11 Veröffentlichungsnummer:

0 224 792 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 86115967.1

(5) Int. Cl.4: **B21D 37/04**, B21J 13/08

2 Anmeldetag: 18.11.86

3 Priorität: 28.11.85 CH 5089/85

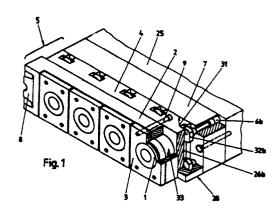
Veröffentlichungstag der Anmeldung: 10.06.87 Patentblatt 87/24

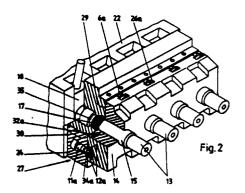
Benannte Vertragsstaaten:

AT BE CH DE FR GB IT LI NL SE

Anmelder: Hatebur Umformmaschinen AG General Guisan-Strasse 21 CH-4153 Reinach(CH)

② Erfinder: Broquet, Joseph Laufenstrasse 117 CH-4249 Wahlen(CH)


Erfinder: Schoenenberger, Raymond


17 rue du centre F-68300 Rosenau(FR)

Vertreter: Eschmann, Heinz et al A. Braun, Braun, Héritier, Eschmann AG Patentanwäite Holbeinstrasse 36-38 CH-4051 Basel(CH)

Werkzeugwechseleinrichtung einer mehrstufigen Umformmaschine.

57 Bei der vorgeschlagenen Werkzeugwechseleinrichtung sind die Stempelwerkzeuge (13) und die Matrizenwerkzeuge (1) jeweils in einem nach Art eines Wechselmagazins ausgebildeten Stempelwerkzeugblock (14) bzw. Matrizenwerkzeugblock (5) gelargert. An den beiden Werkzeugblöcken befinden sich jeweils Spannflächen (29, 31), mit denen der Stempelwerkzeugblock (14) an einer am Preßschlitten (22) angebrachten Stempel-Verspanneinrichtung (30) und gleichzeitig an der Front des Preßschlittens (22) festspannbar ist, während der Matrizenwerkzeugblock (5) an einer am Maschinenkörper (25) angebrachten Spannplatte (7) festgespannt werden kann. Zur vertikalen und horizontalen Zentrierung dienen hydraulisch betätigbare Zentrierelemente (11a, b), die im Bereich der Spannflächen (29 bzw. 31) angreifen. Das Aufspannen erfolgt über hydraulisch betätigbare Spannelemente (6a, b). Sämtliche Spann-und Zentrierelemente zum Aufspannen der Werkzeugblöcke (14 und5) sowie sämtliche Koppelungs-Spannelemente (35), die zur kraftschlüssigen Verbindung der Stempelwerkzeuge (13) mit dem Preßschlitten (22) dienen, lassen sich von einem zentralen Kommandopult aus ansteuern.

Werkzeugwechseleinrichtung einer mehrstufigen Umformmaschine

Die Erfindung bezieht sich auf eine Werkzeugwechseleinruchtung nach dem Oberbegriff des Patentanspruchs 1.

1

Derartige Einrichtungen sollen vor allem ein möglichst rasches Auswechseln der Stempel-und Matrizenwerkzeuge im Werkzeugraum einer Umformmaschine ermöglichen, damit die entsprechenden Umrüstzeiten, die einen Maschinenstillstand erfordern, so kurz wie möglich gehalten werden können.

Bei bekannten Einrichtungen dieser Art sind die Werkzeuge in Werkzeugwechselhalterungen befestigt und müssen zum Teil einzeln ausgetauscht und innerhalb des Werkzeugraums der Umformmaschine verspannt werden. Diese zum Teil kraftaufwendigen Arbeiten müssen innerhalb des häufig engen Werkzeugraums und in unbequemer Körperstellung ausgeführt werden, wodurch ein zuverlässiges gleichförmiges Verspannen sämtlicher Werkzeugpakete oft nur schwer durchführbar ist. In jedem Fall bedingt ein in bekannter Weise stattfindender Werkzeugaustausch relativ lange Umrüstzeiten, in denen die Maschine stillstehen muß. Eine teilweise Automatisierung bei bekannten Werkzeugwechseleinrichtungen besteht darin, daß das Lösen und Anziehen der Spannschrauben von einer Vorrichtung übernommen wird. Da aber die Betätigung aller Befestigungselemente mittels dieser Vorrichtung auch eine relativ lange Zeit in Anspruch nimmt, wird mit dieser bekannten Teilautomatisierung nur eine unerhebliche Zeitersparnis erzielt.

