the user calls must be trusted software, since it
requires a global perspective of all operations (both visible and
invisble) performed to all logical displays. For example, one user
may want to occlude another user's window; this requires reading
the window to be occluded from the display memory and writing it
ordinary system memory, then updating the appropriate display
database to reflect the occlusion.

Operating system software is naturally trusted but usually
results in a performance degradation, since more levels of inter-
pretation are required to perform the user's request. Proper
protection and operation can be provided, but only at a premium
performace cost.

Another reason for the severity of this overhead is that the
amount of descriptive information required for a window (logical
display) is much greater than for a physical display.

Further, the descriptive information for each window must be
completely reprocessed for every request -- there is no architec-
tural provision for retaining (caching) the results of previous
computations affecting those portions of the display not involved

in a current change.

0223557

Summary Of The Invention

The present invention discloses a method of managing displays
of & data system which includes users, a window manager, memory, a
processor, a display, and a display interface. The processor 1is
capable of executing machine language instructions that may direc-
tly (i.e., without intervening interpretation by software) manipu-
late displayed data. The method comprises providing a series of
such instructions and providing a set of form descriptors, form
descriptor identifiers, and operating system keys which describe
ownership and the characteristics of windows on the display. The
processor takes each such instruction along with the form identi-
fier and operating system key of the user and in turn, tries to
associate 1t with a form descriptor. If the processor discovers a
match, it then determines the previous state of the display from
the form descriptor, and assembles a new set of data to which the
display interface is responsive to produce the modified display
specified by the instruction. If an association can't be made,
then a fault occurs to the operating system.

It is thus an object of the present invention to provide an
improved data processing system.

It 1is another object of the present invention to provide data
systems with the ability to efficiently manage windowed displays.

It is a further object of the present invention to provide
data systems in which user-supplied instructions directly effectu-
ate windowed displays with no need for intervening user software,

that the windows can be changed (covered or uncovered) without user

0223557

software intervening.

It is an additional object of the present invention to provide
data systems in which efficiency 1s enhanced by retaining the
results of intermediate calculations relative to windowed displays,
even when users are changed.

It is an additional object of the present invention to provide
data systems in which protection is added to windows so that users
are limited to their logical displays.

Other objects and advantages of the present invention will be
understood by those of ordinary skill in the art, after referring

to the description of the preferred embodiments and the appended

drawings wherein:

Brief Description Of Drawings

Fig. 1 is a simplified block diagram of a prior art data

processing system;

Fig. 2 1is a simplified block diagram of the detail of block
113 in Fig. 1;

Fig. 3 i1s a more detailed block diagram of part of the system

shown in Fig. 2;

Fig. 4 1is a simplified diagram of a data processing system
incorporating the invention;) ‘

Fig. 5 is a detailed block diagram of block 401 in fig. 4;

Fig. 6 is a detailed block diagram of blocks 406, 407 and 113
in fig. 4;

Fig. 7 1s a block diagram showing data flow through the

0223557

graphics process board depicted in fig. 6 in pixel mode;

Fig. 8 is a block diagram showing data flow through the
graphics process board depicted in fig. 6 in plane mode:

Fig. 9 is a more detailed block diagram of fig. 4;

Fig. 10 is a representation of a screen with a window;

Fig. 11 is a representation of a form descriptor:;

Fig. 12 is an illustration of two windows, with one partially
occluding the other;

Fig. 13 is a representation of the form descriptors for the
windows in fig. 12;

Fig. 14 is a representation of pixel mapping which is used in

the invention.

Detailed Description of Preferred Embodiments
Through out this document, the term GIS (Graphics Instruction Set)
refers to previously mentioned U.S. Patent Application 623,908

(ZP 65 205 Tif.4) ; whereas the term GIS 1II refers to this

invention.

1l Discussion of Prior Art

1.1 System Prior Art

Referring to fig. 1, which is a block diagram of a typical

/
N

0223557

prior-art computer, the Central Processing Unit (CPU) 101 is the
basic seat of intelligence in the computer and, as is indicated by
its being depicted at the hub of all the other elements, is called
upon to control all information transfers between those other
elements.

CPU 101 is connected to memory 102 by memory bus 103, and must
control all transfers over memory bus 103. System console 104
connects directly into CPU 101, which must control all transfers to
system console 104. CPU 101 is connected to the external world by
I/0 bus 105, which connects to I/Q controllers 108, through which
transfers may be made to I/0 devices 109; communications controller
106, through which transfers may be made to communication lines
107; and interprocessor controller 110, through which transfers may
be made to other processors 111 comprising the distributed computer
network. The controllers 106, 108, and 110 may be provided with
some limited intelligence to control low-level details of transfers
effected through them, but CPU 101 must provide all high-level
control, setting up the controllers and overseeing returns of
status information from them.

Alternatively, interprocessor bus 112 may be provided to
interface with other processors 111; this may relieve some of the
load on 1/0 bus 105, but does nothing to eliminate the problem of
overhead on CPU 101.

Video RAMs 113 may be provided to contain "bit maps" of screen
information for user terminals. CPU 101 provides bit map data and

stores it in the RAMs in a form in which it may be displayed on

user terminals.

0223557

1.2 Graphics Prior Art

1.2.1 Overview

Graphics memory is composed of thirty-two 64K Video RAMs (VRAMs)
113 and is organized into a 1K x 1K x 2 space. RS-343A monitor
timing allows display of the entire array. A free-running blink
clock selects one of two complete Palettes capable of mapping any
pixel value to one of four levels of gray (O=black to 3=white).
Palette I/0O and other local operations are transacted through
"Graphics Space", actually encoded as the I0C Auxilliary Processor
(AP) Communication channel. In order to support the
"Register-Transfer" function peculiar to VRAMs and additional
diagnostic and VS boot-time character drawing, display memory

timing and control logic 202 will arbitrate for the Memory Bus 103

as a requestor.
1.2.2 video Memory

The 64K double-word video memory 113 is manipulated by the CPU as
normal system memory. The screen is generated from a logical
bit-map packed within a 1linear array of double-words which are
ordered in the classical sense of left-to-right and top-to-bottom.

Two bit pixels will be packed left-to-right with their most signi-~

.

0223557

ficant bits toward the double-word most significant bit.

VRAM random access cycles are essentially identical with those
of standard DRAMs. Their unique characteristic is the ability to
transfer an entire 256 bit row of internal storage to a serial
shift register 203 in one special access. This register may then
be clocked independently of further random access activity. Addi-
tional controls allow multiplexing four 64 bit sections of this row

register to aid in configurability.

1.2.3 Timing and Control

Dot and CRT timing is derived from a local oscillator operating at
approximately 44 MHz. Due to the independent nature of VRAM serial
clocking, no explicit synchronization with existing memory timing,
other than the arbitration ‘for register-transfer cycles, is
required. Relatively simple multiplexing is all that is required
to pass pixel values to the palette. The above capabilities can be
satisfied by an intelligent micro-controller 206 (uC), the 1Intel
8051 being the best choice in that minimal cost and CEQs will

result, although an 8031/2732 EPROM implementation is also

possible.
1.2.4 Memory Bus Interface
A Memory Bus Arbiter 202 will grant the register-transfer,

graphics, and palette cycles requested by the display memory uC.

Standard protocol will be implemented in a PAL-based state machine.

0223557

ERCC syndrome bits will be generated logically for all reads both
as an economical measure and due to the circumstance that VRAM
outputs remain tri-stated during register-transfer cycles. Micro-
code will implement AP protocol wvia UABA references to write

palette data and initiate any required commands.
1.2.5 Rotate and Merge Logic

In the course of analyzing the microcode necessary to implement the
BITBLT instruction, a need was noted to accelerate graphics memory
references on arbitrary bit boundaries. Consegquently, the hardware
required to implement this function as a Memory-Bus-resident device
was developed: rotate and merge logic 205. A control bit specifies
the direction of the merge sequence. A "merge-enable" bit is also

available in order not to preclude a circular "rotate-only".

1.2.6 The Palette and DAC

The Palette 204 is organized as a 4 x 2 x 2 array arranged within a
single double-word of storage. Two-bit Palette data written
through the AP Graphics Space will encode the desired gray level to
be associated with a given pixel value for each phase of the blink
clock. Although direct reading of this register is not available,
Microcode maintains an image of it in a single scratchpad location.
The EDH13400 208 is actually a tri-DAC of which only the green
channel will be driven. It not only performs sync-mixing, but is

capable of direct 75-Ohm drive.

10

0223557

1.3 Prior Process

In figure 3, the system is seen to comprise a central processing
unit (CPU 101), memory (102), video interface 320 consisting of
video rams 113, video driver circuitry 324, and a video display
322. User software 307 and 309, which is resident in memory (102)
may include all manner of software entities, including CPU instruc-
tions to manipulate the logical displays (311, 313, and 315) or
software calls for windowing services. Such software calls invoke
windowing software 317 also resident in memory (102) which inter-
prets the user's calls and in turn may present to the CPU instruc-
tions which will result in carrying out the user's requests or call
system software to carry out the user's requests. The windowing
software 317 may interrogate the display databases 311, 313 or 315
to determine the previous state of the display, and will update the
display database so that it reflects any changes brought about by
the éurrent call from user software.

Stil] referring to Figure 3, machine language instructions
presented to CPU 101 by software are decoded by element 303 which,
regardless of whether by "hard-wired" or microcoded means, directs
arithmetic and logic unit (ALU) 305 in executing the instructions.
The descriptive information in display databases 311, 313, 315 is
then used to create a new screen bitmap 113, which would then
contain a "screen image" of the display screen as it should now
appear, reflecting the manipulations called for by the current

calls from user software. Display interface 324 (regardless of

11

-

/
e

0223557

whether by programmed I/0 or Direct Memory Access means) reads and
processes the bit map to generate appropriate signals to display
322 causing it to display the information specified in bit map 113.

Note that the term "bit map" is used herein by convention, and
may denote a character map for a character-oriented display, or ai

pixel map for a pixel-oriented display:

- On a character-oriented display, the smallest addressable
element 1is a character position, which may be occupied by any
character from 8 defined font of characters. The selection of
which character 1s to occupy a particular character position
is made by placing the binary code representing that character
in the corresponding position of the bit map.

- On a pixel-oriented display, the smallest addressable element
is essentially determined by the size of the "dot" that would
be made to appear on the screen by the electron beam if it did
not move. This is termed a "picture element”, from which the
term "pixel" was coined. In the simplest pixel bit map, a
single bit position in the bit map represents each pixel
position on the display; a "1" (one) at a position in the bit
map denotes illumination "on" at the corresponding position on
the screen, and "0" (zero) denotes "off". 1In more complex
implementations, several bits in the bit map represent each
pixel position on the display:; a combination of several bits
at a position in the bit map might denote the intensity level,

or the color, or both, to be displayed at the corresponding

pixel position on the screen.

12

0223557

The prior art approach can be successfully implemented, but it
has the disadvantages of (1) introducing substantial overhead,
because of the need for the system software to interpret all of the
user's calls to effect protection or (2) allow all the users

sharing the display direct access to the display, giving up

protection.
2 Description of System Hardware

Referring to Figure 4, an overview block diagram of computers of
the present invention employed in a distributed computing network,
it 1is seen that CPU 101 is no longer configured at the hub of all
the other elements. Over Local Memory Bus (LMB) 403, CPU 101 can
communicate with integrated I/0 and system console processor (ISC)
402, and memory control and I-Bus interface (MCU) 401, both of
which contain sufficient intelligence to oversee their respective
functions without close supervision by CPU 101. without interven-
tion by CPU 101, MCU 401 determines whether memory locations
requested by CPU 101 are in local memory or not; if not, MCU 401
automatically performs the requested memory reference via I-Bus 404
in the memory associated with another computer on the network.
Communication between processors of the present invention
configured as a distributed system is effected by memory
references. All memory locations within the distributed system are

accessible to any CPU ~- a CPU may read from or write to a memory

13

0223557

location associated with another CPU on the distributed system with
the same facility with which it may access any of the memory
locations associated with itself. All memory access requests from
a CPU 401 are passed over LMB bus 403 to MCU 401, which determines
from the memory address whether the desired location is associated
with the local processor (the processor containing the CPU and MCU)
or one of the other processors comprising +the network. If the
former, MCU 401 accesses the local memory 102 (or video RAM 113, as
appropriate) over memory bus 405 performing the requested read or
write and obtaining data from CPU 101 over LMB bus 403 (if a write)
or passing data to CPU 101 over LMB bus 403 (if a read). If the
latter, MCU 401 passes the request over 1-Bus 404 whence the MCU
401's of all other processors on the system examine the memory
address; the processor having that address within its local memory
performs the memory access, the data being passed over I-Bus 404
between the MCU 401 of the processor having the memory address and
the MCU 401 of the requesting processor.

An arbitration scheme is provided to ensure that no processor
can monopolize the I-Bus and that no processor can be deprived of
the use of the I-Bus. This scheme is based on a rotating priority,
wherein the processor that has just used the bus is given lowest
priority and must wait till other requesting processors have used
the bus before it can use the bus again.

Integrated I/0 and System Console Processor (ISC) 402 contains
a microprocessor and is provided to relieve CPU 101 of detail-level
oversight of data transfers between the computer and I/0 devices

109, communication lines 107, and system consocle 104.

14

U

0223557

LMB bus 403 is provided so that communication between CPU 101,
ISC 402, and MCU 401 can take place without contention from any of
the memory devices 102 or 113.

Video Control Unit (VCU) 406 is provided ahead of the video
RAMs 113 to relieve CPU 101 of much of the detailed work of modify-
ing bitmaps for controlling displays on user terminals.

Video Expansion Unit (VEU) 407 may optionally be provided to
expand the pixel size from 8 to 24 bits. VEU 407 includes additio-
nal VRAM chips, but does not result in the creation of more VRAM
locations-- it merely expands the size of the existing locations.

In the present embodiment, each computer is a 32-bit computer
and is embodied on a single 15"x15" printed circuit board. Each
board@ contains its own LMB Bus 403 which does not leave the board.
Each board has a connection to I-Bus 404. Each board has a Memory
Bus 405 which may leave the board and connect to optional expansion
memory and video memory boards; up to 2 MBytes of memory may be
accommodated on the processor board and are connected to Memory Bus
405; additional memory and video memory boards may be connected to
the processor board's Memory Bus 405 to expand each computer's
memory capacity.

Up to sixteen such computers (each with associated memory and
video memory boards) may be accommodated in a single cabinet, the
cabinet including a "backplane" comprising sockets into which all
the boards are plugged, and permanent wiring interconnecting the
sockets. I-Bus 404 is made up of backplane wiring and intercon-
nects all the computers plugged into the cabinet to form a distri-

buted computer network.

15

~

0223557

The sixteen computers may share a total memory space of 512
MBytes. As described above, any of the computers may access any
location of the 512 MBytes, which may thus be regarded as a “global
address space".

The Memory portion of the CPU contains the main memory control
unlt (MCU 401) and 2 Megabytes of main memory 102 itself. The MCU
401 also provides the control for an expansion memory bus 405
(called the MEM Bus) and the control for the global I-Bus 404. The
MEM Bus 405 is also the connection for bit mapped video screens
that are attached to the main memory address space. The only
communication path between the CPU portion or 1/0 portion and
Memory portion of the board is the LMB 403.

The Memory portion is entirely controlled by two gate arrays
(see figure 5): CMOS-MEM gate array 561 and Bipolar-MEM gate array
562. These two gate arrays are basically traffic directors and
error checking devices which control all the interactions that take
place among the LMB 403, and I-Bus 404 and the MEM Bus 405.

