EP 0 224 149 A2

Europidisches Patentamt
0 European Patent Office

Office européen des brevets

@ Publication number: 0 224 1 49

A2

® EUROPEAN PATENT APPLICATION

@ Application number: 86115849.1

@) Dateoffiling: 14.11.86

& incs: G 06 F 13/42
H 04 M 11/06

Arequestfor correction of figure 1 has been filed pursuant
to Rule 88 EPC. A decision on the request will be taken
during the proceedings before the Examining Division.

() Priority: 18.11.85 US 798822

@ Date of publication of application:
03.06.87 Bulietin 87/23

@ Designated Contracting States:
BE CH DE ES FR GB IT LI NL SE

@ Applicant: Hayes Microcomputer Products, Inc.
705 Westech Drive
Norcross Georgia 30092(US)

@ Inventor; Duncanson, Jay Paul
275 Liberty Street, No.5
San Francisco, Calif. 944114(US)

@ Inventor: Murray, Mark Randall
2633 Dogwood Terrace, N.E.
Atlanta, George 30319(US)

Representative: Patentanwilte Dr. Solf & Zapf
Zeppelinstrasse 53
D-8000 Miinchen 80(DE)

@ Improved synchronous/asynchronous modem.

@ An improved modem is described which can selectably
operate in a synchronous communications mode, an asyn-
chronous data mode, and an asynchronous command mode.
A processor (47) controis the operation of the modem, adds
starting and ending flags and frame check sequences to
transmitted data, searches for flags and sync characters in
received data, adds and deletes start, stop and parity bits
required for communications with the asynchronous com-
munications element (18), and performs zero bit insertion
and deletion for HDLC/SDLC communications. Processor (47)
also controls and monitors the operating parameters of the
modem engine (60).

Croydon Printing Company Ltd



) " ) )
PEVIE 1 [ pom [ ' r 82
ofaus Lo euFrer Lo R GGl ] =
QAD\R ERB T Jooo7 ; 28 150+ v| | [cmo vo!;"%m
-0 i ) PULSE P
t } "Cg? ol & ’)l."'ﬁ""" nm%m
5 " XTAL) 521
i XTALI xr & wad X TELE
0. | ADDRESS Al X3 A INTERFACE
- D&:oocn CS2 iM ENOINE
| A B _{CONTROL
5 . c@c: v | ] ad IR M 4 o
B IoR e % 55 lcrxd REMOTE
202 : P 52 CTYCLK DEVICE
- H e 4 5 YLK
: P26 bf, LoL ¢ m
EJ. E rm| 67 : 7 %
resy |7 Lo
AR I e
- s s 18] | w I
T INT ' POP? e
1 . | T o
! 1 168-£2
2 g | || i e
H o5 A8 A8 Ci |6
N x l{ ST BMCIZ oM
rRoeToec] 3 | L safreTay o iy
FiC A B o _G— <




10

15

25

30

35

0224149

"IMPROVED SYNCHRONOUS/ASYNCHRONOUS MODEM™

Technical Field

The present invention relates to

transmission of information by synchronous and
asynchronous communications methods, and particularly
discloses an improved device for selectably
transferring data by synchronous and asynchronous
methods by using a microprocessor to perform
asynchronous-to-synchronous and synchronous-to-
asynchronous data format conversions.

Background of the Invention

A modem (modulator-demodulator) is a device
which allows communication between digital computing
machines over voice-grade telephone lines. Although
many digital communication schemes use asynchronous
data trénsmission, there are also many compufing
machines which communicate by using synchronous data
transmission. Synchronous data transmission is not,
of itself, a problem since there are commercially
available devices which provide both synchronous and
asynchronous transmission. ‘

In asynchronous communications, a character



10

15

20

25

30

35

0224149

2

is sent by serially transmitting a number of bits
according to a defined character format. In one
typical character format, the first bit is called the
start bit and signals the receiver that a data
transmission follows. The next seven bits are called
data bits and represent the character being
transmitted. The next bit is often a parity bit,
which is used to check for an error in the data bits.
The last bit is called a stop bit, and signals the
receiver that the data transmission has ended. Thus,
each message contains one character. This seguence
is then executed for the next character, and so on,
until all the characters have been sent. A character
may be, for example, a letter, a number, punctuation,
or control information.

Various character formats are used.
Typically, the number of data bits may be 5, 6, 7 or
8, the parity bit may signify even, odd, or no
parity, or may be deleted, and there may be 1, 1%, or
2 stop bits. In addition, the speed at which the
data is sent will typically be one of the following
rates: 110, 150, 300, 600, 1200, 2400, 4800, 9600,
or 19,200 bits per second (bps).

For two devices to communicate, they must
both use the same character format and the same data
rate in bits per second.

In synchronous communications, a message
may contain many characters, instead of just one. 1In
one typical synchronous message format, the first
eight bits, commonly called the beginning flag,
signals the start of a message. The next eight bits
are address bits, and indicate the station for which
the message is intended. The next series of bits
represents the characters or information being

transmitted. This series may be any reasonable



10

15

20

25

30

35

0224149

3

length and is practically limited only by the number
of bits that can normally be expected to be received
before an error occurs. The next 16 bits are frame
check sequence bits, which are used to detect errors,
The last eight bits signal the end of the message,
and are commonly called the ending flag. Thus, each
message can contain many characters.

As in asynchronous communications, there
are several different message formats and baud rates
commonly used in synchronous communications, and for
two devices to communicate they must both use the
same message format and the same bit rate.

Some computers have a slot for a
communications card. The user may insert into this
slot either a serial communications card, which is
then connected to a modem engine, or a card which
contains a complete modem. Typically, such cards
support only asynchronous communications and contain
an asynchronous communications element, such as the
INS8250A manufactured by National Semiconductor
Corporation, Santa Clara, California, a
microprocessor, and the other components necessary
for transmitting and receiving signals over a
telephone line. The communication interface between
the computer and a device on a card connected to the
slot is normally asynchronous.

It is possible to manufacture a modem card
which supports both synchronous and asynchronous
communications by replacing the INS8250A with a
combined synchronous/asynchronous communications
controller such as, for example, the 28530
manufactured by Zilog, Inc., Campbell, California.
However, such communications controllers generally
cost more than asynchronous communications elements,
so modem manufacturers have been presented with three



10

15

20

25

30

35

0224149

4

choices having cost/performance tradeoffs.

If a modem manufacturer decides to produce
a modem with both synchronous and asynchronous
capabilities, it will have to cut its costs or profit
margin to stay competitive. Otherwise, potential
customers who only need asynchronous capability will
go to another manufacturer who sells asynchronous
only modems for a lower price. Furthermore, addition
of the synchronous capability may make the modem
incompatible with some existing asynchronous data
communication programs.

If the modem manufacturer produces only
asynchronous modems, he stands to lose potential
customers who need both synchronous and asynchronous
capabilities.

If the modem manufacturer produces two
modem models, one synchronous, and one asynchronous,
then he is burdened with the cost and problems of
running two production lines instead of just one.

Modem users were likewise faced with three
choices: purchase an asynchronous-only modem, and
forgo synchronous communications; purchase a
synchronously-only modem, and forgo asynchronous
communications; or purchase a synchronous/
asynchronous modem, and pay a higher price.

There is therefore a need for a modem which
uses an asynchronous communications element, supports
both synchronous and asynchronous communications, is
price-competitive with asynchronous-only modems, and
which provides compatibility with existing
asynchronous data communications programs.

Additionally, it is known that, in
synchronous communications formats, data must be
supplied at a rate adequate to assure data

availability for a complete message as described



10

15

20

25

30

35

0224149

5

above. It is also desirable to provide a standard
interface to a synchronous/asynchronous communication
which will allow the user to implement synchronous or
asynchronous communications easily, by following a
few simple rules, in a manner that is independent of
the modem device used.

Summary of the Invention

The present invention provides such an
improved modem.

Broadly stated, the present invention
provides a method by which a modem, using only those
components required for asynchronous communications,
can perform both synchronous and asynchronous
communications and maintain compatibility with
existing asynchronous data communication programs.

Also, the present invention may be broadly
characterized as a method by which a microprocessor
and an asynchronous communications element can
generate and respond to the format, control and
protocol signals required for both synchronous and
asynchronous communications.

More particularly described, the present
invention provides a method and apparatus by which a
modem, having both a parallel bus input/output (I/0)
port and a serial I/0O port, can support both
synchronous and asynchronous communications on the
serial I/0 port by using an asynchronous
communications element to interface with the parallel
bus and, by using a microprocessor to control the
flow of data to and from the asynchronous
communications element, to add, remove, and respond
to protocol information, and to control the flow of
data to and from the serial 1/0 port interface device
(modem engine). .



10

15

20

25

30

35

0224149

6

More particularly described, the present
invention provides a method and apparatus for adding
and deleting start, stop, and parity bits required
for asynchronous communications and adding and
deleting zero-bits required in some forms of
synchronous communications.

Therefore, it is an object of the present
invention to provide a means whereby an asynchronous
communications element, a processor, and a modem
engine can accommodate both synchronous and
asynchronous communications.

It is another object of the present
invention to provide a modem which can perform both
synchronous and asynchronous communications at a
lower cost than a modem which uses a
synchronous/asynchronous communications element.