Aus der DE-OS 19 66 879 und der US-PS 3 559 446 ist es bekannt, auf einer Haltevorrichtung, die in einer bestimmten Lage einen Amboß trägt. Werkzeuge auf diesem Amboß und einerAufspannplatte für eine Verwendung in einer Umformmaschine voreinzustellen. Zwar wird bei dieser bekannten Einrichtung eine gewisse Zeitersparnis gegenüber Werkzeugwechselsystemen erzielt, deren Werkzeuge jeweils einzeln in den Werkzeugraum eingebaut werden müssen, jedoch erfordert die aus den genannten Dokumenten bekannte Einrichtung ein aufwendiges Justieren und Verspannen der bekannten Werkzeugwechselhalterungen beim Einbau in die Umformmaschine, so daß durch die bekannte Voreinstellung der Werkzeuge auf dem Amboß und der Aufspannplatte mittels der besagten Haltevorrichtung insgesamt nur eine geringe Standzeitverkürzung erreicht werden kann.

Ein weiterer Nachteil besteht bei bekannten Werkzeugwechseleinrichtungen und insbesondere auch bei der in den obengenannten Dokumenten beschriebenen darin, daß die Stempel-und Matrizenwerkzeuge, unverspannt in den Werkzeughalte-

rungen geführt sind. Dadurch kommt es während des laufenden Betriebs relativ häufig zu erhöhtem Verschleiss dieser Werkzeugführungen und einem Setzen der Werkzeugteile, was ein zunehmendes Spiel zwischen Werkzeughalter und Maschinenkörper zur Folge hat, das während des Betriebs nicht mehr ausgeglichen werden kann. Ein daraus sich ergebendes Lösen der Verspannung des entsprechenden Werkzeughalters mit dem Preßschlitten oder dem Maschinenkörper kann oft erst dann erkannt werden, wenn bereits eine Beschädigung oder gar Zerstörung der zusammenwirkenden Werkzeuge aufgetreten ist.

Die Aufgabe der Erfindung besteht darin, eine Werkzeugwechseleinrichtung zu schaffen, bei der die Werkzeuge für einen raschen automatischen bzw. halbautomatischen Wechsel in einer Weise, die einen verschleißarmen Betrieb erwarten läßt, außerhalb des Werkzeugraumes der Umformmaschine vorbereitet werden können und die in kürzester Zeit unter Einsatz einer zentralen Steuerung sowohl den Austausch der Stempel als auch der Matrizenwerkzeuge problemlos und bei zuverlässiger Werkzeugjustierung gestattet.

Die erfindungsgemäße Lösung dieser Aufgabe ist insbesondere in den kennzeichnenden Merkmalen des Patentanspruchs 1 definiert. Weitere Einzelheiten ergeben sich aus den entsprechend rückbezogenen Unteransprüchen.

Bedingt durch die erfindungsgemäße Anordnung der Stempel-und Matrizenwerkzeuge nach Art von Wechselmagazinen in Werkzeugblöcken, können diese außerhalb der Maschine einsatzbereit gemacht werden, so daß die für den Werkzeugwechsel benötigte Stillstandzeit der Maschine allein die Dauer des Werkzeugblockaustausches in Anspruch nimmt.