The LMB 403 and the I-Bus 404 are the two busses that can
initiate memory operations. The LMB 403 initiates all local Rnemory
accesses while the I-Bus 404 initiates all accesses of this par-
ticular node from other global nodes. The MEM bus 405 is essenti-
ally an internal bus to this memory portion which carries the
actual address and data of the local RAM's themselves. This bus is
"raw", unaligned, uncorrected data which is stored in +the RAMs
themselves. This MEM Bus has expansion capability so that up to 16
Mbytes can be addressed by this MCU (the two gate arrays) without

adding more control. Thus, the MEM bus goes off-board so that

16

O

0223557

additional memory can be added either in the form of standard DRAMs
or in the form of memory mapped graphics.

To 1llustrate the flow of a memory access, consider a CPU
reference. The reference is initiated by the CPU via the LMB 403.
The MCU 401 (combination of CMOS 561 and Bipolar MEM 562 gate
arrays) recognizes the start of the memory operation. it then
makes a determination of whether the reference was a local refer-
ence - i.e. to this node - or a global reference. Assuming it was
local, the MCU generates the proper RAS and CAS (row address and
column address) lines to access the required data. (The RAS and
CAS lines are part of the MEM Bus 405). Either the memory array on
the board itself (2 Mbytes) or an external expansion memory on the
MEM Bus 405 will respond with the data. The MCU 401 now directs
that data back onto the LMB 403 and signals the processor 101 that
the data is available. If the data required aligning or
correcting, the MCU 401 would have taken the data into the gate
arrays themselves, manipulated it as required, and rebroadcast the
data back onto the LMB 403 prior to signaling the processor 101.

Had the reference been global - i.e. not for this node, then
the MCU would not have issued the reference on the MEM bus 405.
Rather, the MCU would have begun arbitrating and re-initiating the
reference onto the I-Bus 404. The responding I-Bus node 111 will
return aligned, corrected data back via the I-Bus 404 at which time

the MCU 401 will direct the data back onto the LMB 403, buffering

the data as necessary.

17

0223557

3 Description of Graphics Hardware

Referring to Figure 4, VCU 406 provides high resolution color
graphics (1280 =x 1024), using B bits per pixel. Video Expansion
Unit (VEU) 407 may optionally be included to expand the pixel size

to 24 bits, giving the effect of a 24-bit VCU 406.

Note: In the ensuing discussion, "VCU 406/8" shall
mean that VEU 407 is absent and the pixel size is
eight bits; "VCU 406/24" shall mean that VEU 407 is
present and the pixel size is 24 bits; bald references

to "VCU 406" shall apply regardless of pixel size.

VEU 407 includes augmentation of VRAMs 113; this does not
provide additional VRAM locations, but expands the size of the
existing locations from 8 to 24 bits. VCU 406 drives a 60 hertz
non-interlaced 19" color monitor. The video outputs to the monitor
are RGB (RED-GREEN-BLUE) sync-on-GREEN with 75 ohm drive impedance.

Pixel data retrieved from VRAMs 113 are not written to the
screen directly, but are input to a table lookup function. The
table, contained in a separate RAM and known as a "palette",
outputs a 24-bit number. Eight of the 24 bits are converted from
digital to analog to provide the RED video signal, eight provide
the BLUE, and eight provide the GREEN. There are thus 2**24 (two to
the 24th power) or 16 million colors which can be displayed. 8-bit
pixels can display any 256 of the 16 million colors at any given

time; the selection of which 256 may be altered by reloading the

18

O

0223337

palette RAM. 24-bit pixels can display any of the 16 million
colors; the correspondence of pixel value to color may be altered
by reloading the palette RAM.

VEU 407 must be used in conjunction with VCU 406 and connects
to VCU 406 via 44 signals on the backplane. It provides an additi-
onal 16 bits per pixel bringing the total bits per pixel of the
graphics display from B to 24. VEU 407, having circuitry analogous
to that in VCU 406, will not be described in detail.

Pixel data from the host computer may be written directly into
VRAMs 113, or may be combined according to various Boolean rules
(discussed later) with data previously in VRAMs 113,

VCU 406 may be operated in "pixel mode" or "plane mode".
Pixel mode provides more flexibility, since any of a great number
of colors may be drawn at any screen position, but requires the
host to forward every bit of every pixel of a desired display.
Plane mode is provided to enhance performance, at the expense of
limiting the number of colors that can be displayed for a given
palette loading to 9 for VCU 406/8 or to 25 for VCU 406/24. Plane
mode effects "planes" or "layers" of displays (eight planes for VCU
406/8, 24 planes for VCU406/24) wherein the color of each plane
need be specified only once, "higher" planes may obscure "lower"
planes, and the host need only send a single bit (denoting "ON" or
"OFF") for each pixel position of each plane. For example, if it

is desired to display a bar graph in which:

1) the background is blue;

2) a green grid is presented;

19

3)
4)

0223337

the bars are yellow; and

red labels may appear on the bars,

then it is necessary to:

1)

2)

a) specify that the color of the background is blue by: (1)
loading 1location 0 of the palette with a number that
effects display of the desired blue; and (ii1) clearing
VRAMs 113 to all O's, meaning that all palette lookups
will access palette location O yielding the desired blue
of the background;

b) 1load palette location 1 with a number that is displayed
as the desired green for the grid lines;

c) load palette locations 2 and 3 with a number that causes
display of the yellow desired for the bars:;

d) load palette location 4, 5, 6, and 7 with a number that

causes display of the red desired for the labels;

At this point, the VRAMs still containing all O's, the screen
will be entirely blue, the.color specified in palette location
0; '

provide one-bits (denoting "ON") to the least significant bit
(the "lowest plane") of the pixels at positions corresponding
to the screen positions comprising the desired green grid

lines; (these pixels will then contain a value of 1, with the

20

0223557

result that palette lookups access palette location 1, yield-
ing green; at this point the display will be a green grid on a
blue background)

3) "OR" in one-bits to the next least significant bits of the
pixels (the "second plane") at positions corresponding to all
screen positions donstituting the desired yellow bars; (these
pixels will have values of 2 if ORed with a blue background
pixel or 3 if ORed with a green grid line pixel-- in either
case, palette lookup ylelds yellow. Thus, the green grid and
blue background are not visible on the yellow bars-- those
screen positions contain pure yellow, and not a superimposi-
tion or mixture of yellow, blue, and green.)

4) OR in one-bits to the next least significant bits (the "third
plane”) of the pixels at positions requisite to producing the
desired labels. (These pixels will then have values of 4 or

5, either of which causes palette output of red.)

The desired bar graph is now displayed on the screen. Alth-
ough some of the data is obscured (namely, the portions of the
yellow bars that are under red labels; the portions of the green
grid that are under yellow bars; the portions of the blue back-
ground that are under green grid lines) it is still present in
VRAMs 113 and will again become visible when the overlaying data is
removed. For example, if zero-bits are sent to the third plane,
thus erasing the red labels, the yellow bars will again be fully

visible with no need to reconstruct any portion of them; likewise,

21

0223557

if zero-bits are sent to the second plane to erase the yellow bars,

the green grid will again be fully visible without having to

reconstruct it.
3.1 Graphics Hardware Overview

Refer now to Figure 6. In the preferred embodiment, VCU 406 and
VRAMs 113 are contained on a circuit board (Graphics Processor
Board 301) which is a 15" x 15" 6 layer board with etch width of 8

mils and etch spacing of 8 mils. The board contains the following

major components:

1) 64 256k VIDEO RAMS 113 with associated drivers and buffers.

2) Address mapping circuitry 602 for receiving addresses over
Memory Bus 405 and translating same to physical addresses
within VRAMs 113.

3) Data manipulating circuitry 603 for performing manipulations
on data received over Memory Bus 405 or contained in VRAMs
113, and for storing manipulated data in VRAMs 113. Data
manipulation circuitry 603 is mainly constituted by eight

Graphics Data Processor (GDP) gate arrays 714 (on Figure 7).

The keyboard 611, mouse 613, and vertical blanking all inter-
rupt the host processor via NMIs (non-maskable interrupts). The
servicing of NMIs 1is very fast relative to normal 4interrupts

because the host does not have to issue a VECT instruction, or

22

0223557

reschedule tasks upon receipt of the interrupt.

The mouse can interrupt the host as fast as every 33
milliseconds. Servicing of the mouse, which 4includes cursor
plotting/replotting, should require no more 50 microseconds out of
every 33 milliseconds of time. This is a total of .15% of the
host's cpu time when the mouse 1is moving, which relatively
speaking, is not often.

The keyboard constantly interrupts the host at an interval of
80 milliseconds. The time required to service the keyboard when it
is 1idle is about 25 microseconds, a total of .03% of the hosts cpu
time. If the keyboard is not idle, the time to service it is about
400 microseconds. With a typist who can type 60 words/minute (a
word being 6 characters), the interrupt load is equal to about .12%
of the hosts cpu time.

Vertical blanking interrupts can be used to pace the color
palette updates. VCU 406 only updates palettes during vertical
blanking. It takes 6 frames to fully update tﬁe 3 256-color
palettes. Multiple attempts by the system to update the palettes
in less than one frame will not be realized. The system can use
the vertical blanking interrupt to indicate that VCU 406 has
updated the palettes, and to issue another update if required.
Since this function can be done via setting a flag, the time to
service the interrupt is considered negligible.

Total load on the system, worst case, including both mouse and

keyboard, is estimated to be approximately .27% of the total CPU

time.

23

0223557

3.1.1 Pixel Mode Overview

Note: This discussion is in terms of 8-bit pixels:;

a discussion for 24-bit pixels would be analagous.

Referring to Figure 7, pixel data is sent from the host CPU
over Memory Bus 405, is processed by the Graphic Data Processors
714, and eight-bit pixels are stored in "bit map" form in VRAMs
113,

Note:

o The term "host CPU" may refer to CPU 101 of the

local processor, or some other node on the I-Bus.

o0 The "processing"” performed by the Graphic Data

Processors 714 may take the form of aligning

(:> pixels from the 32-bit bus word onto VRAM pixel
boundaries, merging ‘incoming pixel data with

pixel data previously in VRAMs 113, and the like.

As is indicated by the bidirectionality of the arrow connec-
ting GDPs 714 and VRAMs 113, GDPs 714 have the capability, in

response to commands from the the host CPU, to extract bit map data

24

0223557

from VRAMs 113, perform manipulations upon it, and return it to
VRAMs 113. Writing to VRAMs from the host is known as an
"external" access"; the latter case is called an "internal” access.

Circuitry 604 extracts bit map data from VRAM's 113 and
transforms each pixel to a desired video representation as directed
by palette 609 under céntrol of palette lookup table 605. Digital-
to-analog converters (DACs) 606 transform the video representations
to red, green, and blue video signals which are forwarded to the

video monitor for display.
3.1.2 Plane Mode Overview

Plane mode data follows essentially the same path as pixel mode
data, but is handled differently, as shown in Figure 8. With
reference to the bar graph example set forth above, suppose that as
part of writing the red labels on the yellow bars it is desired to
write the character "A". A representation of the character "A"
{element B815) is shown as it might appear in a "font" of characters
(fonts, well known to those in the art, may be thought of as
prestored bitmaps of often-used graphic entities). The prestored
plane-mode (one bit per pixel) bitmap for "A" is shown as element
816. Where the bitmap contains a 1, the color denoted by foreg-
round register 819 will be displayed at the corresponding screen
position; where it contains a 0, the color denoted by background
register 818 will be displayed. The discussion of the bar graph
example in section 5.1 did not consider use of these registers;

they enhance flexibility by permitting, for example, red labels on

25

0223557

a black background on the yellow bars. It is assumed here that the
background register contains a value denoting the yellow of the
bars and that the foreground register contains a value denoting the

desired red of the labels.
3.2 Programming Overview

The video memory (VRAMs 113) contains video information which is
continuously displayed on the screen. The smallest picture element
that 1s addressable in the video memory is called a pixel. Each
pixel contains information that corresponds to a value that the
pixel can take on. For VCU 406/8, a pixel is represented by 8 bits
of video memory, and can take on any one of 256 possible values.
For VCU 406/24 a pixel is represented by 24 bits of video memory,
and can take on any one of 16,777,216 (written as 16M for future
discussion) possible values.

There are 1280 pixels displayed horizontally and 1024 pixels
displayed vertically. There are actually 4048 VRAM 1locations
horizontally, the last 768 of which are never displayed. This
section of the video memory can be used to store temporary
pictures, icons, character fonts, or small windows of data.

Each bit of the pixel is called a 'plane'. When configured as
an 8 bit per pixel controller (VCU 406/8) there are 8 planes. When
configured as a 24 bit per pixel controller (VCU 406/24), there are
24 planes.

The pixel plane bits are passed to the address field of a high

speed RAM 1lookup table. The data returned by the RAM is then

26

(223557

passed to the video output stage. This table allows the pixel
information stored in the video memory to be redefined before being
displayed on the screen. This RAM is called the color palette.

On VCU 406/8, 8 bits of information are placed on the RAM
address lines and 24 bits of data are returned. Because each pixel
is B bits wide, it can take on any one of 256 values. The colors
represented by the values can be chosen from a range of 16,777,216.

VCU 406/24, with respect to the color palettes, is essentially
3 VCU 406/8 designs in parallel.

3.3 Restrictions

VCU 406 is designed to read and write the video memory on pixel
boundaries. To accomplish this, VCU 406 manipulates the data
internally. Furthermore, on write cycles, VCU 406 performs a
read-modify-write cycle internally. MCU 406 , the M-bus
controller, is also capable of performing read-modify-write cycles,
but cannot manipulate the data in the same manner as VCU 406. VCU
406 expects only simple reads and writes via the M-bus. If MCU 406
performs a read-modify-write to VCU 406, indeterminate results will
occur,

To insure that MCU 406 executes only simple reads and writes

to VCU 406 the following programming rules must be followed:

0 For NORMAL space accesses to VCU 406 only even double word
reads or writes are allowed. Specifically, odd double word

reads or writes, byte reads or writes, and word reads or

27

0223357

writes are disallowed.

o For OTHER space accesses to VCU 406, by definition, only even
double word reads or writes are allowed. Specifically, odd
double word reads or writes, byte reads or writes, and word

reads or writes, are disallowed in the present embodiment.

3.4 Types Of Video Memory Accesses

VCU 406 is capable of the following types of video memory accesses:

1) Host processor to video memory accesses (and vice versa).

2) vVideo memory to video memory accesses.

3) Special character write accesses (from host processor to video

memory.

The format in which the data is packed is BLOCK form - the 32 bit
data word contains 4 consecutive 8 bit pixels for VCU 406/8; and 1
right justified 24 bit pixel for VCU 406/24 for video memory
accesses. A special character write contains 32 consecutive pixels

in a doubleword access and is indepehdent of the bits per pixel.

3.5 On-board Graphics Hardware Caching

Video memory to video memory accesses (internal accesses) do not

use the M-bus. During an INTERNAL READ data is read from the video

28

0223557

memory and stored in an on-board register. On an INTERNAL WRITE
operation, the data that was previously stored in the on-board
register from the INTERNAL READ is written back to the screen
buffer, potentially at another address. Because internal accesses
do not use the M-bus 403, the transfer of data is not bandwidth
limited by the M—bus.to 32 bits per access; but rather limited to
the bandwidth of the video memory data lines. For VCU 406 it is 32
times the number of planes per pixel. This yields a transfer rate
of 256 bits per transfer for VCU 406/8 and 768 bits per transfer

for VCU 406/24. In both cases, this translates to 32 pixels per

transfer.