It is another object of the present
invention to provide a modem which can selectably
conduct communications in several different
synchronous data formats.

It is another object of the present
invention to use asynchronous communications control
lines in a unigue manner for the control of
synchronous communications.

) It is another object of the present
invention to provide a means whereby modem control
instructions can be inserted into a synchronous
communications data stream at a first point and
removed from said data stream at a second poinf in
such a manner that the original data stream is
preserved. _

It is a further object of the present
invention to provide a means whereby modem parameter
status words can be inserted into a synchronous

communications data stream at a first point and



10

15

20

25

30

35

0224149

7

removed from said data stream at a second point in
such a manner that the original data stream is
preserved,

That the present invention accomplishes
these objects will be made clear by the following
detailed description of the preferred embodiment.

Brief Description of the Drawings

Figure 1 is a schematic diagram of the
preferred embodiment of the present invention.

Figure 2 is an illustration of the
HDIC/SDLC data format.

Figure 3 is an illustration of the BSC data
format.

Figure 4 is a state diagram for the
transmitter of the preferred embodiment.

Figure 5 is a state diagram for the
receiver of the preferred embodiment.

Detailed Description

Turning now to the drawings, in which like
numerals represent like components throughout the
several figures, Figure 1 is a schematic diagram of
the preferred embodiment of the present invention.

External device 9 is a computing device
such as a computer, processor, or data terminal.
The preferred embodiment of the present invention is
designed to be used with an IBM Personal Computer.
Therefore, it should be understood that external
device 9, for the preferred embodiment, is an IBM PC.
Details of the bus structure and signal timing for
the IBM PC are well known to those skilled in the
art, and are described in the "IBM PC Technical
Reference Manual”, published April 1984, which is
hereby incorporated by reference. External device 9



10

15

20

25

30

35

0224149

8

has an input/output (I/0) bus 10 which carries both
data and commands. Data bus 11 of I/0 bus 10
consists of eight conductors for carrying an eight
bit parallel word. Data bus 11 is connected to I/O
Port A of a bidirectional tri-state buffer 12. 1I/0
Port B of buffer 12 is connected by eight bit data
bus 13 to the DO through D7 lines of the I/0 port of
universal asynchronous receiver transmitter (UART) 18.
UART 18 is also commonly called an asynchronous
communications element (ACE). In the preferred
embodiment UART 18 is the INS8250A device
manufactured by the National Semiconductor
Corporation, Santa Clara, California. Specific
details of operation and internal structure of UART
18 are well known to those skilled in the art, are
available in literature published by the
manufacturer, National Semiconductor Corporation, and
are not described in detail herein.

Address bus 14 is connected to the inputs
of an address decoder 16. Enable signal conductor 15
is connected to the enable input of address decoder
16. .The output of address decoder 16 is connected by
conductor 17 to the negated enable input of buffer
12, which enables the outputs of buffer 12, and the
negated chip select 2 (CS2) input of UART 18. The
chip select 0 and 1 (CS0, CSl) inputs of UART 18 are
connected to a logic 1 by conductor 38.

Address bus 20 is connected to the AO0-A2
address inputs of UART 18. This allows external
device 9 to select the register of UART 18 that data
is to be read from or written into. Data input
strobe (DISTR) conductor 22 is connected to the
negated data input strobe input of UART 18. Data
output strobe (DOSTR) conductor 21 is connected to
the negated data output strobe input of UART 18. The



0

5

30

35

0224149

9

negated address strobe (ADS) input, the normal data
input strobe input, the normal data output strobe
input, and the negated data set ready input of UART
18 are connected to a logic 0 by conductor 19.

It will be appreciated by one skilled in
the art that data bus 11, address buses 14 and 20,
address enable line 15, and the data strobes on
conductors 21 and 22 are used in a straightforward
manner to transfer data between external device 9 and
UART 18.

It will be appreciated by one skilled in
the art, or from a reading of the manufacturer's
literature on UART 18, that UART 18 has eleven
accessible registers. External device 9 sends
commands to UART 18 by writing data into these
registers, and reads the status of UART 18 by reading
the data contained in these registers.

The driver disable (DDIS) output of UART 18
is connected by conductor 25 to the data direction
(DIR) input of buffer 12 and a first input of
interrupt logic circuitry 24. UART 18 places a logic
0 onto conductor 25 when data is being read from data
port DO-D7 of UART 18. A logic 0 on conductor 25
instructs buffer 12 that Port B is the input and Port
A is the output. A logic 0 on conductor 25 also
disables interrupt logic 24. a logic 1 on conductor
25 allows data to be transferred from UART 18 to
external device 9, and enables interrupt logic 24.
It will be appreciated from the manufacturer's
literature that the DDIS output of UART 18 is a logic
0 when data is being read from UART 18 onto data bus
13.

The negated second output (OUT2) and the
interrupt output (INT) of UART 18 are connected by
conductors 27 and 26, respectively, to a second and



10

15

20

25

30

35

0224149

10

third inputs, respectively, of tri-state interrupt
logic 24. 1If UART 18 places a logic 1l onto conductor
27 interrupt logic 24 will have a high-impedance
output. If UART 18 places a logic 1 onto conductor
25 and a logic 0 onto conductor 27, the output of
interrupt logic 24 will follow the interrupt output
of UART 18. The output of interrupt logic 24 is
connected by conductor 23 to bus 10. The OUT2 signal
placed on conductor 27 by UART 18 is controlled by
external device 9 by a command to UART 18.

Therefore, external device 9 can enable or disable

the interrupt capabilities of UART 18.

Reset conductor 30 of bus 10 is connected
to the reset input of UART 18 and to a first input of
reset logic 31. The negated first output (OUT1l) of
UART 18 is connected by conductor 32 to a second
input of reset logic 31. The output of reset logic
31 is connected by conductor 33 to the negated reset
input of processor 47 and the negated reset input of
decoding logic and latches 77. A logic 1 on
conductor 30 resets UART 18, processor 47, and
decoding logic 77.

Additionally, external device 9 may command
UART 18 to place a logic 0 on conductor 32 and reset
processor 47 and decoding logic 77. Reset logic 31
provides a single 10 microsecond pulse output
whenever a logic 1 is present on conductor 30 or a
logic 0 is present on conductor 32. Methods of
construction of reset logic 31 are well known to
those skilled in the art.

A first output of clock 42 is connected by
conductor 41 to the XTALl input of UART 18. The
frequency of this first output is 1.843 MHz in the
preferred embodiment. A second output of clock 42 is
connected by conductor 43 to the XTALl input of



10

15

20

25

30

35

0224149

11

processor 47. The complement of this second output
is connected by conductor 44 to the XTAL2 input of
processor 47. In the preferred embodiment, the
frequency of this second output is 7.372 MHz.

Processor 47 is a microprocessor such as
the Z8681 manufactured by Zilog, Inc., Campbell,
California. Processor 47 has four 8-bit ports,
referred to as Port 0 (P00-PO07), Port 1 (P10-P17),
Port 2 (P20-P27) and Port 3 (P30-P37). Details of
operation of the 28681 are available from the
manufacturer.

The asynchronous serial data output (SOUT)
of UART 18 is connected by conductor 35 to the P30
input of processor 47 and the YO input of a dual
four-to-one multiplexer 56. The P20 output of
processor 47 is connected by conductor 50 to the Y1
and Y2 inputs of multiplexer 56. The Y3 input of
multiplexer 56 is connected to a logic 1 by conductor
51. The Y output of multiplexer 56 is connected by
conductor 57 to the transmit data input (CTXD) of
modem engine 60.

It will be readily seen that the data
presented to the CTXD input of modem engine 60 may be
selected to be the SOUT data from UART 18, the P20
data from processor 47, or the logic 1 on conductor
51. This selection and routing of the data to be
transmitted allows the proper format and protocol to
be selected for both synchronous and asynchronous
transmission of data. )

The received data output (CRXD) of modem
engine 60 is connected by conductor 55 to the P27
input of processor 47 and the X0 and X2 inputs of
miltiplexer 56. The P37 output of processor 47 is
connected by conductor 52 to the X1 and X3 inputs of
miltiplexer 56. The X output of multiplexer 56 is



10

15

20

25

30

35

0224149

12

connected by conductor 34 to the asynchronous serial
data input (SIN) of UART 18.

It will also be readily seen that the
received data output by modem engine 60 may be
selectively routed directly to the SIN input of UART
18 or indirectly through processor 47. This
selection and routing of the received data allows the
proper format and protocol to be selected for both
synchronous and asynchronous reception of data.

Modem engine 60 contains a modulator,
demodulator, clocks, operating status and operating
control logic and registers. Methods of construction
of modem engine 60 are well known to those skilled in
the art. 1In particular, modem engine 60 may be
implemented by one of more modem chip sets which are
currently available or may be constructed using MSI
and LSI integrated circuits.

Modem engine 60 has two clock outputs: the
transmit data clock (CTXCLK) and the received data
clock (CRXCLK). The CTXCLK output is connected by
conductor 64 to the P31 input of processor 47 and is
used to synchronize the transfer of transmit data
from processor 47 to modem engine 60. The CRXCLK
output is connected by conductor 65 to the P32 input
of processor 47 and is used to synchronize the
transfer of received data from modem engine 60 to
processor 47. The CTXCLK output and CRXCLK output
are only used in the synchronous mode.