Bei der erfindungsgemäßen Art des Aufspannens der matrizen-und stempelseitigen Werkzeugblöcke befinden sich die Spannelemente in entsprechenden preßschlitten-oder schinenkörperseitigen Aufspannteilen und ragen aus diesen lediglich mit Kolbenkopfabschnitten der druckmittelbetätigten Kolben-Zylinder-Einheiten heraus; diese Kopfabschnitte sind in im jeweils auszuwechselnden Werkzeugblock senkrecht zur Reihe der jeweiligen Werkzeuge ausgesparte T-Nuten einführbar, und die Werkzeugblöcke können dann bei einer entsprechenden Druckmittelbeaufschlagung der Spannelemente gegen die maschinenkörper-bzw. preßschlittenseitigen druckflächen gespannt werden. Die Verlagerung Kolbenkopfabschnitte zwischen Werkzeugblock-Löseposition, in der der Block vertikal zur Hubrichtung des Preßschlittens aus dem

Werkzeugraum herausgenommen werden kann, und einer den jeweiligen Werkzeugblock einsatzbereit festspannenden Stellung erfolgt von einem zentralen Kommandopult aus über entsprechende Druckmittelsteuereinrichtungen, vorzugsweise eine Hydrauliksteuerung. Die Kolben-Zylinder-Einheiten können zur Erzielung hoher Anpreßdrücke als Tandemzylinder ausgeführt sein, um kleinere Kolbendurchmesser zu erhalten.

Außer den Spannelementen verbleiben beim Werkzeugblockaustausch in den maschinenkörperbzw. preßschlittenseitigen Aufspannteilen ebenfalls druckmittelbetätigbare Zentrierelemente, welche mit passenden Kolbenabschnitten in an der Spannfläche des jeweiligen Werkzeugblocks vorgesehene Zentrieraussparungen eingreifen können. Diese Zentrierelemente sind vom zentralen Kommandopult aus betätigbar. Über eine entsprechende Druckmittel-Steuereinrichtung, vorzugsweise ebenfalls eine Hydrauliksteuerung, läßt sich das Festspannen der Werkzeugblöcke durch die Spannelemente mit dem Einfahren der Kolbenabschnitte der Zentrierelemente in die passenden Zentrieraussparungen so steuern, daß ein lagerichtiges Positionieren des gesamten jeweiligen Werkzeugblocks automatisch während des Festspannens des Werkzeugblocks ausgeführt wird. Die hierbei erzielte Zentrier-und Justiergenauigkeit ist derart hoch, daß ein gesondertes Ausrichten von stempel-und matrizenseitigen Werkzeugen zueinander in horizontaler und vertikaler Richtung entfallen kann.

Bei der erfindungsgemäßen Werkzeugwechseleinrichtung ist zwischen dem Stempelwerkzeugblock und dem Preßschlitten eine Stempel-Verspanneinrichtung mit jeweils auf die Stempel-Längsmittelachsen ausgerichteten Koppelungs-Spannelementen vorgesehen, die eine kraftschlüssige spielfreie Verbindung zwischen den Stempelwerkzeugen einerseits und dem Preßschlitten andererseits erzeugen. Diese Kopplungs-Spannelemente erfassen über eine im Bereich der Stempelwerkzeugblock-Trennebene angeordnete lösbare Bajonettverbindung die jeweiligen Stempelwerkzeuge an ihren hinteren Endabschnitten und pressen diese über ein Druckstück zwischen dem Preßschlitten und dem Stempelende druckmittelgesteuert an die Preßschlittenfront. Bedingt durch die entsprechend dem aufgebrachten Druck erzeugte Anpreßkraft an der Preßschlittenfront wird jegliches Spiel an den Stempelwerkzeugensowie zwischen diesen und dem Preßschlitten ausgeschlossen. Der während des Betriebs aufrechterhaltene und gegebenenfalls überwachte Anpreßdruck der Stempelwerkzeuge gegen die Preßschlittenfront sorgt in jeder Stellung der betreffenden Maschinenteile für Auflagebedingungen, welche bei herkömmlichen Werkzeug-Spannvorrichtungen nicht erreicht wer-