3.5.1 X and Y, SOURCE and DESTINATION Registers

The SOURCE registers are normally used as pointers to a row
and a column of the window to be moved or drawn. VCU 406 can use
either pair of registers to read or write. This allows for easy
handling of block moves and logic operations from video memory to
video memory.

By providing seperate SOURCE and DEST registers for X and Y
addresses, window moving in either the X or the Y plane can .-be
accomplished much more efficiently because only one céordinate
address needs to be sent after the initial X and Y address is
loaded.

Note that both the SOURCE and the DEST registers can be used

for reading and writing. Labels "source" or "dest" are used for

29

0223557

clarity only, although SOURCE register normally holds the top right
coordinate of the window to be read and DEST register normally

holds the top right coordinate of the window to be written.

3.5.2 Read/write Pixel

PIXEL operations may be used to draw 1lines, circles, and other
pixel-by-pixel graphics efficiently. Pixel read and pixel write
are just special cases of BLOCK READ and BLOCK WRITE respectively.
All accesses are double word accesses. However, if the pixel
enable register contains a value of 00000001 {hex) then on a host
write access, a pixel write is accomplished. The pixel to be
writteﬁ must always be right justified. Similarly, on a host read,
the right most pixel of the double word read from the video memory
is the pixel addressed, the rest of the pixels must be masked out
by the host CPU. Note that the PIXEL ENABLE register is used by VCU

406 only on a write cycle.

PIXEL accesses require the setup of the following registers:

© the X and Y SOURCE or DESTINATION registers,

o the LALU register,
o the PIXEL ENABLE register,

o the PLANE ENABLE register.

30

0223557

3.5.3 Read/Write BLOCK

A double word access will access either 4 consecutive pixels on VCU
406/8 or 1 pixel on VCU 406/24. For VCU 406/8, each pixel is 8
bits wide, so 4 pixels will fit into a double word. For VCU 406/24
each pixel 1is 24 bits wide, s0 only 1 pixel will fit in a double
word. This 24 bit pixel is RIGHT JUSTIFIED in the 32 bit double
word. Note that, setting or clearing of the video memory is faster
if a special character write access is performed instead.

BLOCK addressing may be used when it is required to move or
draw a large rectangular blocks of graphics memory more
efficiently. CHRBLT, 2DLINE,and BITBLT instructions use BLOCK
transfers. Note that BLOCK accesses are NOT limited to double word
boundaries of pixels, but are limited to pixel boundries.

BLOCK accesses require the setup of the following registers:

0

the X and Y SOURCE or DESTINATION registers
o the LALU register
o the PIXEL ENABLE register

o the PLANE ENABLE register

3.6 VEU 407

VEU 407 is very similar in hardware design to VCU 406. The fol-

lowing paragraphs describe those differences.

31

0223397

There is no address generation, refresh control, or X and Y
source and destination register sections on VEU 407. The address
that goes to the video RAMs is passed via a cable to the VEU 407
board from the VCU 406 board.

There is no 8081 uP and associated circuitry (this includes
the COM DATA register and COM STATUS register); the necessary video
timing signals and data bus information are passed via a cable to
VEU 407.

There are two video output chains (shifters, etc.) and twice
as much memory (128 video RAMs) on VEU 407 as there is on VCU 406.
Note that this memory does not yield any additional locations, but
expands the size of the existing locations. There are only two
DACs on VEU 407, one per video output stage.

There is no keyboard or mouse interface on VEU 407.

3.7 Converting VCU 406/8 to VCU 406/24

There exists a jumper cable that is connected on the backplane when
both VCU 406 and VEU 407 are present in a system. This cable
passes signals from VCU 406 to VEU 407 and vice-versa. One of the
signals on the cable tells the VCU 406 board that a VEU 407 is
connected so that it (VCU 406) configures itself appropriately.

The RED gun and GREEN gun cables are connected to the VEU 407

slot. The BLUE gun, keyboard cable, and mouse cable are connected

to the VCU 406 slot.

32

0223557

4 Description of the Process

The prior art approach can be successfully implemented (as dis-

cussed above), but 1t has the disadvantages of introducing sub-

stantial overhead, because of the need to either (1) interpret all

of the user's calls to effect protection while still sharing the

display or (2) allow the user direct access to the display,

giving

up protection. The method of the present invention overcomes these

disadvantages by

o the construction of a data system in which speciaﬁ-purpose

machine-language instructions are available for directly

manipulating data in windowed displays, either logical or

physical,

O providing both privileged (protected) and non-privileged

instructions which are directly executable by the CPU,
O providing hardware faults into the operating system

protection policy decisions are required.

Note: CPU 1is meant to be the data processing
system, and includes, but is not limited to, the parts

of the data processing system depicted in fig. 9.

when

Since the user can use these instructions directly on the CPU,

no intervening software is required to interpret them. Since

33

they

0223557

execute directly in the CPU, which can include a highspeed memory
for encaching descriptive information, there is no need to repro-
cess this descriptive information on every instruction. Thus the
method of the present invention uses significantly less of the
processing power of a given machine, or permits implementation of
windowed displays on a smaller, less powerful machine than is
possible for a prior art implementation.

The method of the present invention is depicted in fig. 4, but
fig. 4 does not purport to depict all elements of a data system,
but only those elements necessary to generate and produce displays.

The data system is again seen (see fig. 4) to comprise a CPU
(101), memory bus controller and interface (401), a memory bus
(404), memory (403), a video control unit (405), a video expansion
unit (406), video rams (407) and a display (408). 1In this particu-
lar embodiment the display is a pixel~-oriented video monitor and
not @a character-oriented terminal. A display interface is used
that is appropriate to drive the video monitor.

User software is not constrained to software calls for manipu-
lating the displays, but may now also contain instructions which
will directly stimulate CPU 201 for that purpose. User software is
always constrained to manipulate logical displays, which may or may
not be on the physical display.

Some definitions are necessary at this point.

- User Graphics 1Instructions are non-privileged instructions
that users can use to directly manipulate the logical display.

The user is restricted to wuse these instructions only on

34

0223557

logical displays that the system software has specifically
given the user access to by loading information into the CPU
via privileged graphics instructions. Detailed description of
the user graphics instructions can be found in Appendix A.

Privileged Graphics Instructions are instructions that only
privileged, system software can use. If a user attempts to
use any privileged d1instruction (graphics or otherwise), a
hardware-to-software fault is performed and the instruction is
not executed by the CPU. Privileged instructions can only be
executed from segment 2zero of Data General's MV series
computers.

A user's form identifier is an unique (in space) identifier,
created by the system software, and used by both the hardware
and the user to access a logical display (window). The form
identifier i1is passed as a parameter with all user
{non-privileged) graphics instructions.

The hardware, when starting a graphics instruction, determines
access based on the user's form identifier and the operating
system's key. The hardware searches forms cache entry list,
looking for a matching user's form identifier / operating
system key pair. See Appendix B, section 2, for a more
complete description of the form cache and how the user's form
identifier is used.

The operating system's key for this embodiment, is the Segment
Base Register's (SBR) contents for that particular user's
segment. This is a known unique value that both the operating

system and hardware can use to safely determine which user 1is

35

C)
/
—

0223557

using the CPU. The system software specifically 1loads the
forms cache, using a privilege graphics instruction, with the
triple (user form id, operating system key, address of the
corresponding form descriptor).

A form descriptor describes, or holds pointers to descriptors
(such as attributes, cursor and rectangles) of a logical
screen. The form descriptor contains such information as a
pointer to the attributes block, the size of the window, and
the 1location of the window on the physical screen, etc. See
Appendix B, section 1 which describes the GIS 1I form descrip-
tor and other related data structures for complete details.
It should be noted that the form descriptor actually consists
of databases used to describe the window (logical display).

A window, when neither fully visible nor fully obscured, is
broken into parts called rectangles. Each of these rectangles
is describe by a rectangle descriptor. These rectangles
descriptors are then strung together into a 1linked 1list,
anchored off the form descriptor. Each rectangle (on the
list) must be either fully visible or fully invisible.
Background reading material on the use of rectangles can be
found in [PIK]. Details on the rectangle descriptor can be
found in Appendix B, section 1.

Each window in the system can have a cursor. The cursor is
usually used to point at specific objects on the screen
(sometimes called ICONs) to perform some operation on. For
example, a typical operation is to move a window on the screen

by first moving the cursor to point at the upper left corner

36

0223557

of the window to move, pushing a key, and moving the cursor
(and window) to the new place on the screen. Efficient cursor
management requires extra effort, since the cursor is NOT part
of the window, but can be thought of as a plane over the
window. The form descriptor for each window points to a
cursor descriptof. For details of the cursor descriptor see
Appendix B, section 1.
A Graphics Fault occurs when the CPU detects that (1) a user's
form identifier 1is not in the forms cache entry, (2) the
current graphics instruction intersects a visible cursor, (3)
an unknown attribute index 1s referenced, or (4) an user's
source form identifier can't be found. This fault is the
CPU's way of informing the system software of a condition that
it can't manage, and needs system software to resolve. For
details of the this faulting mechanism, see Appendix B,
section 4.

A Graphics Unimplemented Instruction Trap occurs when the user
tries to execute a graphics instruction that hasn't been
implemented by the CPU. When this occurs a trap handler, that
was defined by the user, is executed. At this point the trap
handler can call on other software to emulate the unimplemen-~
ted instruction, or abort. This provides a graceful way to
migrate graphics functions between hardware and software. See
Appendix A for more details.

System software sometimes called operating system software is
one or more programs that can execute privileged instructions.

- The window manager is software that is responsible for man-

37

—

0223557

aging windows in the system. Some embodiments may or may not
make the window manager a part of the system software, but
rather allow it to make privileged calls to the system. Some
embodiments may also provide parts of the window manager

software (the portions that do not need to be trusted) as user

runtimes.

Still referring to fig. 10, it is seen that user software 311,
must make software calls to a piece of system software called the
window manager 317, to produce form descriptors. This is usually
not a frequent operation, and can be slow. A user may not provide
her own form descriptors, but must have the window manager provide
them for her. The user then uses a unique form identifier returned
to the user by the window manager that represents the form descrip-
tor created for her. This 1s necessary in a multi-user,
multi-program, or multi-process environment to arbitrate among the
various users, programs, or processes that are contending for
window space on the same physical screen.

Each wuser graphics instruction (for writing into windows) are
presented by user software (307, 309) to CPU (101) where they are
interpreted by the microcode unit (303), which in response to each
instruction fetches an appropriate sequence of microinstructions to

direct ALU (305) in performing the instruction.

38

0223557

4.1 The Protection Mechanism and Caching

Each such user graphics instruction must contain a user form
identifier. Also known to the CPU/microcode is the current opera-
ting system key for the user currently running on the CPU. (The
operating system Kkey was set when the user was given the CPU via
the SBR management instructions. In a different embodiment, this
key can be generated differently, as long as it uniquely identifies
all users in the system and can be agreed upon by the hardware and
system software). The microcode then searches the forms entry
cache looking for a matching form identifier/operating system key
pair.

If the id/key pair is not found in the form id cache, a forms
cache miss fault is generated, basically calling system software to
resolve the fault. The operating system must then search its list
of valid forms for this particular user to determine if a new form
must be loaded into the cache (using the WGLFORM instruction) or if
the user attempted to reference an illegal form.

If id/key pair is found in the forms entry cache then the form
descriptor address is gotten from the form 14 cache. The form
descriptor address is then used to see if the form descriptor is
encached in the form descriptor cache. (In the preferred
embodiment, the form descriptor is actually encached both on the
CPU 101 and the Video Control Unit 406. In other embodiments, the
descriptor may be wholly encached on either the CPU or VCU, or not
cached at all. Also note, that other descriptors, related to the

form such as the rectangle, attribute and cursor descriptors are

39

0223557

also cached to differing degrees). If the form descriptor is not
cached, then it 1is read from memory 102 into the form descriptor
cache. After the form descriptor is in cache, the graphics ins-
truction can proceed.

In the ideal embodiment, many forms, of several users will be
encache at one time. This cache can be a high speed scratch pad
memory wused by the CPU, or it can be wholly implemented on a
graphic processor board. At the other extreme, it is possible to
provide (a less expensive) implementation which provides little or
no caching, and always reads the form descriptor from memory. Some
form of caching will be necessary to store the form id, operating
system key, form descriptor address triples to avoid faulting to
the system software on every user graphics instruction. This
caching could be a known location in main memory, or high speed

scratch pad space in the CPU.
4.2 Coordinate Systems and Conversions

The reading of the form into the internal cached form consists of
calculating screen-global coordinates from window-local coordinates
provided by the system in the form descriptor. (The user is not
required to know where on the screen her window is located, and can
only find out by asking the window manager software).

Referring to fig. 10, a window positioned on a screen is
depicted. Within the window are a user-specified origin "“O" (1007)
(the user may specify coordinates in the window relative to this

origin) and a point "P" (1008) at which the user may wish to

40

0223557

operate. Listed on fig. 10 are the global coordinates of the
corners of the screen, and the global and local coordinates
(relative to the upper left corner (ULC) of the window) of points
of interest of the window: its four corners E,F,G,H.

In the system-supplied form descriptor, the system is required
to specify the height énd width of the window (in pixels), and the
local coordinates relative to the user's origin "O" of the window's
ULC. Note that this implicitly specifies the location of the origin
"o".

Fig. 11 depicts a form descriptor in system form. The trans-
formation spoken of consists in calculating and f£filling in the
global coordinates of the window's ULC (1009 and 1010) and a
pointer to global 0,0 (1007). Since the form descriptor can now be
encached as a forms cache entry, there is no need to recalculate
such information on subsequent references to the same window,
unless the window's global ULC changes.

Every bitmap employs a global coordinate system within which
individual windows are allocated. Each form, in turn, defines its
own local (internal) system that is independent of the location of
the window within the containing bditmap. Display-affecting ins-
tructions are written in terms of local coordinates; translation to
global coordinates is performed when the instructions are executed.
Thus, with reference to fig.s 10 and 11, a form descriptor contains
both local (1103, 1104) and global (1101, 1102) designations of the
form's Upper Left Corner (ULC), point E (1003).

Suppose that it 1is desired to address point P 1008. The

encached form descriptor supplies vectors AE (E's global coordina-

41

0223557

tes 1101,1102) and OE (E's local coordinates 1103, 1104). Instruc-
tion inputs supply vector OP (P's local coordinates: XL,YL relative
to the user supplied origin 1007). The vector AP is calculated
internally.

The cache then always contains the transformed versions of the
"n" most recently used forms descriptors. This can greatly accele-
rate execution, since in practice many forms will often be used
repetitively. (The determination of the value of "n" i1is 1left to
the designers of a particular embodiment).

Since bitmap 1007 contains an image of what is to be displayed
on the screen, execution of the present instruction may be regarded
as complete when the bitmap is updated to contain the new display
information specified by the current instruction. Translating the
bit map 1007 to a visible display is a function of display inter-
face 324, the timing of which is asynchronous to the timing of
instruction execution.

Note that bitmap 1007 is contained in VRAM's (video random
access memory chips). Depending on the particular embodiment, the
VRAM's may or may not be accessible to the ALU just as any other

portion of main memory.

4.3 Clipping

The method will not permit a user to write outside of the window he
has referenced. The system software is responsible for defining
the size of the user's window, by specifing in the form descriptor

the bounding rectangle 1105, 1106, 1107, 1108 that the user's

42

N

0223557

references must stay within. For example, if & user 1instruction
specified a horizontal line 400 pixels long in window 1002 that is
only 250 pixels wide, only that portion of the 1line that fits
within the window 1is written to the window 1002, and the rest is
ignored. This is known as "clipping". The user 1is NOT informed
that the clipping has been performed; further, the user does not
need to know this. If the user was to be informed, then parallel
operation of the graphics subsystem would greatly be limited, since
the CPU would have to 'wait' for the graphics instruction to nearly
complete to determine if clipping information needs to be returned.