The P21 and P22 outputs of processor 47 are
connected by conductors 53 and 54, respectively, to
the A and B control inputs, respectively, of
multiplexer 56. Processor 47 therefore controls the
operation of multiplexer 56 according to whether
synchronous or asynchronous operation is desired.

The P26 output of processor 47 is connected



10

15

20

25

30

35

0224149

13

by conductor 66 to the negated reset input of modem
engine 60. The read/negated write (R/W) output of
processor 47 is connected by conductor 67 to a first
input of read/write logic circuit 71. The negated
data strobe (DS) output of processor 47 is connected
by conductor 70 to a second input of read/write logic
71 and to the negated data strobe (DS) input of
decoding logic 77. The read output of read/write
logic 71 is connected by conductor 72 to the read
input of modem engine 60. The negated write output
of read/write logic 71 is connected by conductor 73
to the negated write input of modem engine 60.
Read/write logic 71 converts the single read/write
signal on conductor 67 into two separate signals on
conductors 72 and 73. Read/write logic 71 is
enabled by a logic 0 on conductor 70.

The P1l0-P17 inputs/outputs of processor 47
are connected by eight bit bidirectional data bus 74
to the D0-D7 inputs/outputs of modem engine 60, the
address/data bus (ADB) inputs of decoding logic 77,
and the D0-D7 outputs of read only memory (ROM) 90.
Modem engine 60 has operating status registers and
operational control registers. Read/write logic 71,
decoding logic 77, and data bus 74 allow processor 47
to read from/write into the registers in modem engine
60 and therefore to monitor and control the operation
of modem engine 60,

The PO00-P07 outputs of processor 47 are
connected by eight bit address bus 75 to the address
bus (AB) inputs of decoding logic 77 and to the five
most significant bit address inputs (A8-A12) of ROM
90. The negated address strobe (AS) output of
processor 47 is connected by conductor 76 to the
negated address strobe input of decoding logic 77.

Decoding logic 77 accepts the signals present on



0224149

14

address/data bus 74 and address bus 75 to provide
several output signals.

The first control output (Cl) of decoding
logic 77 is connected by a six-wire conductor 87 to
the six control inputs of modem engine 60. 1In the
preferred embodiment, these six control inputs are
used for selecting and enabling a particular register
in modem engine 60 for read or write operations.

The second control (C2) output of decoding
logic is connected by a four-wire conductor 86 to the
four control inputs of telephone line interface 80
for controlling the switchhook (not shown) connection
to the telephone line 81, connecting or disconnecting
another device (not shown) to telephone line 81,
etc.

The modulated transmit data output (TXD) of
modem engine 60 is connected by conductor 82 to the
modulated transmit data input (TXD) of line interface
80. The modulated received data output (RXD) of line
interface 80 is connected by conductor 85 to the
modulated received data input of modem engine 60.
The telephone line terminals (TIP and RING) of line
interface 80 are connected to telephone line 81.
Since telephone line 81 is a bidirectional serial
data transfer means, line interface 80 contains a
duplexer (not shown) for placing the TXD signal onto
telephone line and retrieving the RXD signal from
telephone line 81.

Modem engine 60 contains a dual tone
multiple frequency (DTMF) tone generator for tone
dialing of telephone numbers. The DTMF output of
modem engine 60 is connected by conductor 83 to the
DTMF input of line interface 80. Line interface 80
places these DTMF signals onto telephone line 81.

Modem engine 60 also contains a pulse generator for

e e s o o—— it



10

15

20

25

30

35

0224149

15

pulse dialing of telephone numbers. The pulse output
of modem engine 60 is connected by conductor 84 to
the pulse input of line interface 80. Line interface
80 also places these pulse dial signals onto
telephone line 8l1. Methods of construction of line
interface 80 are well known to those skilled in the
art.

Telephone line 81 is connected to the
telephone terminals of rz2mote device 100. Remote
device 100 is typically data terminal equipment with
a synchronous and/or asynchronous modem. It will be

~appreciated that the purpose of the present invention

is to allow external device 9 to communicate, either
synchronously or asynchronously, with remote device
100.

Decoding logic 77 also allows processor 47
to read data from ROM 90. The address outputs
(A0-A7) of decoding logic are connected by ROM
address bus 91 to the lower eight bit- (A0-a7) inputs
of ROM 90. The negated chip select output of
decoding logic 77 is.connected by conductor 92 to the
negated chip select input of ROM 90, The negated
output enable output (OE) of decoding logic 77 is
connected by conductor 93 to the negated output
enable input of ROM 90. Decoding logic 77 provides
the appropriate signals on bus 90 and conductors 92
and 93 which, in conjunction with the signals on bus
75, allows processor 47 to read data from ROM 90 via
bus 74. Methods of construction of decoding logic 77
for controlling the reading of data from ROMs are
well known. It will be appreciated that ROM 90
contains operating instructions and data constants
for processor 47.

The negated clear-to-send (CTS) output of
decoding logic 77 is connected by conductor 45 to the



10

15

20

25

30

35

0224149

16

negated CTS input of UART 18. The negated CTS signal
is used to control the flow of data from UART 18 to
processor 47 in the synchronous mode. When processor
47 is ready to accept more data (via soUT) from UART
18, processor 47 places signals on buses 74 and 75
and conductors 70 and 76 to cause decoding logic 77
to place a logic 0 on the negated CTS conductor 45.

The negated data carrier detect (DCD)
output of decoding logic 77 is connected by conductor
46 to the negated DCD input of UART 18, The presence
on telephone line 81 of a data carrier from remote
device 100 is detected by modem engine 60 and causes
modem engine 60 to raise the data carrier detected
(pcD) flag in one of its status registers.
Processor 47 periodically reads the status registers
of modem engine 60. If the DCD flag in modem engine
60 has been raised, processor 47 will cause decoding
logic 77 to place a logic 0 onto conductor 46. A
logic 0 on conductor 46 raises the DCD flag in the
status register of UART 18. Whenever the DCD flag in
UART 18 is raised or lowered, UART 18 will generate
an interrupt. External device 9 will service the
interrupt, read the status register of UART 18 and
thereby determine the change in the data carrier on
line 8l.

Assume that a 2400 bps synchronous
communications mode has been selected. Data will be
received from remote device 100 by modem engine 60 at
2400 bits per second. The demodulated data will then
be routed by multiplexer 56 to processor 47 at this
rate. Processor 47 will then decode the received
data, add start, stop and parity bits, and
asynchronously send the received data to the SIN
input of UART 18 via multiplexer 56. The synchronous

received data is being sent from modem engine 60 to



10

15

20

25

30

35

0224149

17

processor 47 at the rate of 2400 bps. Processor 47
must perform the appropriate zero-bit deletion and
NRZ/NRZI decoding of the incoming data, add start,
stop and parity bits to the processed data, and
asynchronously send the data to UART 18,
Furthermore, as explained below, processor 47 may
need to insert one or more status words into the "data
stream to UART 18. Since processor 18 must send more
bits to UART 18 than processor 47 receives from modem
engine 60, the data transfer rate between processor
47 and UART 18 must be greater than the data trangfer
rate between modem engine 60 and processor 47, In
the preferred embodiment, the data transfer rate
between processor 47 and UART 18 was selected to be
9600 bps.

Processor 47 must wait until a complete
data word has been received from modem engine 60
before processor 47 can add the additional bits
necessary for asynchronous transmission to UART 18.
This means that the received data will be available
from UART 18 approximately 1 millisecond after the
modulated data was received by modem engine 60.
UART 18 will generate an interrupt when a data word
has been received from processor 47. External device
9 must then service this interrupt in order to read
the new data word from UART 18. External device 9
should therefore rapidly service the interruptlfrom
UART 18 and read the data in UART 18. Excessive
delays in servicing the interrupt or reading the data
from UART 18 may cause problems when resetting
processor 47 into the hunt state in the BSC mode,
explained below, in sending an abort signal in the
HDLC/SDLC modes, also explaxned below, or cause
received data to be lost.

Likewise, UART 18 asynchronouSIy sends



10

15

20

25

30

35

0224149

18

transmit data to processor 47 at 9600 bps. Processor
47 must delete the start, stop, and parity bits,
encode the data, and send the data to modem engine 60
at 2400 bps.‘ ?rocessor 47 has limited data storage
space and, 51nce data is belng received from UART 18
at 9600 bps and sent to modem engine at 2400 bps,
processor 47 requlres a means for 1nterrupt1ng the
data flow from UART 18. The CTS conductor 45 is used
for handshaklng between UART 18 and processor 47 so
that the effectlve throughput of data into processor
47 from UART 18 1s approximately eqgual to the
throughput of data from processor 47 to modem engine
60.

The negated data terminal ready (DTR)
output of UART 18 is connected by conductor 36 to the
P33 1nput of _processor 47. The negated ready to send
(RTS) output of UART 18 is connected by conductor 37
to the P25 input of processor 47. The P23 output of
processor 47 is connected by conductor 40 to the
negated . rlng 1nd1cator (RI) 1nput of UART 18. The
use of these 51gnals is explained below.