den können. Ein bei herkömmlichen Einrichtungen auftretendes Deformieren oder Setzen der belasteten Werkzeugteile, das sich auf die Spannkraft der Verbindungselemente auswirkt, wird bei der erfindungsgemäßen Einrichtung durch konstante Druckmittelbeaufschlagung der betreffenden Stempelwerkzeuge ausgeglichen, bzw.es können derartige Verschleißerscheinungen erst gar nicht auftreten. Damit ist einsehbar, daß die Stempel-Verspanneinrichtung der erfindungsgemäßen Werkzeugwechseleinrichtung eine hohen Beitrag zur Verschleißreduktion der gesamten Werkzeuge leistet. Über einen in den Druck mittelkreislauf der Stempel-Verspanneinrichtung eingebauten Druckwächter läßt sich der Anpreßdruck der Verspanneinrichtung während des laufenden Betriebs überwachen bzw. von einer entsprechenden Sicherheitseinrichtung kontrollieren, welche Unterschreiten eines vorgegebenen Mindestdrucks die Maschine stillsetzt und die Art der Störung anzeigt.

Weitere Einzelheiten und Funktionszusammenhänge ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels der erfindungsgemäßen Werkzeugwechseleinrichtung anhand von Zeichnungen. Es zeigen:

Fig. 1 eine perspektivische Teilansicht eines Matrizenwerkzeugblocks nach den Merkmalen der Erfindung, befestigt an einem Maschinenkörper,

Fig. 2 eine perspektivische Teilansicht eines Stempelwerkzeugblocks, der frontseitig an einem Preßschlitten angebracht ist,

Fig. 3 eine schematische Schnittdarstellung einer Zentriereinrichtung,

Fig. 4 eine schematische Schnittansicht einer Stempel-Verspanneinrichtung,

Fig. 5a eine schematische Schnittdarstellung durch einen Matrizenwerkzeugblock der über eine Spannplatte am Maschinenkörper befestigt ist, bei einer Schnittführung durch die Längsmittelachse eines Matrizenwerkzeugs zur Verdeutlichung des qualitativen Druckspannungsverlaufs unter Preßkraft.

Fig. 5b eine schematische Darstellung entsprechend der in Fig. 5a zur Veranschaulichung des qualitativen Druckspannungsverlaufs unter Preßkraft bei herkömmlichen, unter Verwendung eines Amboß aufgebauten Matrizenwerkzeugen, und

Fig. 5a' und 5b' zeigen den entsprechenden Druckspannungsverlauf.

Der in Fig. 1 gezeigte Matrizenwerkzeugblock 5 besitzt eine Zentrierplatte 2, welche in Aufnahmebohrungen 33 Matrizenwerkzeuge 1 umfangsseitig abgestützt aufnimmt, so daß eine nebeneinanderliegende Reihe einzelner Matrizenwerkzeuge für aufeinanderfolgende Umformstufen gebildet wird. An dem gemäß Fig. 1 linken Endabschnitt der Zentrierplatte 2 ist ein Stangenmesser 8 sichtbar,

das zum Abtrennen von in denWerkzeugen zu bearbeitenden Rohlingen dient. Auf die Matrizenwerkzeuge 1 sind von der Vorderseite des Werkzeugblocks 5 her jeweils einzelne Spannbrillen 3 aufgesetzt, welche mit jeweils vier an ihren Eckbereichen ausgebildeten Gewindebohrungen versehen sind. An der den Spannbrillen 3 abgewandt liegenden Fläche der Zentrierplatte 2 ist eine Adapterplatte 4 angesetzt, welche die Matrizenwerkzeuge 1 an ihrem hinteren Ende abstützt. In der Schnittdarstellung gemäß Fig. 5a ist ersichtlich, daß die Adapterplatte 4 eine im Vergleich zu der Darstellung in Fig.5b relativ großflächige Abstützung für die Matrizenwerkzeuge 1 ausbildet. Von der Adapterplattenrückseite her sind für 'jede Spannbrille 3 vier Spannschrauben 9 eingesetzt, welche den gesamten Matrizenwerkzeugblock zu einer einbaubereiten Werkzeugeinheit zusammenspannen, die eine insgesamt geringe Bautiefe besitzt.