In prior art, it was necessary to know if the instruction was
clipped, since this provided the software a hint that the graphics
instruction left one rectangle 1203 of a window. If this was the
case, the software would then have to restart the instruction on
the next rectangle from the rectangle descriptor list. 1In the
current invention, since the rectangle list is known to the CPU and
encached, it can efficiently walk the rectangle list to complete

the instruction without software intervening.
4.4 Occlusion: Broken Windows

A complication occurs in the described processing when a window is
occluded (partially covered) by another window. Referring to fig.
305, it is seen that Window A (502) is partially covering Window B
(501). Prior to this occlusion, the processing was able to regard
Window B as a single whole entity, but must now regard it as a

complex entity made up of several simple entities called

43

0223357

rectangles. Here we introduce the term rectangle to denote a
portion of a window. Window B is broken into three rectangles: Bl
(503), B2 (504), and B3 (505). 1In order to keep the simple enti-
ties as simple as possible, the constraint is imposed that rectan-
gles must always be rectangular in shape -- i.e., the method does
not allow consideration of the occluded rectangle and the L-shaped
remainder, but requires division of the L-shaped remainder into two
rectangles, B2 and B3.

The wuser is not reguired to know that this occlusion has
occurred because it may have been caused by a different user,
program, or process, and hence does not bear the burden of knowing
about the panes -- the system software does this automatically and
in a manner that is transparent to the user. The system software
creates a descriptor describing each pane. This descriptor is
known as a rectangle descriptor. Form descriptors describe the
entire window, whereas rectangle descriptors describe only an area
of the window. See appendix B, section 1.4, for a detailed des-
cription of the rectangle description.

When occlusion requires breaking a window into rectangles, the
processing will create new rectangle descriptors for the
rectangles, and will link them off the form descriptor for the
window. In future embodiments this automatic creation may take
place under control of microcode, but in the present embodiment it
is done by software, invoked by the microcode-to-software fault
capability, to be discussed further on.

A form descriptor for a window essentially comprises a list of

pointers to the rectangle descriptors that make up that window. 1In

44

0223557

the current embodiment, these pointers are kept by using a 1linked
list, anchored in the form descriptor for the window, using physi-
cal addresses. It is interesting to note that the form descriptor
can easily change shape and size since a size field is part of the
descriptor, and that only the operating system software uses the
form descriptor, not user software.

When a pane becomes occluded, the data that were displayed on
it are not to be displayed any longer, indicating that the corres-
ponding locations in bit map (1007) will be overwritten by the data
for the occluding window (fig. 12 window A 1202). Rather than
discard this information, which would necessitate recomputing it
later when the pane is to become visible again (forcing the user
software to be aware that the window was partially or fully
occluded), or when the user wishes to manipulate data within the
pane (recall that it is possible to manipulate data in an invisible
pane), it is retained in a virtual bitmap in main memory.

Referring to fig. 13, which depicts the forms descriptor 1301
for Window B 1201 that reflects the occlusion situation depicted in
Fig. 12, it is seen that the window has been broken into three
rectangles (or panes) 1306, 1308, 1310. The window manager
software, when told to move window B 1201 over the top of window A
1202, divides window B 1201 into the proper number of rectangles,
Creating new rectangle data descriptors, allocating virtual bitmap
space (more properly, virtual rectangles) and copying the data from
the physical display into memory as necessary. In order to prevent
a user from changiﬁg the window while it is being modified by the

window manager, the triple form identifier / os key / form descrip-

45

0223557

tor address is purged from the CPU; then any references the user
attempts to make will result in a cache miss fault. At that point
the window manager (with help from system software) will pend the
user's path (by not reloading the cache and resuming the fault)
until the window manager has finished modifying the window.

Subsequent user instructions to manipulate window B can now be
handled. For example, (referring to Fig. 12) if the user specifies
a line from I to J in window B, the processing will automatically
translate it to three operations: one for line I-I' in rectangle B3
1205, one for line 1I'-J' rectangle Bl 1203, and one for 1line J'-J
in rectangle B2 1206. Handling these three requests will, as
usual, result in recording the line in the bitmaps for the three
rectangles. However, since rectangle Bl is occluded, line 1'-J' is
written into the off-screen bitmap and will not presently be
visible on the display. The CPU can easily find the three rectan-
gle necessary to perform the three line draw functions, simply by
following the rectangle list.

An optimization has been included, called the bounded rectan-
gle which is described in the form descriptor 1105, 1106, 1107,
1108: which describes a rectangle which the rectangles on the
rectangle must fully £ill. In this way, the CPU can check once at
the beginning to see if any portion of the graphics operation is in
the window.

Subsequent removal of window A will result in returning the
form descriptor for window B to its original shape, moving rectan-
gle Bl's bit map information from the off-screen bitmap onto the

physical bitmap and collapsing the three rectangles into one and

46

N
(_

0223557

thus the complete line I-J will be visible even though part of 1t

was invisible when drawn.
4.5 Cursor Management

Referring to fig. 12 a cursor 1207 is shown. Since the cursor is
not part of a user's window proper, users do not need to be aware
of where it is. Consequently, drawing over the top of the cursor
should not destroy it, or make it invisible. Users can still have
'user' cursors that are not allowed to leave the window. This is
very useful when providing a terminal 1like interface within a
window. In the form descriptor for a window is a pointer 1109 to a
cursor descriptor 1303. For more details of the cursor descriptor
see appendix B, section 1.5. Cursors may be visible or invisible:
if invisible the CPU knows it can safely ignore any intersections.
When the CPU detects that a graphics instruction intersects
the cursor, a fault is taken:.allowing the system software and
window manager to décide vhat to do about the cursor, and resume

the instruction.
4.6 Microcode-to-Software Escapes

This is the mechanism that permits taking complex issues out of
microcode and moving them into software, while leaving the way
clear to construct improved future embodiments with more functions
performed by microcode. It also provides a guide for implementa-

tion staging and for migration of functionality up and down. This

47

C

0223397

is performed by two mechanisms:

1) Microcode Faults: these are escapes into system software to
deal with complex issues such as Form Cache Miss, Cursor
Intersect, Unknown Attribute Index, and 1Invalid WGCHRBLT
Source.

2) Unimplemented Instruction Traps: these are escapes into user
software to deal with graphics instructions that may not exist
in the current implementation. This allows the software to
provide the richest possible instruction set, while wmigrating

functionality up and down.

When an operation initiates, microcode must determine whether it
can do the operation, and whether it can handle the forms on which
it must operate. If the answer is no in either case, the instruc-
tion must fault to system software before it produces any side
effects. A fault handler address is supplied in segment zero. The
fault handler will determine what operation must be performed (load
a form descriptor, moving a cursor, provide attribute information,
or invalidate a reference), by using user and privileged instruc-
tions 1f necessary. The invoking program is resumed via WDPOP. For
more details, see Appendix B, section 4.

Note in some embodiments although system software will receive
the fault, it may then pass that information onto the window
manager to handle. 1In this way, the window manager does not need
to be a part of the system software proper, but is nonetheless,

still a trusted part of the operating system.

48

@

.

0223557

When a graphics instruction starts, microcode must determine
if the instruction is defined. 1If it isn't, an Undefined Instruc-
tion Trap (UIT) is performed and control is passed to the user
provided Emulator routine. This routine's address is the 2nd and
3rd words of the instruction, which holds a program counter-

relative offset (non-indirectable), of a software emulator/fault

handler.
Primary : Secondary
GIS Opcode Displacement to Emulator Code Sub-opcode
107151 octal H for function
R R e e e e e S)
0] 15 16 31 32 47 48 63

The process performs a LPSHJ to the routine. The emulator handler
can then emulate the function, and return via an WPOPJ instruction.

Recursive traps are thus supported implicitly.

4.7 Pixel Values and Palettes

The present embodiment uses a pixel value as simply an index into a
palette. A palette is a special hardware map, which translates
pixel values to (digital) beam intensities. Privileged instruc-
tions exist to set and retrieve pixel-to-color translations, i.e.,
load and store the palette.

Since the palette is a resource to be shared by more than one
user, it must be protected by the system. This is accomplished by
making the palette instructions privileged. System software {is
responsible for dividing the palette up into as many pleces as
possible so that all users sharing the physical device can have as
many useful ‘colors' as possible. When the form descriptor is

49

0223557

created for the user, the range of possible palette entries that
the user can use is specified by bit mask in the forms descriptor
called the op mask.

When the user writes a pixel (via a write pixel or bitblt
instruction) onto the physical bitmap, the CPU masks the users
pixel bits by using this op mask, by masking the cooresponding
pixel on the physical bitmap using the one's complement of the op
mask, then ORing the user's pixel with bitmap pixel. If a combina-
tion rule was specified, or if the user specified a global opera-
tion mask, this is applied. (NOTE that masking is a transitive
operation, 1leaving the designers to change the order). Optimiza-
tions are possible due to different combination rules and attribu-
tes the user has specified. See combinations rules and attributes
in appendix A for more details.

An example seems necessary to clarify this. Suppose the user
requires sixteen colors which is 4 bits/pixel, and that the physi-
cal bitmap has 256 colors which is 8 bits/pixels. Then it is
possible to have 16 different windows, each with their own set of
16 colors using the same palette (16 * 16 = 256). This is shown in
fig. 14. 1f we number the users from O to 15 (a four bit value),
we can easily use that in the high half 1401 of each pixel to
represent which 16 entry portion of the palette that user can have.

In the current embodiment, the system software must precharge,
by using an WGRFLOOD instruction, each portion of the physical
bitmap with the user number before the user can effectively use
that area. In future embodiments, this could be moved into

hardware, by including the user number to the forms descriptor.

50

0223557

A side effect of this mechanism is that when rectangles are
occluded, and moved off the physical bitmap onto a virtual bitmap,
only the exact number of bits per pixel that the user can use 1is
required. Using the previous example, then when a rectangle 1is
virtualized, it only requires 4 bits/pixel, half the space required
when on the physical bitmap.

The palette can be split into asymetric partitions by giving
different users different size masks. For example, 1if one user
requires 32 colors, then it would have a five bit mask. Using this
technique, the only real restriction is that the user always
receives a power of two colors. This makes sense, since the user

must always use a whole number of bits to represent a pixel.

4.8 Blinking

The present embodiment provides a blink clock. The blink clock
provides a stimulus to switch between two palettes with a 50% duty
cycle at a fixed rate of about 1.0-1.5 Hz. Entries in the two
palettes are specified separately. This allows a given pixel value
to alternate between two colors (or 1levels of intensity on a
mono-chrome display). The chart below shows some of the effects

possible when using this palette scheme for two-bit pixels.

Pixel Phase-0 Phase-1 visual
Value Palette Palette effect
o m R e L e e +

00 black black off
01 dim white dim white dim
10 white white on

11 black white blink

0223557

4.9 Attributes

Attributes are stored in the attribute descriptor 1305, 1312 whose
address is kept in the form descriptor 1110. 1Individual attributes
are referenced by an index number into the attribute descriptor.
Currently, all attributes are 32-bit quantities. These attributes
are set by the WGWRATTR instruction, and read by the WGRDATTR which

are non-privileged instructions.

Note: If an attribute in a Form Descriptor is
changed while a GIS instruction is operating on that

Form, the results are undefined.

Valid indices (and the attributes that they refer to) are:

Global Operation Mask

Global Combination Rule

Line Control Word

Line Foreground Color

Line Background Color

Linestyle

Character Control Word

Character Foreground Color

Character Background Color

For more detalls on the attribute descriptor see appendix A,

OO WNKFHO
B8 20 40 95 S0 62 Be 2V BN

section 1.1.
4.9.1 Combination Rules

Many of the instructions employ a combination rule to deal with

superposition of source pixels on destination pixels. One does not

always wish strictly to replace the destination pixel with the
52

O

0223557

source pixel; it may be desired to plant a pixel whose value is
some function of source and destination. This implies that des-
tination may also be an input.

In the context of a block transfer or line instruction, each
bit in the source pixel VALUE is combined with the corresponding
bit in the destination pixel VALUE, to form the new destination
pixel VALUE. A standard Boolean function is used to specify the
logical operation used for each bit position.

The operation mask selects which pixel bits are modified by
the operation. A zero means "do not do anything to this bit,"
while a one means "operate on this bit using RULE."

The COMBINATION RULE is applied on a bit-by-bit basis to each

bit in the source pixel and destination pixel. The RULEs are

defined as follows:

Rule Bits
28 29 30 31
AN |
Number \ || / | Action Interpretation
______________ o e e e e e - e = - -~ = —
0 0000 dest = 0 Clear destination bits
1 0001 dest = dest AND source -
2 0010 dest = source AND “dest -
3 0011 dest = source Move source to dest
4 0100 dest = dest AND ~source -
5 0101 dest = dest NOP
6 0110 dest = dest XOR source Set 1f unequal
7 0111 dest = dest OR source Set pixels
8 1000 dest = “dest AND “source -
9 1001 dest = dest XNOR source Set if equal
10 1010 dest = “dest Complement dest bits
11 1011 dest = source OR ~“dest -
12 1100 dest = “source Move complemented
13 1101 dest = “source OR dest -
14 1110 dest = ~“(dest AND source) -
15 1111 dest = 1 Set destination bits
_____________ ot e e e e ——— -

Those RULEs with a dash in the interpretation column are seldom
used and have no particularly méahingful interpretation. (The

53

0223557

exclusive nor, XNOR, operation is also known as the equivalence,
EQV, operation.)

When any PIXEL is operated on, the following equations are
used to calculate the resulting destination PIXEL:

DEST_PIXEL := [OPERATION_ MASK AND (SOURCE_PIXEL RULE DEST_PIXEL)]
+ [~ OPERATION MASK AND DEST PIXEL]

4.9.2 Line Attributes

Linestyle word, combined with the Line Control word is a way of
drawing other than solid lines. The line style word is specified
as a bit string of length 32, it controls which color (foreground
or background) to use when drawing the 1line. For each draw
position, the leftmost bit in the linestyle is examined. If set,
the foreground color (pixel) is planted; if clear, the background
color (pixel) is planted. The linestyle is rotated left one bit
position, and the next draw ﬁosition is computed.

The 1line foreground color, 1line background color and line
control word are set by using the WGWRATTR (write attribute)
instruction. For more details on line attributes see Appendix A,

section 1.

Examples of linestyle (expressed in hexadecimal) are:

FFFFFFFF: solid AAAAAAAA: somewhat grey
FOFOFOFO: almost dotted FFFOFFFO: long dashes
FFFFOFFO: long/short dashes FFFFF060: dash-dot

88888888: very faint FFFFO0660: dash-dot-dot

The Line Control word is used to determine whether to use the
foreground and/or background colors, and to Join multiple lines.

54

v

In the current embodiment, only four line control characteristics
are defined: suppress leading or trailing pixel, suppress foreg-

round or background color.
4.9.3 Character Attributes

A font organization has been chosen that usés one bit per pixel
bitmap. Character drawing is controlled in a manner similar to the
linestyle process. There is a character foreground and background
color as well as a character control word.

Conceptually, a character drawn by WGCHRBLT from the character
bitmap (one bit per pixel) onto the actual target bitmap. As each
bit is read from +the character bitmap, 1if the bit is set the
foreground color (pixel) is planted; if the bit is reset the
background color (pixel) is planted onto the target bitmap.