The negated baud output (BAUD) of UART 18
is connected by conductor 39 to the receiver clock
input (RCLK) of UART 18, This connectlon causes UART
18 to use the same bit rate for transmission and
receptron of data(as processor 47.
| Other‘Implementations

The preferred embodiment of Figure 1 is
shown connected to the parallel data bus 10 of an
external dev1ce 9. However, it will be appreciated
that, in somedapplications, external device 9 may
include the conponents_to,the left of dashed line 99
and have a standard RS~-232 interface (conductors 34,
35, 36, 37, 40, 45 and 46). In this application,




10

15

20

25

30

35

0224149

19

since reset conductor 33 will probably not be
available, software is used to instruct processor 47
to reset, either internally or by adding an
addressable reset output to decoding logic 77. Also,
the composite external device 9 must be programmed to
recognize the different meanings of signals on some
of these conductors. The present invention is
therefore not limited to use with external devices 9
having an accessible parallel data bus.

Programming

In the preferred embodiment, the meaning of
some of the input signals and output signals. of UART
18 is not the standard RS-232 meaning. Therefore,
external device 9 is programmed to recognize the
following meanings of those signals. 1In the
synchronous mode, processor 47 processes both
transmit data and received data. It may therefore be
thought of as containing a serial in, serial out
transmitted data processor and a serial in, serial
out received data processor which, for convenience,
will be referred to as a transmitter and receiver,
respectively.

The DTR signal on conductor 36 instructs
processor 47 to exit the synchronous mode and enter
the asynchronous command mode. When processor 47
switches from the synchronous mode to the
asynchronous command mode processor 47 must also
instruct modem engine 60 and line interface 80 as to
whether the connection to remote device 100 via
telephone line 81 should be maintained or broken.
Therefore, external device 9 must have previously
sent an instruction to processor 47 to maintain or
break this connection, as desired by the user.

The RTS signal on conductor 37 instructs



10

15

20

25

30

35

L 0224149

20

processor 47 to reset the receiver in processor 47
(force the receiver to enter the hunt state). The RI
signal on conductor 40 advises external device 9 that
an end-of-frame is being transmitted and that the
transmitter in processor 47 is about to enter the
idle state. . 7

- The CTS signal on conductor 45 advises
external device 9 that processor 47 is presently
unable to accept any more data to be transmitted.
The DCD signal on conductor 46 advises external
device 9 that modem engine 60 has detected a data
carrier on telephone line 81.

External device 9 programs UART 18 to
generate an ipterrupt on a change in state of the RI,
CTS, and DCD signals. External device 9 must also
instruct processor 47 as to the programming of modem
engine 60. ,

iAs will’be explained below, processor 47
occasionally sends status words to external device 9
via UART 18. 1In the preferred embodiment the status
words contain the following information: end of
frame received and frame check sequence is good; end
of framé received and frame check sequence is bad;
receiving flag-idle; receiving mark-idle; exiting
synchronous mode; entering synchronous mode; RTS
command acknowledged (receiver of processor 47 has
been reset); and abort signal in received data.

Asynchronous Data Operation - General
In asynchronous data operation, processor
47 places a logic 0 on conductors 53 and 54. This
causes multiplexer 56 to connect its YO0 input to its
Y output, and its XO input to its X output. This
connects the transmit data output (SOUT) of UART 18
to the transmit data input (CTXD) of modem engine 60,




10

15

20

25

30

35

0224149

21

and connects the receive data output (CRXD) of modem
engine 60 to the receive data input (SIN) of UART 18,
Therefore the transmitted and received data ig
transferred between UART 18 ang modem engine 60
without being affected by processor 47. Dpata
transfer between UART 18 and modem engine 60 is
asynchronous and the transmit data clock (CTXCLK) and
the receive data clock (CRXCLK) provided by modem
engine 60 on conductors 64 and 65, respectively, are
not used by UART 18.

Transmit data from UART 18 on conductor 35,
and receive data from modem engine 60 on conductor
55, is monitored by processor 47 for escape
Sequences, operating instructions, etc.

Asynchronous Command Operation - General

External device 9 instructs processor 47 to
enter the asynchronous command mode by causing UART
18 to place a logic 0 onto DTR conductor 36, or by a
command sent via the SOUT output of UART 18.
Processor 47 will also enter the asynchronous command
mode when power is first applied. Once processor 47
has entered the asynchronous command mode, external
device 9 programs processor 47 by writing the
appropriate data into the operating control registers
of processor 47. External device 9 accomplishes this
by writing the appropriate command words into the
transmit buffer register of UART 18. UART 18 will
then asynchronously send these command words to
Processor 47, Since processor 47 is in the
asynchronous command mode, processor 47 will
interpret these words as commands and respond
accordingly. This technique is also used to allow
external device 9 to command processor 47 to program
modem engine 60 with the desired operating



10

15

20

25

30

35

0224149

22

parameters.

Synchronous Operation - General

In synchronous operation, processor 47
places a logic 0 on conductor 53 and a logic 1 on
conductor 54. Multiplexer 56 therefore connects its
Y1l input to its Y output and its X1 input to its X
output. V

Transmit data flows from UART 18 to
processor 47 over conductor 35, is processed by
processor 47, and then flows from processor 47 to
modem engine 60 through conductor 50, multiplexer 56,
and conductor 57. Receive data flows from modem
engine 60 to processor 47 over conductor 55, is
processed by processor 47, and then flows from
processor 47 to UART 18 through conductor 52,
multiplexer 56, and conductor 34.

‘In synchronous operation, data flows
asynchronously between UART 18 and processor 47, and
synchronously between processor 47 and modem engine
60. |

When the transmit buffer in UART 18 is
empty, i.e.-the last transmit word in UART 18 has
been sent to processor 47, UART 18 generates an
interrupt. This causes external device 9 to read the
interrupt and send, over bus 10, the next transmit
word to UART 18. Transmit data flow control from
external device 9 to processor 47 is accomplished
asynchronously by use of the CTS input of UART 18 on
conductor 45. Each time processor 47 changes the
state of the CTS signal on conductor 45, UART 18 will
generate an interrupt. External device 9 services
the interrﬁpt and determines the state of the CTS
signal on conductor 45. When processor 47 is ready
for more data, it places a logic 0 on conductor 45.
This advises external device 9 to send, via UART 18,

the next transmit character word to processor 47.



j0

35

0224149

23

When processor 47 is unable to accept more data, it
places a logic 1 on conductor 45, thereby advising
external device 9 to stop sending any more character
words to processor 47 via UART 18. The CTS signal on
conductor 45 has no effect upon the SOUT transmitter
of UART 18, It will be appreciated that a finite
delay will occur between the time processor 47
changes the CTS signal and the time that external
device 9 will service the interrupt and react in the
proper manner.

If processor 47 had only a one word
transmit buffer then, because of the delay, processor
47 could run out of transmit data and incorrectly
begin sending an end-of-frame or, transmit data may
be lost because of overwriting of the transmit buffer
since UART 18 automatically sends out any transmit
data in its transmitter holding register. 1In order
to prevent these undesirable conditions from
occurring, processor 47 is programmed to have a four
word transmit FIFO buffer. The four word transmit
FIFO buffer compensates for the delay time so that
the probability of an occurrence of an incorrect
end-of-frame transmission or overwriting of transmit
lata words is substantially reduced.

Processor 47 causes decoding logic 77 to
place a logic 0 on CTS conductor 45 when one or two
words are left in the transmit FIFO buffer, and a

logic 1 on CTS conductor 45 when the transmit FIFO _

buffer contains more than two words. It should be
noted that if the transmit FIFO buffer of processor
47 becomes empty an end-of-frame sequence will be
sent by processor 47 to modem engine 60.

UART 18 places an interrupt signal (logic

i



10

15

20

25

30

35

0224149

24

1) on conductor 26 when the negated CTS signal
changes state. This causes interrupt logic 24 to
place an interrupt signal on conductor 23 of bus 10.
When external device 9 sees an interrupt signal on
conductor 23 it therefore requests an interrupt
status word (reads the contents of the interrupt
identification register) from UART 18. External
device 9 therefore monitors the status of the negated
CTS signal through UART 18.

When the negated CTS signal on conductor
45 becomes a logic 0, external device 9 must not
delay too long before sending the next transmit
character to UART 18 because as previously stated,
processor 47 will send an end-of-frame to modem
engine 60 if the transmit FIFO buffer becomes empty.
If the transmit FIFO buffer becomes empty, processor
47 will also place a logic 1 on negated ring
indicator (RI) conductor 40. This also causes UART
18 to generate an interrupt signal on conductor 23.
External device 9, in response to the interrupt
signal, requests the interrupt status word from UART
18. External device 9 can therefore determine that
an end-of-frame is being sent.

If external device 9 detects that an
end-of-frame is incorrectly being sent, i.e., the
message to be sent had not been completed, then
external device 9 places on bus 10 an instruction
(BREAK) to UART 18 which causes UART 18 to send an
abort character to processor 47. Processor 47, which
is still sending the end-of-frame sequence to modem
engine 60, stops sending the end-of-frame, and then
sends the abort character to modem engine 60, The
abort character advises remote device 100 that there
has been an error in the message transmitted to it.