The character control word is used to determine whether to use
the foreground and/or background colors. For more details on

character attributes see Appendix A, section 1.4.

4.10 Access Methods

By way of defining the instructions, graphics practice reveals that

certain "favorite" operations are performed frequently, including:

0 reading or writing a pixel's value,
O moving a rectangular area of pixels around,

O drawing a line or series of connected line segments,

55

0223557

o filling an polygonal area with a pattern, and

o drawing a string of ASCII characters.

These operations comprise three major methods of drawing on a

display: pixels, figures, and characters.
4.10.1 Character Access Method

This method provide ways to plant text in a window. The Character

Block Transfer (WGCHRBLT) instruction allows for arbitrary font

specification.
4.10.2 Figure Access Method

Drawing a line is an important paft of technical computer graphics.
It is used in CAD/CAM packages, architectural design_packages, and
business graphics packages. Since this operation is performed so
often, special instructions are provided. Both continuous
(LINESEG) and incremental (BRESENHAM STEP) forms of line drawing
are included. Lines can be drawn closed, half-open, or fully open.

The actual algorithm must be reversible so as to make things such

as line erasure precise.

4.10.3 Pixel Access Method

This access method deals with individual pixels and rectangular

areas of them. It can serve as the foundation of higher-level

56

0223557

accessing methods, so that users can create their own display
manipulation instructions (for image manipulation, conic section
generation, etc). Read Pixel and Write Pixel operators allow
direct access to pixels. Although only these two operations are
strictly necessary to do the job, higher level operations are much
more common.

These are the 6nly drawing instructions that do not take a
combination rule specifier. They are intended as the simplest of
all building blocks. The model of use is one of many write opera-
tions to the same form in rapid sequence.

A Bit Block Transfer (often abbreviated 'BITBLT') operator is
a very useful pixel-level operator. It is essentially a rectan-
gular combination and assignment function. This is done especially
when scrolling windows, moving windows around, creating and des-
troying windows that obscure other windows. A special rectangular
£i1l operation is also useful for dealing with clearing screens and
repartitioning windows.

BITBLT is the only operation that takes two forms, since
certain restrictions are placed on source and target forms. Source

logical pixels will be padded or chopped to conform to the target

form's parameters.

4.11 Instruction Dictionary

All Graphics Instructions share a common instruction stream format.
The first 16-bit word of all such instructions is octal 107151

(hexadecimal BE69, Nova ADDOL# 2,0,SKP). The next two 16-bit words

57

0223557

hold a program counter-relative offset (non-indirectable), of =&
software emulator handler. The fourth 16-bit word contains a
small, unsigned integer sub-opcode that specifies the particular
function to be performed.

- G G A S e e S S e e G M e G e S G G G S e e S E e e e -

Primary) Secondary
GIS Opcode Displacement to Emulator Code Sub-opcode
107151 octal : for function

- ——— A o - " . G - G D D G e G S TR B R ER mE GRS R A A S

The instruction set i1s broken into two parts: privileged
(system) instructions, and non-privileged (user) instructions. The
following table 1lists +the mnemonic, brief description and the
decimal sub-code.

Privileged instructions:

WGLFORM (load form) 16 decimal sub-code
WGPFORMS (purge forms) 17
WGRDPAL (read palette) i8
WGWRPAL (write palette) 19

Non-privileged instructions:

WGRDPIXL (read pixel) 20
WGWRPIXL (write pixel) 21
WGRFLOOD (rectangle flood) 22
WGPLINE (poly line) 23

WGBITBLT (bit block transfer) 24
WGCHRBLT (character transfer) 25
WGRDATTR (read attributes) 26
WGWRATTR (write attributes) 27

See appendices A (non-privileged) and B (privileged) for detailed

descriptions of these instructions.

58

@

0223557

Appendix A: Non-privileged Graphics Instructions
This document describes the initial set of non-privileged or 'User'
GIS instructions as they will appear to a programmer using

graphics. Some basic rules of GIS II are:

o ACl always contains a Form ID. This 4s not only consistent
from the user's point of view but helps reduce microcode space
by allowing common coding.

O AC2 always contains a pointer to an instruction packet (4if
such a packet is defined). Again, this is consistent to the
user and helps reduce microcode space.

o AC3 is not used at all. This allows efficient invocation of
GIS 1I1 subroutines from high-level languages that use AC3 to
hold the frame pointer.

o Attributes (such as line style, foreground color, etc.), are
associated with the form and not with an individual
instruction. This means that attributes are no longer provi-
ded with WGPLINE, WGBITBLT, and WGCHRBLT packets, but are set
prior to issuing those instructions with the WGWRATTR
instruction. This 4s the way existing graphics applications
treat attributes. A benefit of this is that by restricting
attribute processing to a single 1nstruction: we further
reduce microcode space.

o All instructions that write to a FORM use the OPERATION MASK.
WGBITBLT and WGCHRBLT use the destination FORM's OPERATION

MASK only.

o A majority of the GIS 1II instructions should be able to

59

0223307

execute on a parallel graphics processor. This dictates that

no information is returned by these instructions.

A.l Attributes

A.1.1 Attribute Block

Attributes are stored in the Form Descriptor and are referenced by
an index number. Currently, all attributes are 32-bit quantities.

These attributes are set by the WGWRATTR instruction

Note: If an attribute 1in a Form Descriptor is
changed while a GIS instruction is operating on that

Form, the results are undefined.

Valid indices (and the attributes that they refer to) are:

0: GLOBAL OPERATION MASK
1: GLOBAL COMBINATION RULE
2: LINE CONTROL WORD

3: LINE FOREGROUND COLOR
4: LINE BACKGROUND COLOR
5: LINESTYLE

6: WGCHRBLT CONTROL WORD

60

0223557

7: WGCHRBLT FOREGROUND COLOR

8: WGCHRBLT BACKGROUND COLOR

A.1.2 Operation Mask and Combination Rule

The operation mask and éombination rule are attributes used to
specify how pixels are to be combined for any instruction that
writes to a FORM. These attributes are set by the WGWRATTR command.

In the context of a block transfer or WGPLINE instruction,
each bit in the source pixel VALUE is combined with the correspon-
ding bit in the destination pixel VALUE, to form the new destina-
tion pixel VALUE. A standard Boolean function is used to specify
the logical operation used for each bit position. This function is
called the COMBINATION RULE, or simply RULE.

The OPERATION MASK selects which pixel bits are modified by
the operation. A zero means "do not do anything to this bit,"
while a one means "operate on this bit using RULE."

The COMBINATION RULE is applied on a bit-by-bit basis to each
bit in the source pixel and destination pixel. The RULEs are

defined as follows:

Rule Bits
28 29 30 31
AN |
Number \ || / Action Interpretation
______________ e e m e c - — - - ———-———
0 0000 dest = O Clear destination bits
1 0001 dest = dest AND source -
2 0010 dest = source AND “dest -
3 0011 dest = source : * Move source to dest
4 0100 dest = dest AND “source -
5 0101 dest = dest ‘ ‘ s NOP R
6 0110 dest = dest XOR source Set if unequal

61

)

0223597

7 0111 dest = dest OR source Set pixels

8 1000 dest = “dest AND “source -

9 1001 dest = dest XNOR source Set if equal

10 1010 dest = “dest Complement dest bits
11 1011 dest = source OR “dest --

12 1100 dest = “source Move complemented

13 1101 dest = “source OR dest -

14 1110 dest = “(dest AND source) --

15 1111 dest = 1 Set destination bits
............. G o o o o o e e s e e e e e o - - —

Those RULEs with a dash in the interpretation column are seldom
used and have no particularly meaningful interpretation. (The
exclusive nor, XNOR, operation is also known as the equivalence,
EQV, operation.)

When any PIXEL i1is operated on, the following equations are
used to calculate the resulting destination PIXEL:

DEST_PIXEL := [OPERATION MASK AND (SOURCE_PIXEL RULE DEST_PIXEL)]
+ [TOPERATION_MASK AND DEST PIXEL]

The visible effect of applying a RULE during an instruction

depends on the assignment of COLORs to the VALUEs of the source and

destination pixels.
A.1.3 LINE Attributes

LINESTYLE together with the LINE CONTROL WORD are used +to give a
line a texture. LINESTYLE is a string of 32 bits that define a
pattern (solid, dotted, dashed, etc.). As WGPLINE draws each
pixel, it 1looks at each bit in the LINESTYLE, going from the most
significant bit (MSB) to the least significant bit (LSB). If the
selected LINESTYLE bit 4is 1 for a given pixel, then the pixel is

planted with the LINE FOREGROUND COLOR. 1f the selected LINESTYLE

62

O

0223057

bit is 0 for a given pixel, then the pixel is planted with the LINE
BACKGROUND COLOR. When the LSB of the LINESTYLE 1s reached, the
processor returﬁs to the MSB of the LINESTYLE. This process starts
at the first pixel of the the first line segment, to the last pixel
of the last line segment.

The LINE CONTROL WORD is used to suppress the FOREGROUND
and/or BACKGROUND colors when drawing a polyline. It is also used
to suppress the initial and/or final endpoint of the polyline.
Suppression of a pixel means that it will be left unaffected by the

instruction.

The structure of the LINE Control Word is:
Bit # Description

4] Draw the foreground pixels if clear.
Suppress the foreground pixels if set.

1 Draw the background pixels if clear.
Suppress the backgtround pixels if set.

2 Draw the initial point 1if clear.
Suppress the initial point if set.

3 Draw the final point if clear.
Suppress the final point if set.

4-31 Reserved for future use.
Must be set to zero.

Note: If the line being drawn is a single point,
i.e. all the endpoints of the polyline are the same
coordinate, the point is drawn only 1if bits 1 & 2 of

the LINE control word are both clear.

63

0223557

A.1.4 WGCHRBLT Attributes

The WGCHRBLT CONTROL WORD is used to suppress the FOREGROUND
and/or BACKGROUND colors when character plotting.
The structure of the WGCHRBLT Control Word is:
Bit # Description

0 Draw the foreground pixels if
clear. Suppress the foreg-
round pixels 1f set.

1 Draw the background pixels if
clear. Suppress the back-
ground pixels if set.

2-31 Reserved for future use. Must
be set to zero.

A.2 Traps and Interrupts

A.2.1 Unknown Instruction Trap

The GIS provides a mechanism for future expansion to include
instructions in addition to those listed here. If the processor
encounters a graphics instruction with an unknown sub-opcode or if
it cannot process the instruction for some other reason, it
performs an unknown-graphics-instruction trap. This trap makes the

processor perform an LPSHJ instruction function. Then, the undefi-

64

(223557

ned graphics instruction can be emulated by software, or some other
appropriate action can be taken. Return from software is by the
WPOPJ instruction.

Each GIS instruction has an emulator associated with it. The
address of this emulator is given as a PC-relative displacement in
the instruction itself (Bits 16-47).

In the event that the GIS instruction is implemented in
software instead of microcode, the processor pushes PC+4 on the
wide stack. Calculates the effective address of the emulator
routine. Loads the PC with the effective address. ' Continues

sequential operation at the word addressed by the updated PC.

A.2.2 Interrupts

All GIS instructions are interruptable and restartable, with
an interrupt latency of about 15 microseconds. When an interrupt
occurs, a GIS instruction saves their current state on the wide
stack, and takes the interrupt, storing the program counter value
for the currently executing GIS instruction in locations 2 and 3 of
segment O. Control passes to the address specified by location 1
of segment 0. Bit 2 (IRES) of the Processor Status Register (PSR)
is set to 1 when a GIS instruction is interrupted.

When interrupt service is complete, control passes back to the
GIS instruction, which pops the saved state off the wide stack and
continues with its execution. Bit 2 (IRES) of the Processor Status

Register (PSR) is cleared.

65

(223557

A.3 The Instruction Dictionary

A.3.1 WGRDPIXL ~-- Read Pixel Value

WGRDPIXL ([displacement to emulator]

Input
ACO:

ACl:

AC2:

Output
ACO:

ACl:

AC2:

Unused
Form ID

Address of a WGRDPIXL packet (X,Y)

Pixel value
Unchanged

Unchanged

Under the control of ACl, and AC2, reads the VALUE

associated

with the FORM specified by (X,Y) and returns that VALUE in ACO.

ACl contains

containing the pixel.

the key to the FORM DESCRIPTOR of the FORM

AC2 contains a pointer to the X and Y coordinates of the pixel

in the FORM.

Upon completion,

the contents of ACl1l, and AC2 are unchanged.

If the pixel with the given coordinates is in the specified FORM,

66

0223557

then ACO contains the pixel VALUE as a 32-bit number, right jus-
tified and zero extended; otherwise, ACO is unchanged.
DWord # Mnemonic Definition

1 PIXEL X A signed 32-bit integer for the
X-coordinate location.

2 PIXEL Y A signed 32-bit integer for the
Y-coordinate location.

A.3.2 WGWRPIXL -- Write Pixel Value

WGWRPIXL [displacement to emulator]

Input
ACO: Pixel value

ACl: Form ID

AC2: Address of a WGWRPIXL packet (X,Y)
Output

ACO: Unchanéed

ACl: Unchanged

AC2: Unchanged

Under the control of ACl, and AC2, writes the VALUE in ACO
into the pixel specified by (X,Y) of the associated FORM.

ACO contains the right-justified VALUE to be written into the

FORM.

ACl contains the key to the FORM DESCRIPTOR of the FORM

67

0223557

containing the pixel.

AC2 contains & pointer to the X and Y coordinates of the pixel
in the FORM.

This instruction uses the OPERATION MASK and COMBINATION RULE
when planting pixels.

After execution, the contents of the accumulators are
unchanged. This instruction has no effect if the pixel specif;ed
by (X,Y) lies outside the FORM, or if that pixel in the form 1is
write inhibited.

DWord # Mnemonic Definition

L - - ——— - - - ——

1 PIXEL X A signed 32-bit integer for the
X-coordinate location.

2 PIXEL Y A signed 32-bit integer for the
Y-coordinate location.

A.3.3 WGRFLOOD -- Flood a Rectangle

WGRFLOOD [displacement to emulator]

Input
ACO: Pixel value

ACl: Form ID

AC2: Address of a WGRFLOOD packet
Output

ACO: Unchanged

ACl: Unchanged

68

23537

NS

AC2: Unchanged

Under the control of ACl, and AC2, writes the VALUE in ACO
into a rectangular area of pixels in the associated FORM.

ACO contains the right-justified VALUE to be written into the
FORM. This is an nonnegative 32-bit integer.

ACl contains the key to <the FORM DESCRIPTOR of the FORM
containing the pixel(s).

AC2 contains a pointer to the packet describing the rectan-
gular area in the FORM.

This instruction uses the OPERATION MASK and COMBINATION RULE
when planting pixels.

After execution, the contents of the accumulators are
unchanged. This instruction has no effect on pixels lying outside
the FORM, or on pixels on the FORM that are write inhibited.

If either the X EXTENT or Y_EXTENT is set to zero, this

instruction has no effect.
DWord # Mnemonic Definition
1 D _ULC X A signed 32-bit integer for the
X-coordinate of the location of
the upper-left-hand corner of
the rectangle.