External device 9 should be configured to then cause



10

15

20

25

30

35

0224149

25

the message to be transmitted again.

Synchronous transmit data flow from
processor 47 to modem engine 60 is accomplished by
use of the transmit data clock (CTXCLK) output of
modem engine 60 on conductor 64. Each clock pulse on
conductor 64 causes processor 47 to place one bit of
the transmit word contained in the transmit FIFO
buffer onto conductor 50, which is connected to the
serial data input (CTXD) of modem engine 60.

After all the bits in a transmit word in
the transmit FIFO buffer have been sent, processor 47

~then begins sending the bits of the next transmit

word in the transmit FIFO buffer. Once all the
transmit words in the transmit FIFO buffer have been
clocked out to modem engine 60, and no new words have
beer received, so that the transmit FIFO buffer is
empty, processor 47 then begins sending an
end-of-frame to modem engine 60.

Synchronous receive data flow from modem
engine 60 to processor 47 is achieved by the receive
data clock (CRXCLK) output of modem engine 60 an
conductor 65. Each clock pulse on conductor 65
clocks one bit of the receive data word into
processor 47. Processor 47 also has a four word
receive FIFO buffer. After all the bits in one
receive word have been received by processor 47;
processor 47 places the word into the receive FIFO
buffer, processor 47 then begins assembling the next
receive word.

Receive data flow from processor 47 to UART
18 is asynchronous. As soon as processor 47 has
assembled a receive word and moved it through the
receive FIFO buffer, processor 47 sends the word, in
asynchronous format, to UART 18 via conductor 52)
multiplexer 56, and conductor 34.



10

15

20

25

30

35

LA 0224149

26

- When UART 18 has received a complete word
from procegsor 47, UART 18 generates an interrupt
which ciduses external device 9 to service the

interrupfmand read the received word.

Synchronous Formats

ProceSSor 47 processes the transmit words
and receive Qords according to the synchronous format
selected. Numerous synchronous data formats have
been developed High level data link control (HDLC),
synchronous ‘data link control (SDLC), and binary
synchronous communications (BSC) formats were
selected for the preferred embodiment since these are
the most w1de1y used formats. However, it will be
apprecxated that other synchronous data formats can
also be readlly 1mplemented

" Tfhe frame structure of HDLC and SDLC
operation is shown in Figure 2. The HDLC/SDLC flag
character 101 has the binary value 01111110. The
address’ ‘character 102 is the address of the station
for whlch the message is intended.

" In the receive data mode, processor 47 may
be iustructed by external device 9 to examine or
ignore'the“address character 102. If processor 47 is
instructed to examine address character 102 then, if
the address character 102 matches neither the user's
statiouzaddress nor the broadcast address (binary
11111111), then processor 47 will not send any of the
message to external device 9. If the address
character '102 matches either the user's station
address or the broadcast address, or if processor 47
is iﬁstructedﬂro ignore address character 102, then
processor'47 treats address character 102 as data and
sends the entire message to external device 9.

In the receive mode, processor 47 processes



10

15

20

25

30

35

0224149

27

and sends the N data bits 103 and the frame check
sequence (FCS) 104 to external device 9. Since N is
an unspecified variable, processor 47 cannot tell the
difference between data 103 and FCS 104 until the
ending flag 105 is received. Flag 105 is identical
to flag 10l. By definition, FCS 104 is the 16 bits
immediately preceding flag 105. Therefore, when flag
105 is detected by processor 47, processor 47
completes the sending of data 103 and FCS 104 to
external device 9, compares the results of its FCS
calculations for the received data 103 with FCS 104,
and sends a status word to external device 9., The
status word advises external device 9 that an
end-of-frame has been received and whether the FCS
comparison was good or not good.

In the transmit data mode, external device
9 generates address character 102 and processor 47
processes address character 102 exactly as data 103.

In the transmit mode, processor 47
generates FCS 104 and flag 105 when the transmit FIFO
buffer becomes empty. As previously explained, when
the transmit FIFO buffer becomes empty processor 47
also notifies external device 9 that an end-of-frame
is being sent. It will be appreciated that an
end-of-frame sequence consists of FCS 104 and flag
105. Therefore, if processor 47 begins generating an
end-of-frame sequence and the message was not
complete, external device 9 must send the abort
signal to processor 47 before flag 105 has been
completely sent.

The frame structure of the BSC format is
shown in Figure 3. The synchronization characters
110 and 111 are always identical and are programmable.
External device 9 instructs processor 47 as to the
value of sync characters 110 and 111. Each of the N



0224149

28

data characters 112a-112n is 8 bits in length.

In the transmit mode, when processor 47
receives the first data character 1l1l2a from external
device 9, processor 47 generates and sends sync
characters 110 and 111 to modem engine 60 and then
begins sending data 112 to modem engine 60. If the
transmit FIFO buffer becomes empty, processor 47
generates and sends mark-~idle or sync characters, as
selected under the control of external device 9.

In the BSC mode, processor 47 notifies
external device 9 via RI conductor 40 and UART 18
that the transmit FIFO buffer is empty but does not
generate the end-of-frame sequence (CRC (Cyclic
Redundancy Check) 113 and PAD 114). External device
9 generates the end-of-frame and sends it to
processor 47. Processor 47 then sends the
end-of~-frame sequence to modem engine 60 as if it
were data. The Pad 114 has the binary value
11111111,

In the receive mode, processor 47 starts in
the hunt state. Therefore, processor 47 does not
initially send any received data to external device 9
until it has detected sync characters 110 and 11l.
Processor 47 strips sync characters 110 and 111 from
the received message and then sends the remainder of
the received message to external device 9.

Although it is possible, processor 47 does
not detect an end-of-frame sequence because of time
and ROM 90 space limitations. Therefore, processor
47 will send to external device 9 the CRC 113, Pad
114, and all parts of any following frames, including
sync flags 110 and 111, until external device 9
instructs processor 47 to re-enter the hunt state.

In the receive mode, processor 47 stays in
the hunt state and does not send the received word to

-
o~ -

-

A

B e I




10

15

20

25

30

35

0224149

29

the external device until flag 101 has been received.
Processor 47 will re-enter the hunt state after an
abort sequence is received or external device 9
instructs processor 47 to re-enter the hunt state.

In the preferred embodiment, external
device 9 instructs processor 47 to re-enter the hunt
state by sending an instruction to UART 18, over bus
10, which causes UART 18 to place a logic 0 on the
negated request-to-send (RTS) conductor 37. This
instruction to re-enter the hunt state is valid for
HDLC, SDLC, and BSC formats. Processor 47
acknowledges the hunt instruction by sending a status
word to external device 9 via UART 18.

Once processor 47 is in the hunt state, it
remains in the hunt state and does not send any
received data to external device 9 until processor 47
detects the two sync characters 111 and 112 which are
followed by something other than a mark/idle
character.

Therefore, external device 9 must check the
incoming data stream to detect and separate CRC 113
and Pad 114 from data 112 and also instruct processor
47 to re-enter the hunt state.

It will be appreciated that, since
communications between processor 47 and UART 18 are
asynchronous, UART 18 will add start, stop, and
parity bits to a transmit word on bus 10 before
sending the transmit word to processor 47. These
additional bits must be removed from the transmit
word for synchronous transmission. Therefore, before
sending any transmit word to modem engine 60,
processor 47 removes the start, stop and parity bits.

Similarly, in the receive mode, processor
47 adds start, stop, and parity bits to each received
word from modem engine 60 before sending the received



10

15

20

25

30

35

0224149

30

word to UART 18. UART 18 then deletes the start,
stop and parity bits before placing the received word
on bus 10.

In the HDLC and SDLC modes of operation,
processor 47 also performs zero bit insertion on
transmitted words and zero bit deletion on received
words. It will be appreciated that zero bit
insertion/deletion is required in HDIC and SDLC modes
to prevent a combination of address 102 and/or data
103 characters from having the binary value of a flag
101 or 105. Processor 47 therefore counts the number
of consecutive logic 1l's in the transmit data word
from UART 18. After processor 47 counts five

consecutive logic 1l's, it inserts a logic 0 into the

transmit word to modem engine 60. Accordingly, on

received data from modem engine 60, processor 47 will
delete any logic 0 which follows five consecutive
logic 1's.

Zeros are not inserted of deleted from
flags 101 and 105 or from an abort sequence (binary
value 1111 1111). When processor 47 detects an abort
sequence in the received word, it causes UART 18 to
generate an interrupt to external device 9 and also
disregards the remainder of the frame which was
interrupted by the abort sequence.

There is no zero-bit insertion/deletion
requirement in the BSC mode of operation.

Processor 47 is instructed by external
device 9 whether the non-return-to-zero (NRZ) or
non-return-to-zero, inverted (NRZI) encoding is to be
used. Processor 47 therefore performs NRZ or NRZI

encoding, as appropriate, on the transmit word before

sending it to modem engine 60, and performs NRZ or
NRZI decoding, as appropriate, on the received word
before sending it to UART 18,



10

15

20

25

30

35

0224149

31

State Diagrams

Figure 4 is a state diagram of the
HDIC/SDIC transmitter. The HDLC/SDLC transmitter has
five states: Mark-Idle 120, Flag 121, Data 122, FCS
123, and Abort 124. A transmitter reset command 119
causes the transmitter to enter mark idle state 120.