2 D ULC Y A signed 32-bit integer for the
Y-coordinate of the location of
the-upper-left-hand corner of
the rectangle.

3 X_EXTENT wWidth of the rectangle in pixels.

4 Y_EXTENT Height of the rectangle 1in
pixels.

69

0223557

A.3.4 WGPLINE ~- Draw a poly line

WGPLINE ([displacement to emulator]

Input

ACO: Number of lines to draw
ACl: Form ID

AC2: Address of a WGPLINE packet
Output

ACO: Unchanged

ACl: Unchanged

AC2: Unchanged

Draws one or more line segments between the endpoints speci-
fied in the WGPLINE packet with the current LINESTYLE. As WGPLINE
draws each pixel, it looks at each bit in the LINESTYLE, going from
the most significant bit (MSB) to the least significant bit (LSB).
If the selected LINESTYLE bit is 1 for a given pixel, then the
pixel 1is planted with the LINE FOREGROUND COLOR. If the selected
LINESTYLE bit is O for a given pixel, then the pixel is planted
with the LINE BACKGROUND COLOR. When the LSB of the LINESTYLE is
reached, the processor returns to the MSB of the LINESTYLE. This
process starts at the first pixel of the the first line segment, to
the last pixel of the last line segment.

ACO contains the number of line segments in the poly line

ACl contains the key to the FORM DESCRIPTOR of the FORM to

draw the line segments in.

70

0223597

AC2 contains a pointer to a packet containing coordinates of
two or more endpoints.

This instruction uses the OPERATION MASK and the COMBINATION
RULE when planting pixels.

After execution, the contents of the accumulators are
unchanged. This instruction has no effect on pixels lying outside

the FORM, or on pixels on the FORM that are write inhibited.

DWord # Mnemonic Definition
, 1 X1 A signed 32-bit integer for the
(:) X-coordinate of the location of

the first endpoint.

2 Yl A signed 32-bit integer for the
Y-coordinate of the location of
the first endpoint.

3 X2 A signed 32-bit integer for the
X-coordinate of the location of
the second endpoint.

4 Y2 A signed 32-bit integer for the
Y-coordinate of the location of
the second endpoint.

. X. .o
. .Y. .o
2n-1 Xn A signed 32-bit integer for the
X-coordinate of the location of
(:) the n-th endpoint.
2n Yn A signed 32-bit integer for the

Y-coordinate of the location of
the n-th endpoint.

A.3.5 WGBITBLT -- Bit Block Transfer

71

(223557

WGBITBLT {[displacement to emulator]

Input

ACO: Source form ID

ACl: Destination form ID

AC2: Address of a WGBITBLT packet
Output

ACO: Unchanged

AC1l: Unchanged

AC2: Unchanged

Moves a RECTANGLE (a rectangular area of pixels) from the
source PIXEL FORM to the destination PIXEL FORM, performing an
OPERATION as it moves the pixels. If the source and the destina-
tion FORM 1Ds are the same, the transfer is performed is such a way
that a pixel is copied before being written to.

ACO contains the key to the source FORM DESCRIPTOR.

ACl contains the key to the destination FORM DESCRIPTOR.

AC2 contains a pointer to the packet describing the rectan-
gular area in the source and destination FORM.

Upon completion, the contents of ACO, ACl, and AC2 are
unchanged.

A RECTANGLE is defined by a POINT specifying the upper
lefthand corner and the X and Y EXTENT of the rectangle within a
FORM. The RECTANGLE, then, is a list of 2 signed and 2 unsigned
32-bit integers. The X-coordinate is the first double word in the

list, the Y-coordinate is the second, the X EXTENT is the third,

72

(223057

and the Y EXTENT the fourth. The source RECTANGLE must be con-
tained within the source FORM and must fit inside the destination
FORM when moved. If it does not lie entirely within one of the
FORMs, the WGBITBLT instruction will cause the RECTANGLE to be
clipped so that it does fit in either FORM. This instruction will
not write to pixels on the FORM that are write inhibited.

If either the X EXTENT or Y_EXTENT is set to zero, this
instruction has no effect.

This instruction uses the OPERATION MASK and the COMBINATION
RULE when planting pixels.

No pixel will ever be taken from outside the source FORM, or

drawn outside the boundaries of the destination FORM.

DWord # Mnemonic Definition
1 D_ULC_X A signed 32-bit integer for the
X-coordinate of the location of
the upper-left-hand corner of
the destination rectangle.

2 D_ULC_Y A signed 32-bit integer for the
Y-coordinate of the location of
the upper-left-hand corner of
the destination rectangle.

3 X EXTENT Width of the rectangle in
pixels.

4 Y EXTENT Height of the rectangle in
pixels.

5 S_ULC_X A signed 32-bit integer for the

X-coordinate of the location of
the upper-left-hand corner of
the source rectangle.

6 S ULC Y A signed 32-bit integer for the
Y-coordinate of the location of
the upper-left-hand corner of
the source rectangle.

73

/\3

0223557

A.3.6 WGCHRBLT -~ Character Block Transfer

WGCHRBLT [displacement to emulator]

Input

ACO: Source Form ID

ACl: Destination Form ID

AC2: Address of a WGCHRBLT packet
Output

ACO: Unchanged

ACl: Unchanged

AC2: Unchanged

Copies a rectangular area of pixels from a 1l-bit per pixel
SOURCE FORM, expanding each pixel to a FOREGROUND COLOR or BACK-
GROUND COLOR, performing an OPERATION as it copies the pixels, in

accordance with the wvalues of the FOREGROUND SUPPRESS and BACK-
GROUND SUPPRESS flags.

Note: The SOURCE FORM must be 1-bit per pixel.

ACO contains the key to the FORM DESCRIPTOR of +the SOURCE
FORM.

ACl contains the key to the FORM DESCRIPTOR of the DESTINATION
FORM.

74

o

0223557

AC2 contains a pointer to the packet describing the rectan-
gular area in the source and destination FORM.

This instruction uses the OPERATION MASK and the COMBINATION
RULE when planting pixels.

I1f either the X_EXTENT or Y EXTENT is set to zero, this
instruction has no effect.

The source RECTANGLE must be contained within the source FORM
and must fit inside the destination FORM when moved. If it does
not 1lie entirely within one of the FORMs, the WGCHRBLT instruction
will cause the RECTANGLE to be clipped so that it does fit in
either FORM. This instruction will not write to pixels on the FORM
that are write inhibited.

If the source form is not 1-bit per pixel and not on a virtual
bitmap, an Invalid WGCHRBLT Source Fault will occur.

Upon completion, the accumulators are unchangead.

DWord # Mnemonic Definition
1 D_ULC X X coordinate of the location of
the upper left-hand corner of
the destination location for
the ‘'character’'.

2 D_ULC Y Y coordinate of the location of
the upper left-hand corner of
the destina tion location for
the 'character'.

3 X_EXTENT Width of the character to be
plotted in pixels.

4 Y EXTENT Height of the character to be
plotted in pixels.

5 S_ULC_X X coordinate of the location of
the upper left-hand corner of
the ‘'character’'.

6 S_ULC Y Y coordinate of the location of
the upper left-hand corner of

75

0223557

the ‘'character!'.

A.3.7 WGRDATTR -~ Read Attribute

WGRDATTR [displacement to emulator]

Input
ACO:

ACl:

AC2:

Output
ACO:

ACl:

AC2:

Attribute Index
Form ID

Address to store attribute

Unchanged
Unchanged

Unchanged

Reads an attribute indexed by ACO from +the FORM DESCRIPTOR

referenced by ACl and stores it at the address specified by AC2.

ACO contains the attribute index.

ACl contains the key to the FORM DESCRIPTOR.

AC2 contains a word pointer to store the attribute.

If the value in ACO is greater than 8, an Invalid Attribute

Index Fault will occur.

Refer to the chapter "ATTRIBUTES" for more information.

76

0223557

A.3.8 WGWRATTR -- Write Attribute

WGWRATTR [displacement to emulator]

Input
ACO: Attribute index
ACl: Form 1D
AC2: Address to read attribute from
Output
ACO: Unchanged
AC1: Unchanged
AC2: Unchanged
Writes an attribute indexed by ACO to the FORM DESCRIPTOR

referenced by ACl with the value at the address specified by AC2.

ACO contains the attribute index.

ACl contains the key to the FORM DESCRIPTOR.

ACZ contains a word pointer to read the attribute from.

If the value in ACO is greater than 8, an Invalid Attribute

Index Fault

will occur.

Refer to the chapter "ATTRIBUTES" for more information.

Appendix B: Privileged Graphics Instructions

77

0223557

B.4 Data Structures

B.4.1 Comments and Guarantees

The data structures described here constitute a contract
between operating systems and microcode for implementing GIS II.
This set of information is the sum total required by microcode from
operating systems.

An operating system can determine that GIS II microcode exists
on the system. If an operating system is only concerned with the
existence or non-existence of GIS II, it can attempt to issue a GIS
I1I instruction (WGPFORMS is fairly harmless). If the instruction
generates a UIT (Unimplemented Instruction Trap) or transfers
control to its error handler, the operating system can assume that
GIS 1II does not exist on the system. If the instruction executes,
the operating system can assume that GIS II does exist. If an
operating system 1is concerned with the level of GIS II support
(which instructions are supported, what level of optimization
exists, etc), there is currently no way to find this out.

The following guarantees can be made about these data

structures:

- they are always resident

~ they do not cross page boundaries

78

0223397

- they are aligned on a doubleword boundary

The maximum size of any data structure is one page.
Most of the addresses stored in these data structures are
physical addresses. This allows the microcode to follow linked

lists without having to translate logical addresses.

B.4.2 The Form Descriptor

A form is the object upon which all GIS operations are
performed. The Form Descriptor describes the form itself and
points to related databases (cursor descriptor and attributes).
The Form Descriptor is created in response to a user request.

Form Descriptor:

DWord # Mnemonic Description
1 LENGTH Unsigned 32-bit integer. The
length of the Form Descriptor in
words.
2 ATTR_BLK Unsigned 32-bit integer. Physical

address of the Attribute Block.

3 BR_ULC_X Signed 32-bit integer. Represents
the X coordinate of the upper-left-
corner of the bounding rectangle
with respect to the local origin of
the form.

4 BR_ULC Y Signed 32-bit integer. Represents
the Y coordinate of the upper-left-
corner of the bounding rectangle
with respect to the local origin of
the form.

79

®

10

11

12

13

14

15

16

17

18

BR_EXT_X

BR_EXT_Y

GBL_ULC_X

GBL_ULC_Y

LOC_ULC_X

LOC_ULC_Y

FLAGS

FORM_MASK

RECT_LIST

CURSOR_DESC

DEV_TYPE

P_BMAP_ADDR

P_X_PITCH

P_Y PITCH

80

0223557

Unsigned 32-bit integer. Width of
the bounding rectangle in pixels.

Unsigned 32-bit integer. Height of
the bounding rectangle in pixels.

Signed 32-bit integer. Represents
the X coordinate of the upper-left-
corner of the form with respect to
the origin of the physical bitmap.

Signed 32-bit integer. Represents
the Y coordinate of the upper-left-
corner of the form with respect to
the origin of the physical bitmap.

Signed 32-bit integer. Represents
the X coordinate of the upper-left-
corner of the form with respect to
the origin of the form.

Signed 32-bit integer. Represents
the Y coordinate of the upper-left-
corner of the form with respect to
the origin of the form.

Unsigned 32-bit integer. A set of

flag bits. The individual bits and
their interpretations are described
below.

Unsigned 32-bit integer. A set of
bits. The interpretation of these
bits is described below.

Unsigned 32-bit integer. Physical
address of a Rectangle Descriptor.

Unsigned 32-bit integer. Physical
address of a Cursor Descriptor.

Unsigned 32-bit integer. Device
type of the physical bitmap.

Unsigned 32-bit integer. Microcode
ID for the wvideo board.

Unsigned 32-bit integer. Number of
bits per pixel for the physical
bitmap. This number must be within
the limits 1 <= X <= 32.

Unsigned 32-~bit integer. Number of
pixels per line for the physical

0223557

bitmap. This number must be a
power of two.

19 P_LOG2_XPITCH Unsigned 32-bit integer. The log
(to the base two) of the X pitch of
the physical bitmap.

20 P_LOG2_YPITCH Unsigned 32-bit integer. The log
(to the base two) of the Y pitch of
the physical bitmap.

21 V_BMAP_ADDR Unsigned 32-bit integer. Logical

address of the start of the virtual
bitmap memory.

22 V_X PITCH Unsigned 32-bit integer. Number of
bits per pixel for the virtual
bitmap. This number must be within
the limits 1 <= X <= 32.

23 V_Y PITCH Unsigned 32-bit integer. Number of
pixels per line for the virtual
bitmap. This number must be a
power of two.

24 V_LOG2_XPITCH Unsigned 32-bit integer. The log
(to the base two) of the X pitch of
the virtual bitmap.

25 V_LOG2_YPITCH Unsigned 32-bit integer. The log
(to the base two) of the Y pitch of
the virtual bitmap.

The Bounding Rectangle encompasses all rectangles on the
rectangle 1list for the form. The ULC of the bounding rectangle is
equal to the ULC of the uppermost, lefthand rectangle in the
rectangle 1list. The extents of the bounding rectangle are the sum
of the extents of the rectangles in the rectangle. list. Tiling a
form with rectangles is described in the next section.

The flag bits currently defined in the FLAGS field of the
Forms Descriptor are:

Bit # Description

0 If set, the rectangle list contains one or more

81

(M

02233557

rectangles on the physical bitmap. If clear,
no rectangles in the rectangle list are on the
physical bitmap.

1 If set, the rectangle list contains one or more
rectangles on the virtual bitmap. If clear,
no rectangles in the rectangle list are on the
virtual bitmap.

2 If set, the rectangle list contains one or more
rectangles that are not on either the virtual
bitmap or the physical bitmap. If clear, all
rectangles in the rectangle list are on either
the virtual bitmap or the physical bitmap.

3 I1f set, the rectangle list contains one or more
write-inhibited rectangle. If clear, none of
the rectangles in the rectangle list are write-
inhibited.

4 If set, the rectangle list consists of a single

rectangle. If clear, there are multiple rectangles
in the rectangle list.

5 If set, the palette index supplied on a WGWRPAL
(Write Palette) instruction is replicated from
one byte to three bytes if the palette is on a
24 bit/pixel bitmap.

6-31 Reserved for future use. These bits should
be zero, but the microcode will perform no
validation.

The Form Mask defines the pixel depth of the bitmaps associ-
ated with a form. For a bitmap with "n" bits per pixel, the
low-order "n" bits of the Form Mask are set to one. The remaining
bits in the Form Mask are set to zero. When performing a GIS
instruction, the Form Mask is ANDed with the Operation Mask
(contained in the Attribute Block) to produce a mask that determi-
nes which bits within a pixel should be operated upon.

The ULC of the virtual bitmap always corresponds to the ULC of
the form, regardless of the local coordinate system established for
the form.

82

O

0223557

If the form has only a physical bitmap associated with it, the
virtual bitmap portion of the Form Descriptor will be filled with
zeros. An "empty" bitmap description will never be used by micro-
code so long as no rectangles on the form's rectangle list refer to
the non-existent bitmap. 1I1f a rectangle does refer to a non-
existant bitmap, the results are undefined. Microcode will proba-
bly trap.

If a GIS 11 instruction is in progress on a particular Form

Descriptor, only the following information can be safely altered:

1) Global ULC
2) Local ULC
3) The rectangle bits in the FLAGS

4) The rectangle list

Changing any other information will produce undefined results.

B.4.3 The Attribute Block

Values such as foreground color and line style are stored in
the Attribute Block. Initially, the Attribute Block is filled with
a set of default values. All of these values can be examined by
the user with the WGRDATTR (Read Attribute) instruction and altered
with with the WGWRATTR (Write Attribute) instruction. The Attri-

bute Block is created when a Form Descriptor is created.