The transmitter selectably assumes either
mark-idle state 120 or flag state 121 when the
transmitter is idle, i.e. - there is no data to be
transmitted. 1In mark-idle state 120 the transmitter
places and holds a logic 1 on output P20. An abort
command (BREAK SIGNAL) from external device 9 will
have no effect upon the transmitter in this state.
The transmitter will advance to flag state 121 upon
receipt from UART 18 of data to be transmitted.

In flag state 121 the transmitter
continuously generates and sends the HDLC/SDLC flag
character. The transmitter may be commanded by
external device 9, through UART 18, to enter the
abort state 124. Once the abort command has been
processed and the abort character sent, the
transmitter will resume sending flag characters. The
transmitter will advance to data state 122 upon
receipt from UART 18 of data to be transmitted. 1If
flag state 121 has been entered from mark-idle state
120 as a result of receiving from UART 18 data to be
transmitted, then the transmitter will remain in flag
state 121 only long enough to transmit the opening
flag and then advance to data state 122.

In data state 122 the transmitter
continuously accepts data from UART 18 to be
transmitted, performs zero-bit insertion as required,
places the data on output P20, and updates the FCS
(frame check sequence). If the transmitter runs out



10

15

20

25

30

35

0224149

32

of data to send, it advances to FCS state 123. If
external device 9 sends the abort command, the
transmitter advances to abort state 124,

In FCS state 123 the transmitter freezes
the FCS, performs zero bit insertions as required,
and places the FCS5 data onto output P20. Once the
FCS data has been sent, the transmitter advances to
flag state 121 to transmit the closing flag. 1If
flag-idle state 121 has been selected the transmitter
will continue sending the flag-idle character. If
mark idle state 120 has been selected the transmitter
will advance to mark idle state 120 after the closing
flag is sent.

Abort state 124 may be entered from any of
the states, including reentry from abort state 124.
In abort state 124, the transmitter sends an abort
sequence (eight consecutive logic 1's), and then
advances to either mark idle state 120 or flag idle
state 121, as selected. If the transmitter is
commanded by external device 9 to enter abort state
124 the transmitter will immediately advance to abort
state 124 and begin sending the abort character
without waiting to send or complete sending any data
it has received from UART 18, the FCS, or any flags.

The BSC transmitter is similar to the
HDLC/SDLC transmitter except: (1) there is no state
123; (2) when a transmit FIFO buffer underrun occurs
the BSC transmitter sends the transmit FIFO buffer
empty signal and then advances to state 120 or state
121, as selected; and (3) in state 121 the BSC
transmitter sends the BSC sync characters 110, 1lll.

Figure 5 is a state diagram of the
HDLC/SDLC receiver. The HDLC/SDIC receiver also has
five states: hunt for flag 130, flag sync 131,
address 132, data 133, and end-of-frame 134. A



10

15

20

25

30

35

0224149

33

receiver reset command 129 causes the receiver to
enter hunt state 130,

In hunt state 130 the receiver scans the
incoming data on input P27 from modem engine 60 in
search of a flag character. Once a flag character is
detected the receiver advances to flag sync state
131,

In flag sync state 131 the receiver has
detected one or more flag characters and has achieved
character synchronization. The receiver remains in
this state until a non-flag character is detected.
If the non-flag character contains seven or more
consecutive logic 1 bits, as in the mark idle
character, then the receiver returns to hunt state
130. If the non-flag character has less than seven
consecutive logic 1 bits then the receiver assumes
that it is the first character of address field 102
and the receiver enters address state 132.

Upon entering address state 132 the
receiver presets the receive FCS generator to all
logic 1's. If the receiver has been programmed for
address recognition, the receiver compares the
received address character with the programmed
address; and also with the "broadcast™" address
(binary value 11111111). If the received address
character does not match either the programmed
address or the broadcast address then the receiver
returns to hunt state 130. If the received address
character matches either the programmed address or
the broadcast address, or if the receiver was not
programmed for address recognition, then the receiver
advances to data state 133.

In data state 133 the receiver continuously
accepts the serial received data stream from modem
engine 60, performs zero-bit deletion as required,



10

15

20

25

30

35

022414¢

34

collects the bits for a complete character, and
places the completed character into the received data
FIFO buffer for transmission to UART 18. The
receiver advances to end-of-frame state 134 when it
detects that a completed character is a flag
character. If the receiver detects that the serial
received data stream from modem engine 60 contains
seven or more logic 1 bits, the receiver interprets
this as an abort condition, switches to hunt state
130, and sets the abort status bit in the receiver
status register to a logic 1.

Once the receiver has entered end-of-frame
state 134 the 16-bit received FCS is compared with
the contents of the receive FCS generator. The
16-bit received FCS is also placed into the received
data FIFO buffer. The result of the comparison (FCS
good or FCS bad) and the end-of-frame indicator is
placed into the receiver status word. The receiver
status word is then placed, with an inverted parity
bit, into the received data FIFO buffer for
transmission to UART 18, The receiver then returns
to flag sync state 131.

The BSC receiver is similar to the
HDIC/SDIC receiver except: (1) there is no address
state 132 so the BSC receiver advances direétly to
data state 133; (2) there is no end-of-frame state
134 so the BSC receiver stays in data state 133 until
it is reset and then re-enters hunt state 130; (3) in
hunt state 130, the BSC receiver is searching for two
sync characters 110 and 1l1l1; and (4) the BSC receiver
advances from flag sync state 131 to data state 133
when it detects that sync characters 110 and 111 are

followed by non-sync characters (data 112, CRC 113,
or PaD 114).



10

15

20

25

30

35

0224149

35

Input/Output Registers

When in the asynchronous command state,
external device 9 gends instructions and reads status
information via sixteen 8-bit registers. These
registers are called: transmitter holding register
(THR), receiver buffer register (RBR), async register
A (ARA), async register B (ARB), interrupt enable
register (IER), interrupt identification register
(IIR), line control register (LCR), modem control
register (MCR), line status register (LSR), BSC
synchronization character register (BSCR), modem

status register (MSR), HDLC/SDLC station address

register (SAR), divisor latch registers (DLL and
DLM), modem engine rate register (MERR), and options
register (OR). Register THR is a write-only register.
Registers RBR and IIR are read-only registers. The
other registers listed above are read/write registers.
Registers BSCR, SAR and OR are only used for
synchronous operation. ]

Registers THR, RBR, 1ER, IIR, LCR, MCR,
LSR, DLL, DLM, and MSR are in UART 18. The other
registers are in processor 47. It will be
appreciated from the discussion above and from an
understanding of UART 18 that some of the register
meanings listed below apply'only to the asynchronous
mode, some apply only to the synchronous mode, and
some apply to both modes,

Register THR is the input register of the
UART 18 transmitter. 1In synchronous mode, writing a
character to this register initiates the transmission
of a frame. The character will be transmitted.once
it is transferred to the transmitter of processor 47
and exits the transmit data FIFO buffer.

Register RBR is the output register of the
UART 18 receiver. Each time a received character



10

15

20

25

30

35

0224149

36

reaches register RBR a received data available
interrupt is generated unless this interrupt has been
masked by register IER.

Register IER enables/disables interrupts
from the following conditions: received data
available; register THR is empty; modem status
changes; and line status changes.

Register IIR provides for prioritization of
interrupts. In the preferred embodiment there are
four levels of interrupt priority: 1 - line status;
2 - received data available; 3 - register THR empty;
and 4 - modem status. The line status events are:
received data available in register RBR, parity error
in received data, register RBR overrun, received
break interrupt, register THR empty, framing error,
received end-of-frame sequence, FCS check result, and
UART 18 has no data to send to processor 47. The
modem status events are a change in state of any of
the following signals: CTS on conductor 45, DCD on
conductor 46, and RI on conductor 40. Register IIR,
when addressed, freezes the highest priority
interrupt pending and no other interrupts are
acknowledged until the highest priority interrupt is
serviced by external device 9.

Register LCR provides for word select
length, number of stop bits, parity selection,
divisor latch address bit selection, transmitter
reset, receiver reset, UART 18 register addressing,
and HDLC/SDLC transmit abort instructions. A
transmitter reset instruction immediately resets the
transmitter to the mark idle state 120, or.the flag
idle state 121, depending upon the state selected in
register OR. Once the transmitter reset operation is
completed this instruction is automatically cleared.
A receiver re et instruction immediately resets the
receiver to hunt state 130. Once the receiver reset

operation is completed, this instruction is



10

15

20

25

30

35

0224149

37

automatically cleared. An HDLC/SDLC transmit abort
instruction causes the transmitter to immediately
transmit the abort character and enter mark idle
state 120 or flag idle state 121, as selected by
register OR. Once the abort character has been
transmitted and the transmitter enters the assigned
idle state this instruction is automatically cleared.

Register MCR controls the following: the
DTR signal on conductor 36; the RTS signal on
conductor 37; the oOUT1 signal on conductor 32; the
OUT2 signal on conductor 27; and UART 18 loopback.