83

TN
\

Attribute Block:

- - ———

10

Mnemonic

LENGTH

OP_MASK

COMBO_RULE

LINE_CTRL

LINE_F_COLOR

LINE B_COLOR

LINE STYLE

CHAR_CTRL

CHAR_F_COLOR

CHAR_B_COLOR

84

0223557

Description

- =

Unsigned 32-bit integer. The
length of the Attribute Block
in words.

Unsigned 32-bit integer. A mask
that determines which bits within
a pixel will be affected by a GIS
operation.

Unsigned 32-bit integer. Specifies
one of 16 boolean functions to be
applied during a GIS operation.

Unsigned 32-bit integer. A set of
flag bits that govern the drawing
of lines. The individual bits and
their interpretations are described
below.

Unsigned 32-bit integer. Pixel
value of the foreground color used
when drawing lines.

Unsigned 32-bit integer. Pixel
value of the background color used
when drawing lines.

Unsigned 32-bit integer. A set of
bits that determines the texture of
any lines that are drawn. Bits
that are set indicate that a fore~
ground color pixel should be plant-
ed. Bits that are clear indicate
that a background color pixel
should be planted.

Unsigned 32-bit integer. A set of
flag bits that govern the drawing
of characters. The individual bits
and their interpretations are
described below.

Unsigned 32-bit integer. Pixel
value of the foreground color used
when drawing characters.

Unsigned 32-bit integer. Pixel
value of the background color used

0223557

when drawing characters.

The flag bits currently defined in the LINE_CTRL field of the

Forms Descriptor are:

4-31

The

Description

Draw the foreground pixels if clear. Suppress
the foreground pixels if set.

Draw the background pixels if clear. Suppress
the background pixels if set.

Draw the initial point if clear. Suppress the
initial point if set.

Draw the final point if clear. Suppress the
final point if set.

Reserved for future use. These bits should

be zero, but the microcode will perform no
validation.

flag bits currently defined in the CHAR_CTRL field of the

Forms Descriptor are:

Description

Draw the foreground pixels if clear. Suppress
the foreground pixels if set.

Draw the background pixels if clear. Suppress
the background pixels if set.

Reserved for future use. These bits should

be zero, but the microcode will perform no
validation.

85

0223557

B.4.4 The Rectangle Descriptor

Although the user perceives a form as a unit, in reality the
form may be divided into multiple pieces. For convenience, each
piece is a rectangle. A Rectangle Descriptor describes one of the
set of rectangles that make up a form. A rectangle can reside
entirely on the physical bitmap, entirely on the virtual bitmap, or
on neither bitmap.

The collection of rectangles that make up an entire form is
called a "tiling" of that form. Certain constraints are placed on
a tiling. Rectangles may not overlap, must completely tile the
bounding rectangle for the form, and may not lie outside of the
form. If either of these conditions are violated, undefined
results will occur.

Rectangle Descriptor:

DWord # Mnemonic Description

1 NEXT Unsigned 32-bit integer. Physical
address of the next Rectangle
Descriptor in the list or minus one.

2 FLAGS Unsigned 32-bit integer. A set of
flag bits. The individual bits and
their interpretations are described
below.

3 ULC X Signed 32-bit integer. Represents
the X coordinate of the upper-left-
corner of the rectangle with respect
to the origin of the form.

4 ULC_Y Signed 32-bit integer. Represents
the Y coordinate of the upper-left-
corner of the rectangle with respect
to the origin of the form.

86

0223597

5 EXT_X Unsigned 32-bit integer. Width of
the rectangle in pixels.

6 EXT_Y Unsigned 32-bit integer. Height of
the rectangle in pixels.

The flag bits currently defined in the FLAGS field of the
Rectangle Descriptor are:

Bit # Description

] If set, the rectangle is on the physical bitmap.
1 If set, the rectangle is on the virtual bitmap.
2 If set, the rectangle is not on any bitmap.
3 If set, the rectangle is write-inhibited.

4-31 Reserved for future use. These bits should

be zero, but the microcode will perform no
validation.

Bits #0, #1, and #2 are mutually exclusive. Exactly one bit

can be set.

B.4.5 The Cursor Descriptor

A cursor is some pattern that is drawn on the bitmap screen to
represent the position of a pointing device.

There are two different types of cursors. The first type is
an image, such as an arrow. This cursor is defined by the rectan-
gle that contains the visible portion of the image. The second

type of cursor is a cross-hair. This cursor 1is defined by the

87

0223557

endpoints of the horizontal and vertical 1lines that form the
cross-hair. In the case of a full-screen cross-hair, the horizon-
tal and vertical lines always span the entire width and height
(respectively) of <the bitmap screen. The endpoints of a full-
screen cross-hair are always on the edge of the bitmap screen. In
the case of a cross-hair that is simply very large, the cross-hair
may be clipped to the edge of the bitmap screen. The endpoints of
a large cross-hair define the visible portion of the cross-hair.

For each of these two types of cursors, there 1s a different
descriptor. The first doubleword of the Cursor Descriptor,
however, remains the same in all cases. This is the Flags word,
which contains bits that determine the format of the descriptor
that follows.

The Cursor Descriptor is used by the microcode to determine 1f
a given GIS operation could intersect the cursor. If no intersec-
tion is possible, microcode can perform the GIS operation directly.
If an intersection could occur, microcode must ask the operating
system +to erase the cursor before +the GIS operation can be
performed.

Microcode must access the Cursor Descriptor in two stages.
The first access retrieves the Flags word. If the cursor is
invisible, microcode must not attempt to access the rest of the
descriptor. If the cursor is visible, microcode reads in the rest
of the descriptor based on the type of cursor.

When a Cursor Descriptor changes, all forms that refer to that

descriptor must be purged from the Form Cache prior to the change.

Image Descriptor:

88

DWord # Mnemonic
1l FLAGS
2 ULC_X
3 ULC_Y
4 EXTENT_X
5 EXTENT Y

Cross-hair Descriptor:

ora ¥ rnenonse
1 FLAGS
2 H_START_ X
3 H_START Y
4 H_END X

89

0223557

Description

Unsigned 32-bit integer. A set of

flag bits. The individual bits and
their interpretations are described
below.

Signed 32-bit integer. Represents
the X coordinate of the upper-left-
corner of the rectangle with re-
spect to the origin of the physical
bitmap. .

Signed 32-bit integer. Represents
the Y coordinate of the upper-left-
corner of the rectangle with re-
spect to the origin of the physical
bitmap.

Unsigned 32-bit integer. Width of
the rectangle in pixels.

Unsigned 32-bit integer. Height of
the rectangle in pixels.

Description

Unsigned 32-bit integer. A set of
flag bits. The individual bits and
their interpretations are described
below.

Signed 32-bit integer. Represents
the X coordinate of the left
endpoint of the horizontal line
with respect to the origin of the
physical bitmap.

Signed 32-bit integer. Represents
the Y coordinate of the left
endpoint of the horizontal line
with respect to the origin of the
physical bitmap.

Signed 32-bit integer. Represents
the X coordinate of the right end-
point of the horizontal line with
respect to the origin of the phys-
ical bitmap.

5 H_END_Y
6 V_START_X
7 V_START_Y
8 V_END_X
9 V_END_Y

0223007

Signed 32-bit integer. Represents
the Y coordinate of the right end-
point of the horizontal line with
respect to the origin of the phys-
ical bitmap.

Signed 32-bit integer. Represents
the X coordinate of the top
endpoint of the vertical line with
respect to the origin of the phys-
ical bitmap.

Signed 32-bit integer. Represents
the Y coordinate of the top
endpoint of the vertical line with
respect to the origin of the phys-
ical bitmap.

Signed 32-bit integer. Represents
the X coordinate of the bottom end-
point of the vertical line with re-
spect to the origin of the physical
bitmap.

Signed 32-bit integer. Represents
the Y coordinate of the bottom end-
point of the vertical line with re-
spect to the origin of the physical
bitmap.

The flag bits currently defined in the FLAGS field of the

Cursor Descriptor are:

Bit # Description
0 If set, the cursor is visible. If clear,
the cursor is invisible.
1 If set, the cursor is an image cursor.
2 If set, the cursor is a cross-hair cursor.
3-31 Reserved for future use. These bits should

be zero, but the microcode will perform no

validation.

Only one of the cursor type bits may be set at any one time.

90

0223557

Setting both of these bits will produce undefined results.
B.5 The Form Cache

In order for a GIS 1I instruction to Operate on a form, the target
form must be loaded into the Form Cache. I1f the target form is not
in the Form Cache, microcode will generate a "Form Cache Miss"
fault (GIS Il faults are described in more detail later). The
operating system controls access to forms by loading or not loading
a particular form into the Form Cache in response to a "Form Cache
Miss" fault.

A form is uniquely identified in the Form Cache by a cache tag
consisting of the address of the Form Descriptor and two keys. The
first key is the user's form 1ID. This is the number that is
supplied on a GIS II instruction. The second key is some process-
specific number chosen by the operating system. For MV-class
machines, this number is the contents of the Segment Base Register
(SBR) for the ring on whose behalf the form was loaded into the
Form Cache. This is not only process-specific but ring-specific, a
fact that allows ring maximization on forms. For other
architectures, some other value may be appropriate.

A Form Cache entry, therefore, looks like this:

o 31
e ke Rk L PR + \

| User's Key I\
i T T T papRp + > Cache tag
| Operating System's Key | //
e T T +

| Form Descriptor Address |
e T NP +

91

@

0223557

To determine if the form required by a particular GIS 1I
instruction is in the Form Cache, microcode obtains the user's form
ID and the operating system's key and searches the Form Cache for a
cache tag containing those values. If a tag is found whose
contents match both keys, the GIS II instruction continues, using
the form pointed +to by the Form Descriptor address. If no match
can be found, the microcode faults to the operating system.

It should be noted that microcode will only check +the opera-
ting system's key if.the GIS II instruction was issued from Rings
One to Seven. If a GIS II instruction is issued from Ring Zero,
the microcode will only search the Form Cache for a tag that
contains the given form ID.

While processing of a GIS II instruction, any forms in the

Form Cache that are unused by the instruction may be purged.

B.6 Privileged Instruction Dictionary

The following instructions are privileged instructions that

may only be issued from Ring Zero.

B.6.1 WGLFORM -~ Load the Form Cache

Performs an unconditional load of the form specified by AC2

into the Form Cache. If the form being loaded exists in the cache

92

0223557

already, the version in the cache is overwritten. The cache tag

assoclated with the form is built from ACO and ACl.

WGLFORM [displacement to error handler]

Input

ACO: Operating System's Key

ACl: User's Form 1D
~ AC2: Physical address of the Form Descriptor
O

Output

ACO: Unchanged

ACl: Unchanged

AC2: Unchanged

B.6.2 WGPFORMS -- Purge the Form Cache

<:>" Purges either a selected form from the Form Cache or all forms
in the Form Cache. A cache tag is built from ACO and ACl if only a

single form is being purged.

WGPFORMS [displacement to error handler]

ACO: One of the following:

- Zero. Purge the form specified by AC1l from
the Form Cache.

93

0223557

- Non-zero. Purge all entries in the Form Cache.
AC1: One of the following:

- Unused if ACO is non-zero.

- User's Form ID if ACO is zero.

AC2: Unused

ACO: Unchanged
ACl: Unchanged

AC2: Unchanged

B.6.3 WGRDPAL -~ Read Palette

Reads an entry from the palette specified by ACl1 4into the
packet specified by AC2. The palette entry to read is specified by
ACO. The values read from the palette may not be the values

originally written to the palette.

WGRDPAL [displacement to error handler]

Input

ACO: Palette index

ACl: Microcode ID for video board

AC2: Logical address of a palette entry packet
Output

94

ACO: Unchanged
ACl: Unchanged
AC2: Unchanged

Palette Entry Packet:

DWord # Mnemonic
1 RED_PO
O
2 GREEN_PO
3 BLUE_PO
4 GREY_PO
5 RED_P1
6 GREEN_P1
:: 7 BLUE_P1
8 GREY_P1

95

0223557

Description

Unsigned 32-bit integer. Red
color intensity for phase zero
of the blink clock.

Unsigned 32-bit integer. Green
color intensity for phase zero
of the blink clock.

Unsigned 32-bit integer. Blue
color intensity for phase zero
of the blink clock.

Unsigned 32-bit integer. Grey
level for phase zero of the blink
clock.

Unsigned 32-bit integer. Red
color intensity for phase one
of the blink clock.

Unsigned 32-bit integer. Green
color intensity for phase one
of the blink clock.

Unsigned 32-bit integer. Blue
color intensity for phase one
of the blink clock.

Unsigned 32-bit integer. Grey
level for phase one of the blink
clock.

0223557

B.6.4 WGWRPAL -- Write Palette

Writes an entry into the palette specified by ACl from the

packet specified by AC2. The palette entry to write is specified

by ACO.

WGWRPAL [displacement to error handler]
(ﬂ\ Input

ACO: Palette index

ACl: Microcode ID for video board

AC2: Logical address of a palette entry packet

Output

ACO: Unchanged

ACl: Unchanged

AC2: Unchanged
C B.7 Faults Under GIS II

B.7.1 The Structure of the Current Fault World

96

0223557

The structure of a fault context block for any processor other

than an MV/6000 or an MV/8000 is:

0 31
e Tt S g ey g g +
| Program Status Word |
o ——————— +
| ACO on Fault |
et T +
| ACl on Fault |
e T ————— +
| AC2 on Fault |
o e ————— +
| AC3 on Fault |
ot — e ———————— +
| Carry and PC on Fault |
Fm e ———— +
| ‘Next Ring of Execution (in bits 0-2) |
e Tt TR R +
| Logical Word Address Causing Fault |
e ettt PSSPy U RN +

The following AC values are passed to the operating system on

a fault:
ACO: Undefined
ACl: Fault code
AC2: Undefined
AC3: Undefined

B.7.2 The Structure of the GIS Il Fault World

The structure of a GIS 11 fault context block is:

RS

0223507

| Program Status Word |
et +
| User's ACO |
e T +
| User's AC1 |
i e T PP +
| User's AC2 |
e e —c e —————————— +
| User's AC3 |
B T L T T T, +
| Carry and PC on Fault |
e — e — e ————————— - —————— +
| Next Ring of Execution (in bits 0-2) |
e e T TP PP +
| Block State |
e T +
| Value Causing Fault |
o et mm e m et —————— +
| Restart Value |
et T T —— +

The following AC values are passed to the operating system on

a GIS II fault:

ACO: Undefined

ACl: Fault code
AC2: Undefined
AC3: Undefined

When a GIS II fault occurs, the "Restart Value" field of the
context block contains a zero. If this field remains unchanged
when the operating system resumes the fault (via WDPOP), the
microcode will continue the faulting instruction. 1I1f, however, the
operating system stores some non-zero value in the "Restart Value"
field prior to resuming the fault, the microcode will stop proces-

sing the faulting instruction and begin execution of the next

sequential instruction.

98

0223557

B.7.3 Fault Codes

The fault codes currently defined are:

Fault
Code Fault Type

Multiple ERCC Fault

0

1 Page Table Depth Fault
2 Page Table Page Fault
4

Normal Object Reference Fault

The GIS II fault codes are:

Fault Contents of
Code Fault Type "Value Causing Fault"
5 Form Cache Miss The ID of the form that was
not found in the Form Cache.
6 Cursor Intersect The Form ID supplied on the
. GIS instruction.
7 Unknown Attribute The Form ID supplied on the
Index WGRDATTR or WGWRATTR
instruction.
8 Invalid WGCHRBLT Undefined.
Source

9-12 [Reserved for future use]

The "Unknown Attribute 1Index" and "Invalid WGCHRBLT Source"
faults can only be taken at the start of a GIS instruction. Once
the microcode begins performing the GIS instruction, these faults

are invalid.

99

0223557

The "Form Cache Miss" and "Cursor Intersect" faults may be
taken at any time,

None of these faults should be generated at interrupt level.
It is guaranteed that the Form Cache will always be capable of
containing the source form and destination form. It is Software's
responsibility to load the cache with the correct forms in order to

prevent faults when running at interrupt level.

B.7.4 Fault Dictionary

This dictionary gives the situation in which each GIS 11 fault
is taken and the actions that the operating system performs to
service the fault. In all cases, the microcode will generate these
faults using the existing page fault mechanism. Microcode state
will be stored in the GIS II fault context block described above.

The WDPOP instruction will be used to resume from these faults.

B.7.4.1 Form Cache Miss

This fault is generated if the Form ID given on a particular
GIS instruction could not be found in the Form Cache.

The fault/service/resume procedure is:

1) Microcode faults to the operating system with the user's Form

ID in the "Value Causing Fault" field of the context block.

100

0223297

2) The operating system searches for the specified form in its
internal databases.

3) 1f no form is found, the operating system traps the process
using the same mechanism as an "Inward Address Trap". The
trap code will be "Invalid Form ID Trap".

4) 1f a form {is found, the operating system issues an WGLFORM
instruction to load the Form Descriptor.

5) The operating system passes control back to the microcode with

a WDPOP instruction.

B.7.4.2 Cursor Intersect

This fault is generated if a particular GIS instruction could

corrupt the cursor.

The fault/service/resume procedure is:

1) Microcode faults to the operating system with the user's Form
ID in the "Value Causing Fault" field of the context block.

2) The operating system erases the cursor assoclated with the

specified form.

3) The operating system passes control back to the microcode with

a WDPOP instruction.

101

N
)

0223557

B.7.4.3 Unknown Attribute Index

This fault is generated if the attribute index provided on a

WGRDATTR or WGWRATTR instruction falls outside of the Form

Descriptor's attribute block.

1)

2)

3)

The fault/service/resume procedure is:

Microcode faults to the operating system with the user's Form
ID in the "Value Causing Fault; field of the context block.

If the Attribute Index specified by the user does not refer to
a valid "soft" attribute, the operating system traps the
process.

If the Attribute Index specified by the user refers to a valid
"soft" attribute, the operating system sets the "Restart
vValue" field of the context block to some non-zero value and

passes control back to the microcode with a WDPOP instruction.

B.7.4.4 Invalid WGCHRBLT Source

This fault is generated if the source form given on a WGCHRBLT

instruction does not meet the following restrictions:

102

1)

2)

1)

2)

0223557

The rectangle list consists of a single rectangle on the

virtual bitmap.

The virtual bitmap is 1 bit/pixel deep.

The fault/service/resume procedure is:

Microcode faults to the operating with nothing in the "value
Causing Fault" field of the context block.

The operating system traps the process.

— 102~

0223557

-104-

CLAIMS:

1. A digital computer system, comprising main memory means
(102) for storing instructions and data; processing means (101)
for performing operations on data in response to the instructions;
and display means for displaying representations of data;
characterised in that the system controls the displays by the
steps of:

a) storing in the main memory means (102) logical form
descriptors for describing organization of data to be displayed;
b) storing in the main memory means (102) instructions for

specifying first data and for specifying representations of
first data which are to be displayed, and for describing the
position within the organization described by the logical form
descriptors at which the representation of the first data are
to be displayed;

c) storing in the main memory means (102) form descriptor
identifiers for representation of logical form descriptors;

d) storing in the main memory means (102) operating system
keys for representation of users of the digital computer system;
e) selecting an instruction and a form identifier;

f) calculating, using the processing means (101), second

data using the operating system key representing the user of the
digital computer system and the matching form identifier, the
second data being the form descriptor;

g) calculating, in the processing means (101), third data
which is a function of the selected instruction, the second data,
and certain first data specified by the selected instruction,

the third data being a representation of what is to be displayed;
and

h) forwarding the third data to the display means for
representation of this data to be displayed.

1/13

Neu eingereicht / Newly filed
Nouvellement déposé U 2 2 3 5 5 7
1/0 BUS 105
/

170 1/0
CONTROLLER DEVICES

COMM | COMM),)

LINES CONTROLLER / 108 109

107___| 106 /
1/0 1/0
CONTROLLER DEVICES
OLESSOR | OTHER
CONTROLLER [—— ﬁ?OCESSORS
k||o
MEMORY BUS 103 —~
SYSTEM cpPU
CONSOLE |
VIDEO
MEMORY RAMS
102 =
USER
TERMINAL(S)
OTHER
PROCESSORS
N

F'G l PRIOR ART

\INTERPROCESSOR
BUS 12

I,

el wly filed 2/13
5 eingereicht | N€
Ne Nouvellement dépose O 2 2 3 5 5 7
ROTATE
—N anp
4 MERGE
205
PHASE @/
PHASE |
PALETTE
REGISTERS
ROWFXR 204
3
— MEMORY }——RE ~orwRre| VIDEO VIDEO
g%ﬁ;‘?gﬁg BITS| BUS DATA MEMORY SHIFTER
INTERFACE T/Js\
ADDRESSES ADDRESSES v
— u3 203
PAD <0,1>
202 P| ON/OFF
|_\ PALETTE
MULTI-
L MICRO- L/ PLEXOR
PROCESSOR
AND 4)
PALs ROWXER 207
J\ e
CONTROL
———>'/ 208 GN
RA,RAAK '
VIDEQ
OUTPUT
| DAC _——_:_VJ\
/ GREEN
208

FIG. 2

0223557

3/13

Neu eingereicht / Newly filed

Nouvellement déposé

W3LSAS Av1dSIid O3AIA 9NISS3204d vivd

14Vv ¥014d m G_n_

§01 sng AHOW3W
<
‘8'a '8°a ‘a'd
SINVNA Avigsial lawvdsial [Avadsia
—_ awasial |avidsial javidsia
0c¢e wowlo| [vooo| |voeo
p2e 3OV4HILNI 300934
03alA nY NOILONELSNI
- s HOW MOGNIM| o bioiays
N\
MS MS 60 | ms |£0F 10€
y3sn| " "lu3sn|" " " |y3sn avd HILVHIS
201 AHOW3W TOI NdD

AVd4SIa O3AIA

ou eingereicht / Newly filed
N Nougenement dépose

4/13

I/% DEVICES 109

COMM.LINES 107

L

0223557

FIG. 4 overview

INTEGRATED
I/0 AND
CPU SYSTEM CONSOLE SYSTEM
ol PROCESSOR CONSOLE 104
101 (ISC) 402
~LMB BUS 403
_—MEMORY BUS 405
MEMORY CONTROL VIDEO
AND MEMORY CONTROL
T-BUS INTERFACE 102 UNIT
(MCU) 401 == 406
VIDEO —
EXPANSION VIDEO —
ONIT RAMS | I
407 3 r—
I-BITS 404
MCU MCU
401 40l
[| 8 | T 1
PROCESSORS
' ' N ¥ ¥
[LIN) [] 1
LMB MEMORY LMB MEMORY
BYs BYS BUS BUS
403 405 403

Neu eingereicht / Newly filed 5/13
Nouvellement déposé / O 2 2 3 5 5 7

2 MEGABYTES MAIN MEMORY
512K X 39 102
- A ERCC DRAM
h—-ﬁ DAT /
/
S68 ADDRESS RAS/CAS/WE
9 18
566 567
/
18
TIMINGCNTRL
~~565 T
/ 564
 § i /|8
563
RAS/CAS/WE RAS/RAS/WE / 204
|
/ CMOS MEM BIPOLAR MEM, Q Vi
INTR
7a G.A. 561 G.A. 562 720
TA/ADDR CNTRL ADDR MEM EACC CNTRL - >
') controL [®°
4
//39 //IB Ais 39 A7 //8
4 y . bl
=2 AVERV /
/ A24 A DATA
555 556 | 567 | see | 569 4>ADDR
)
570 554
18US LTCH
553/ > ‘] //32
s /’32

779 MEM BUS

va= 4 20

, LMB BUS 203
732

F'G. 5 MCU 40I

552

0223557

6/13

Neu eingereicht / Newly filed

Nouvellement déposé

N33X0S

©)

i

MIIAYIA0 TYNOILINNS SIIHIYHO m .mu_h_

rrrrerrrr

°1¢)

<

i

SZWZO0OQ@> MDD

Il

Pai ~ 1 ouvosA3x
cig” | 3SNOW IE:)
m_m/ .PV o_w/ u/v
IOV ILNI 30VINILINI A
609 809 209
~F 4 .
39VY¥0lS H0SS300ud mzo_._.qom_umwwmww
3L13Vd OHOIW,
HOSSIDONHILNI
_ mom/
|
ONINIL | AMLINDNID
[ONILYINGINYI
378vl 39v1S ST viva
OVa | woon [03349 [—] ANOWaW
H010) HOIH 03dIA AYLINDYID
4 ONIddVIN
909 mom\ 09 / _ul SS38aqv

209

C 109 0uv08 ¥0SS3708d SIIHAVHED

<iL

)

(=

(—

c0l

1304
SN8 81

iov

NOW

Ch

34iva 03dIA
AHOWIN W3 LSAS

0223557

7/13

filed

gereicht / Newly
Nouvellement dépose

Neu ein

FO >—0W0 =0z—-FHOX

anng

43LY3ANOD
907VNY
Ol-Tvlold

N3349

(378v1 dN-%007)
31137vd
40702

a3y
G09

SHOX31dILINN ONVY
SHILSI93Y LAIHS
Q33dS-HOIH

¥09

el

\

SWvyd
03aiA

118 %96¢
14°)

00N MOT4 viva I3XId &l .O_h_

S1i8 2gx8

1 4PA

)

SHYOSS3004d
viva

SJIHdVYO
8

SOov

>\

sligce

Swsomr> MmOW

3

Neu eingereicht / Newly filed
Nougellement déposé 8/13 0223557
\
BACKGROUND 8IS 815 fronTBITMAP 816
REGISTER - O (SOCNTO 6 INMAIN MEMORY
lhood1 101 —» 0 0 1 0 o}—»MEMORY
ADDEDBY | (YELLOW) O@O@®O ([o1 01 0] Busa0s
RAPHI
DATA > { FOREGROUND QOOO@—*t 00 0 |
PROCESSORS | REGISTER 00000 R
horiioio —@OOO@® | 000 |
(RED) \\8is
MEMORY BUS 205
o - s s+« + .« 26 272829303

XXX XXXXXXXXXXXXXXXXXXXXXXX O O 1 OO

!

0O -« « « . . 26 27 2829 30 3| 817
00000000000000000000000000 | | 1 | 1]
MASK REGISTER IN EACH GRAPHICS DATA PROCE SSOR
GDP INPUT: l
5CHARACTER FONT BIT 00100
\ 817
]
MASK MASK MASK MA$K MASK SK ASK MAS
'—.‘_J l_'_.l
GDP GDP GDP GDP GDP GDP GDP GDP
A | 8 c D E F G H
FORE[1] | |FORE[O] | |FORe[1] | |FORE[T]
BACK[1] | | Back[0] | |Back([Q] | |Back[O]
| o} o} 0
| o} o} o}
I 0 I I
I 0 o} 0
| 0 o 0
t JoloToTiT1TOTt }——» YELLOW PIXEL
1fololol 1ol i —— YELLOW PIXEL
GDP OUTPUT: ol T Tol [ob—— RED PIXEL
5 PIXELS I {o[olo v 11 [o] > YELLOW PIXEL
1lolololitilo]t -» YELLOW PIXEL

F'G. 8 PLANE MODE DATA FLOW

0223557

9/13

XA

WVHOVIQ MD0718 W3LSAS viva AvIdSId ONIMOONIM m .o_&

AV1d4SIa Q¥V08 ¥0SS320Y8d SJOIHdVY9

30vd
-43LNI

03dIA

ell

SKVYA

109

/

SOt SN8 W3IW

iov
Now

gov
sng
W1

éposé

Neu eingereicht / Newly filed
Nouvellement d

34VYML40S HOW MOGNIM
s3sva viva
34YML130S W3LSAS

10¢

MS
y3sn

60¢ 10¢

MS MS
g3sn g3sn

201 A¥O

W3W

Neu eingereicht / Newly filed 10/13
Nouvellement déposé
1007 1024 WIDE
BITMAP ————=> A——— ——— . rla
POINTER .
! 1003_ 250 WIDE _|004 U screen
: E===3""F i 1001
500 | 150 | 1008 | }
l t %007 ,
i G— === - H | 1002
i 1005 1006 |
| 1
Cmmmm — e D
A: GLOBAL 0,0
B: GLOBAL 1023,0
C: GLOBAL 0,499
D: GLOBAL 1023, 449
E: GLOBAL 100,200 = LOCAL 0,0
F: GLOBAL 349,200 = LOCAL 249,0
G: GLOBAL 100,349 = LOCAL 0,149
H: GLOBAL 349,349 = LOCAL 249,149
FIG. 10 cooroinate conversion
WINDOW A 1202
L1209
1207
e
) WINDOW B 120 .y
Ki208 ! /
i PANE Ao
] & PANE
[1203 7 . B2
' s 1206
| ,/
! ’
| LA
II
LINE I-J
1204 PANE
A B3
1205

F'G. |2 TWO WINDOWS

Neu eingereicht / Newly filed
Nouvellement déposé

11/13

LENGTH

ATTR_BLK

BR_ULC_X

BR_ULC_Y

BR_EXT_X

BR_EXT_Y

GBL_ULC_X

GBL_ULC_Y

LOC_ULC_X

LOC_ULC_Y

FLAG

FORM_MASK

RECT_LIST

CURSOR_DESC

DEV_TYPE

P_BMAP_ADDR

P_X_PITCH

P_Y_PITCH

P_LOG2_XPITCH

P_LOG2_YPITCH

V_BMAPADDR

V_X_PITCH

V_Y_PITCH

V_LOG2_XPITCH

V_LOG2_YPITCH

o

o5
106
Ho7
1nos
ol

Hnoz
Ho3
1Hoa

3
o9

R4

FIG. || rorm peEscripTOR

0223357

12/13

Neu eingereicht / Newly filed
Nouvellement déposé O 2 2 3 5 5 7

WINDOW 'B'

WINDOW ‘A’ CURSOR
FORM DESCRIPTOR DESCRIPTOR FORM DESCRIPTOR

130

1302 | | 1303 "
1109_{CURSOR PTR URSORPTR | |09

RECTANGLE PTR RECTANGLE RECTANGLE PTR
3" 1304 3
— L/
1BUTES PTR]__ TTRIBUTES PTR
no Hio '
ATTRIBUTES ATTRIBUTES
DESCRIPTOR DESCRIPTOR
RECTANGLE B 312
1305_ DESCRIPTOR P
A
1306 RECTANGLE B2
DESCRIPTOR
RECTANGLE B3
1308 DESCRIPTOR
1310 A

F'G '3 FORM DESCRIPTORS FOR WINDOWS A & B OF FIG. 12

Neu eingereicht / Newly filed
Nouvellement déposé

USER PIXEL

4 BITS — 16 POSSIBLE VALVES

13/13

8BITS — 256 POSSIBLE VALVES

oj]oloOo}joO | | !

FORM MASK

ACTUAL PIXEL VALVES USED

0] 0 | ! X1 XX
USER 3

1 o}l o 1 X | X| X
USER 9

0223357

USER3

-
RECTANGLE

\+USER 9
RECTANGLE

F'G. |4 PIXEL MAPPING EXAMPLE TO SHARE PALETTE

	bibliography
	description
	claims
	drawings