Register LSR indicates the line status
events shown above. Register BSCR contains the eight
bit synchronization character for BSC operation.
Register MSR indicates the modem status events shown
above. Register SAR contains the station address for
external device 9 in HDLC/SDLC communications.

Registers DLL and DLM set the data rate for
SIN and SOUT of UART 18. This data rate is 9600 bps
in the synchronous mode, and is the desired data rate
(150, 300, 600, etc. bps) in the asynchronous command
mode and the asynchronous data mode.

Registers ARA and ARB set the data rate for
P30 and P37 of processor 47 to match the data rate of
SIN and SOUT of UART 18, This data rate is 9600 bps
in the synchronous mode, and is the desired data rate
(150, 300, 600, etc. bps) in the asynchronous command
mode and the asynchronous data mode.

Register MERR sets the data rate for P20
and P27 of processsor 47 and the data rate for TXD,
RXD, CTXD and CRXD of modem engine 60. This data
rate is the data rate required for communications
with remote device 100.

Register OR selects the asynchronous or
synchronous mode, selects BSC or HDLC/SDLC
communications, enables or disables HDLC/SDLC address



10

15

20

25

30

35

0224149

38

recognition, selects NRZ or NRZI encoding, and

selects mark idle or flag/sync idle.

Control and Monitoring
i Processor 47 controls and monitors the
operation of modem engine 60 through the read,
negated write, and control inputs and the
bidirectional data inputs/outputs (D0-D7) of modem
engine 60. Processor 47 controls, for example, the
following parameters of operation of modem engine 60:
data rate, auto answer enable, analog loopback,
character length selection, dual tone multiple
frequency (DTMF) dialing, pulse dialing, guard tone
enable, receive long space disconnect, etc.
Processor 47 also monitors,for example, the following
parameters of operation of modem engine 60:
dial digit register is empty, ring indicator, receive

carrier detected, tone detect, etc.

Processor 47 must communicate changes in
the monitored operation of modem engine 60 to
external device 9. However, processor 47 can only
communicate with external device 9 through UART 18.
Therefore, both received data words and status words
generated by processor 47 pass through UART 18.
External device 9 must have a method of determining
whether a word placed on bus 10 by UART 18 is a
received data word or a status word.

Tt will be recalled that, in the
synchronous mode, processor 47 adds start, stop, and
parity bits to words it sends to UART 18. 1In order
to distinguish data words from status words,
processor 47 inverts the parity bit on status words.
The inverted parity bit causes UART 18 to generate an
interrupt. When external device 9 services the
interrupt it . 11 read the status register of UART 18

and determine that a parity error has occurred. This



10

15

20

25

30

35

0224149

39

parity error alerts external device 9 that the next
word will be a status word from processor 47 and not
a received data word. '

When in the synchronous mode, all words
sent by external device 9 to processor 47 through
UART 18 are treated as transmit data words and not as
instructions. Therefore, in order to send
instructions to processor 47, external device 9
instructs UART 18 to place a logic 0 on the negated
data terminal ready (DTR) conductor 36. A logic 0 on
conductor 36 causes processor 47 to exit the
synchronous mode and enter the asynchronous command
mode.

Once processor 47 is placed in the
asynchronous command mode it treats all words from
UART 18 as instructions from external device 9 until
it receives an instruction to enter the synchronous
mode or the asynchronous data mode.

When processor 47 is in the asynchronous
command state it places a logic 1 on both conductors
53 and 54. This causes multiplexer 56 to connect its
X3 irput to its X output and its Y3 input to its Y
output. Since the Y3 input of multiplexer 56 is
connected to a logic 1, a logic 1 is placed on the
CTXD input of modem engine 60. This causes modem
engine 60 to send the mark/idle condition to remote
device 100,

Multiplexer 56 also connects the CRXD
output of modem engine 60 to the received data input
of processor 47. 1In the preferred embodiment,
processor 47 ignores the received data when in the
asynchronous command mode. However, there may be
some applications whereby it is desirable for
processor 47 to act on or pass on the received data
stream even if processor 47 is in the asynchronous
command. state.



10

15

20

25

30

35

0224149

40

If processor 47 places a logic 1 on
conductor 53 and a logic 0 on conductor 54,
multiplexer 56 will connect its X2 input to its X
output, and its Y2 input to its Y output., This
causes received data from modem engine 60 to go
directly to UART 18, and causes transmit data to flow
from UART 18, through processor 47, and then to modem
engine. This condition is not used in the preferred
embodiment but is provided in the event that an
application should arise whereby it is desirable that
transmit data be processed in some manner by
processor 47 before it is sent to modem engine 60 for
transmission to remote device 100.

In some applications it may be desirable to
be able to send instructions to processor 47 without
having to first cause processor 47 to exit the
synchronous mode. Therefore, processor 47 looks at
the transmit words coming from UART 18. 1If the
transmit word is a "DLE" charactetY, this advises
processor 47 that the next word is an instruction
word, and not a data word for transmission. However,
if two DLE characters are received in sequence,
processor 47 will interpret this as an instruction to
send a DLE character, that is, to delete the first
DLE character and to send the second DLE character to
modem engine 60. This provides a means of sending a
DLE character as part of the transmit data stream.

Similarly, if the particular application
requires that the UART 18 interrupt not be used to
indicate a status word, processor 47 will insert the
DLE character, followed immediately by the status
word, into the received data stream being sent to
UART 18. When external device 9 detects the DLE
character, it will treat the next word as a status
word. Proce sor 47 also monitors the incoming

received data stream from modem engine 60. If



10

15

20

25

30

35

0224149

41

processor 47 detects a DLE character in the received
data stream it will in ject, immediately after the
first DLE character, a second DLE character into the
received data stream to UART 18. External device 9
will recognize that two sequential DLE characters

represents one DLE character in the received data
stream,



10

15

20

25

30

35

0224149

1

Claims
1. A synchronous and asynchronous data
transmitter/receiver, characterized by:

a first data converter for providing a
first serial data signal by converting an outgoing
data signal from a parallel data format into an
asynchronous serial data format, and for providing an
incoming data signal by converting a second serial
data signal from said asynchronous serial data format
into said parallel data format:

a second data converter connected to
said first data converter, responsive to a first
ijnstruction in said first serial data signal for
providing a third serial data signal by leaving said
first serial data signal in said asynchronous serial
data format, and for providing said second serial
data signal by leaving said fourth serial data signal
in said asynchronous serial data format, and
responsive to a second instruction in said first
serial data signal for providing said third serial
data signal by converting said first serial data
signal from said asynchronous serial data format into
a synchronous serial data format, and for providing
said second serial data signal by converting said
fourth serial data signal from said synchronous
serial data format into said asynchronous serial data
format; and

a modulator/demodulator connected to
said second data converter, responsive to said third
serial data signal for providing a transmitted data
signal by modulating a carrier with said third serial
data signal, and responsive to a received data
modulated signal for providing said fourth serial
data signal by demodulating said received data
modulated signal to recover the data, said fourth

serial da.a signal being in either said asynchronous



10

15

20

25

30

35

0224149

2

serial data format or said synchronous serial data

format.

2. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said first
data converter comprises a universal-asynchronous-
receiver-transmitter.

3. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said second

data converter comprises a microprocessor.

4. The synchronous and asynchronous data
transmitter/receiver of Claim 3 wherein said second

data converter further comprises a multiplexer.

5. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said

modulator/demodulator comprises a modem engine.

6. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said first
instruction comprises a data word with an inverted

parazy bit.

7. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said first

instruction comprises a predetermined character.

8. The synchronous and asynchronous data
transmitter/receiver of Claim 7 wherein said

predetermined character is the escape character.



10

15

20

25

30

35

0224149

3

9. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said second

instruction comprises a data word with an inverted
parity bit.

10. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said second

instruction comprises a predetermined character.

1l1. The synchronous and asynchronous data
transmitter/receiver of Claim 1 wherein said

predetermined character is the escape character.



10

15

20

25

30

35

0224149

4

12. A synchronous and asynchronous data
transmitter/receiver, characterized by:

a data converter, responsive to a first
instruction in an outgoing data signal, said outgoing
data signal being in an asynchronous serial data
format, for providing a first serial data signal by
leaving said outgoing data signal in said
asynchronous serial data format and for providing an
incoming data signal by leaving a second serial data
signal in said asynchronous serial data format, and
alternately responsive to a second instruction in
said outgoing data signal for providing said first
serial data signal by converting said outgoing data
signal from said asynchronous serial data format into
a synchronous serial data format, and for providing
said second-serial data signal by converting said
second serial data signal from said synchronous
serial data format to said asynchronous serial data
format, said second serial data signal being in
either said asynchronous serial data format or said
synchronous serial data format; and

a modulator/demodulator connected to
s2id data converter, and responsive to said first
serial data signal for providing a transmitted data
signal by modulating a carrier with said first serial
data signal, and responsive to a received data
modulated signal for providing said second serial
data signal by demodulating said received data

modulated signal to recover the data.

13. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said

modulator/demodulator comprises a modem engine.



10

15

20

25

30

35

0224149

5

14. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said data

converter comprises a microprocessor.

15. The synchronous and asynchronous data
transmitter/receiver of Claim 14 wherein said data

converter further comprises a multiplexer.

16. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said first
instruction comprises a data word with an inverted

parity bit.

17. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said first

instruction comprises a predetermined character.

18. The synchronous and asynchronous data
transmitter/receiver of Claim 17 wherein said

predetermined character is the escape character.

19. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said second
control signal is the inverse of said first control

signal.

20. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said second
instruction comprises a data word with an inverted

parity bit.

21. The synchronous and asynchronous data
transmitter/receiver of Claim 12 wherein said second

instruction comprises a predetermined character.



10

LS

20

i0

0224149
6

22. The synchronous and asynchronous data
transmitter/receiver of Claim 21 wherein said
predetermined character is the escape character.



10

15

20

25

30

35

0224149

7

23. A bidirectional serial data format
converter for selectably passing a first input data
stream and a second input data stream in a first data
format or converting said first input data stream and
said second input data stream into a second data
format, wherein said converter is characterized by:

a processor responsive to a first
instruction in said first input serial data stream
for providing a first control signal, and alternately
responsive to a second instruction in said first
input serial data stream for providing a second
control signal, for providing a first converted data
stream by converting said first input data stream
from said first data format into said second data
format, and for providing a second converted data
stream by converting said second input data stream
from said first data format into said second data
format; and

a data selector comprising a first
input, a second input connected to said processor, a
third input, a fourth input connected to said
processor, a control input connected to said
processor, a first output, and a second output, and
responsive to said first control signal for providing
a first output serial data stream in said first data
format by passing said first input serial data from
said first input to said first output and a second
output serial data stream in said first data format
by passing said second input data stream from said
third input to said second output, and alternately
responsive to said second control signal for
providing said first output serial data stream in
said second data format by passing said first
converted data stream from said second input to said
first output, and for providing said second output

serial dataz stream in said first data format by



10

15

20

25

30

35

0224149

8

passing said second converted data stream from said
fourth input to said second output.

24, The bidirectional serial format
converter of Claim 23 wherein said processor
comprises a micrbpr0cessor.

25. The bidirectional serial format
converter of Claim 23 wherein said data selector
comprises a two-channel multiplexer.

26. The bidirectional serial format
converter of Claim 23 wherein said first instruction

comprises a data word with an inverted parity bit.

27. The bidirectional serial format
converter of Claim 23 wherein said first instruction

comprises a predetermined character.

. 28. The bidirectional serial format
converter of Claim 27 wherein said predetermined

character is the escape character.

29. The bidirectional serial format
converter of Claim 23 wherein said second control

signal is the inverse of said first control signal.

30. The bidirectional serial format
converter of Claim 23 wherein said first data format

is an asynchronous serial data format.

31. The bidirectional serial format
converter of Claim 23 wherein said second data format

is a synchronous serial data format.



10

15

20

25

30

35

0224149

9

32. The bidirectional serial format
converter of Claim 23 wherein said second instruction

comprises a data word with an inverted parity bit.

33. The bidirectional serial format
converter of Claim 23 wherein said second instruction

comprises a predetermined character.

34. The bidirectional serial format
converter of Claim 33 wherein said predetermined

character is the escape character.

35. The bidirectional serial format
converter of Claim 23 wherein said processing means
is further responsive to a plurality of instructions

for changiné the operating parameters of said

processor.

36. The bidirectional serial format
converter of Claim 35 wherein said operating

parameters comprise the baud rate.

37. The bidirectional serial format
converter of Claim 36 wherein said operating

parameters further comprise the parity selected.



10

15

20

25

30

35

cow H e e e an R

0224149

10

38. In a method of operating a system
whereby information data is exchanged between devices
by encoding said information data as an information
data word, said information data word being
characterized by a first predetermined parity, and
transferring said information data as a series of
data words, said series of data words comprising a
plurality of said information data words, a method
for exchanging control data between said devices,
characterized by:

a transmitting procedure characterized
by:
(a) encoding said control data as
a control data word wherein said control data word is
characterized by a second predetermined parity; and
(b) inserting said control data
word into said series of data words; and
a receiving procedure characterized by:
(c) inspecting the parity of each
data word in said series of data words; and
(d) processing each said data word
having said second predetermined parity as one of
said control data words. '



10

15

20

25

30

35

0224149

11

39. In a method of operating a systenm
whereby information data is exchanged between devices
by encoding said information data as an information
data word and transferring said information data as a
series of data words, a method for exchanging control
data between said devices, characterized by:

a transmitting procedure characterized
by:
(a) generating a signal word
corresponding to a predetermined character;
(b) generating a control word
corresponding to said control data; and
(c) inserting into said series of.
data words said signal word followed immediately by
said control word; and
a receiving procedure conducted
concurrently with said transmitting procedure,
characterized by:
(d) inspecting said series of data
words for said signal word;
(e) processing the data word
immediately following a said signal word as a control
word.

40. The method of Claim 39 wherein said

predetermined character is the escape character.



10

15

20

25

30

35

0224149

12

41. In a method of operating a systenm
whereby information data is exchanged between devices
by encoding said information data as an information
data word and transferring said information data as a
series of data words, a method for exchanging control
data between said devices, characterized by:

a transmitting procedure characterized
by:

(a) generating a signal word
corresponding to a predetermined character;

(b) generating a control worgd
corresponding to said control data;

(c) inserting into said series of
data words said signal word immediately followed by
said control word;

(d) comparing each said
information data word with said signal word; and

(e) if a said information data
word is said signal word, inserting said signal word
into said series of data words immediately after said
information data word: and

@ receiving procedure conducted
concurrently with said transmitting procedure,
characterized by:

(f) inspecting said series of data
words for said signal word;

(g) if a data word in said series
is said signal word, comparing the immediately
following data word with said signal word;

(h) if the immediately following
data word is a word other than said signal word,
processing said immediately following data word as a
control word.

42. The method of élaim 41 wherein said

predetermined character is the escape character.



10

15

20

25

30

35

0224149

13

43. In a method of operating a systemn
comprising a data set and a data terminal, a first
port of said data set being connected to a first port
on said data terminal, said data set and said data
terminal communicating through said first ports by
means of an asynchronous serial data interface, said
data set also having a second port usable for
synchronous communications with an external device,
said data set being operable in at least either a
synchronous data mode or an asynchronous command
mode, a method of using said asynchronous serial data
interface to control the mode of said data set and to
regulate the flow of data between said data set and
said data terminal, characterized by:

using the clear-to-send line to
indicate that said data set is ready to accept data
from said data terminal;

using the data-terminal-ready line to
cause said data set to exit said synchronous data
mode and then enter said asynchronous command mode;

using the ready-to-send line to cause a
synchronous data receiver in said data set to enter
the hunt state; and

using the ring indicator line to advise
said data terminal that said data set is sending an

end-of-frame sequence from said second port.



0224149

Q1 Qg — ¥ DE-A
m:bl‘ i . m . Bl‘ i m
OV =16 O SIOUN IXB™ ) ‘ e oo L3S
= (
120'9NIG0080 [T {ov 1353 i |
WOY 711> e ev & |
. 0 WTTIIT & | LR =
V- Qv ] podood i o
10-00} T Jeicd-oid m INI lllmii N [T
om\ " w | N Siad| ¢z 7
LQ-TOUINOD|$4] 01907 | | lﬂ!Mu.lm
00 LM Alm ] QL7 150 | 1)
| Qv (3] 70V [ 207 | m & g
0B R.\ i —
00) £l . o | —
Ol S = | | e
Sona QX[ Gg T "lid N Ny @Jw <
[® Jéd o[ SO
e ¥ 1 [ec|e | 4100 z_u
T04INOD Qv * !
v | | vaoon | | ok LAy 4 BT PR M
NI elv PR WX [ | MO0 | | VL Jp)
INOHJATAL X XSIE0Cd I 9
9 o ¢ vl o
axd || e | i
20 =] 9 " T naih ¢zd Moz S Re ol gt G a0 L.
AT @aaia _N»UU1.AIR 0o Gt & 3 sa-0af S Vi)
Y = QA JOO0Z2 Otdl T 1 s |4nos g mﬁmﬁ% ¥ Sng Lo
(48 oG’ m 2% -0 7 }3J1A30
66L___ INS 050 d 6 [IvNI3LX3




—-— ‘_,.)..

0224149

o {02 o405
FLAG |ADDRESS|  DATA... FCS | FLAG
NUMBER OF BITS: 8 3 N & 8
RECEIVER
9 RESET

(34

EVALUATE
FCS

FLAG
MATCH

33

DATA

ADDRESS



...3/3..

0224149
C 0 M (iZa 12610m (3 (4
! SYNC. | SWC. | ioatA | | crc | eaD
NUMBER OF BITS & 5 8N 6 8
TRANSMITTER
(o RESET
FIFQ
EMPTY
(20T MARK
IDLE

[T Fa\\FIFO EMPTY &
IDLENN\MARK IDLE

FIFO EMPTY & | |[ABORT
MARK 1DLE FLAG

237 FCS FLAG !

FLAG \DLE
DATA
ABORT FIF ABORT

ABORT
(24

ORDERRUN SNAL
: DAT;
END OF MESSAGE F\é\O‘N

DATA
(22

MORE DATA
TO SEND

Fae @



	bibliography
	description
	claims
	drawings