Wie ferner aus Fig. 5a ersichtlich, gestattet die Plazierung der Spannschrauben 9 in den Eckbereichen der Spannbrillen 3 den Einsatz eines Schrumpfringes 10, der wesentlich kürzer und ohne schwächende Gewindebohrungen ausgebildet sein kann, als dies bei den herkömmlichen Matrizenpaketen nach Fig.5b der Fall war. Die bei dem Matrizenwerkzeugblock 5 gemäß Fig. 5a mögliche Vergrößerung der hinter den Matrizenwerkzeugen 1 liegenden Werkzeugteile führen zu einem insgesamt günstigen Druckspannungsverlauf innerhalb der Matrizenabstützung, da für die Aufnahme der Preßkräfte jeweils größere Aufnahmeflächen zur Verfügung stehen als bei herkömmlichen Matrizenpaketen. Der bei iedem Beispiel zu erwartende Preßkraftverlauf ist in den Fig. 5a und 5b durch strichpunktierte Linien eingezeichnet und als Øa bzw. Øb angegeben. Diese Durchmesserbenennung bezieht sich auf das jeweilige direkt in Kontakt mit dem betreffenden Matrizenpaket befindliche Druckaufnahmeteil. Aus den zu den beiden Figuren angeführten Diagrammen der Druckspannungsverläufe unter Preßkraft lassen sich entsprechende Rückschlüsse auf den jeweils zu erwartenden Werkzeugverschleiß bzw. auf die Materialbeanspruchung ziehen.

Der in Fig. 1 schematisch angedeutete Maschinenkörper 25 trägt frontseitig eine Spannplatte 7, auf welcher der Matrizenwerkzeugblock 5 mit seiner Adapterplatte 4 an einer bezüglich der Matrizen-Längsmittelachsen querverlaufenden Aufspannfläche 31 festspannbar ist. Die gesamte montierte Einheit bildet die Werkzeugwechselhalterung 28. Zum Festspannen des Werkzeugblocks 5 auf der Spannplatte 7 sind beim dargestellten Beispiel in der Adapterplatte 4 fünf senkrecht zur Reihe der Matrizenwerkzeuge 1 verlaufende T-Nuten 26b ausgespart. In diese Nuten 26b greifen entsprechend geformte Kolbenkopfabschnitte 32b

ein, welche die Kolbenenden von hydraulisch betätigten Kolben-Zylinder-Einheiten (Spannelemente 6b) bilden. Gemäß Fig. 1 sind für jede Nut 26b zwei Spannelemente 6b in der Spannplatte 7 vorgesehen. Aus der Zeichnung ist ersichtlich, daß bei gelösten Spannelementen 6b der Werkzeugblock 5 rechtwinklig zur Achse der Reihe der Matrizenwerkzeuge 1 von der Spannplatte 7 abgenommen werden kann. Eine nicht dargestellte Transporteinrichtung kann zum entsprechenden Abtransport eines auf diese Weise abgenommenen Matrizenwerkzeugblocks vorgesehen sein. Die Spannelemente 6b sind an eine zentrale Hydraulikanordnung angeschlossen, und deren Kolbenverlagerung ist von einem zentralen Kommandopuit aus steuerbar.

Neben dem Vorteil des raschen Lösens des Matrizenwerkzeugblocks 5 von der Spannplatte 7 durch eine entsprechende Betätigung der Spannelemente 6b, bietet deren Verwendung noch den weiteren Vorteil, daß ein nie gänzlich zu eliminierender Verschleiß und ein dadurch entstehendes Spiel zwischen dem Matrizenwerkzeughalter 5 und der Aufspannfläche der Spannplatte 7 durch die im Betrieb unter Druck stehenden Spannelemente praktisch im Entstehen bereits ausgeglichen werden. Daher kann man sagen, daß ein gleichbleibend hoch gehaltener Anpreßdruck der Spannelemente 6b dafür sorgt, daß bei den aufeinandertreffenden Maschinenteilen stets Auflagebedingungen geschaffen werden, welche mit denen im Neuzustand der Maschine vergleichbar sind. Auch ist es möglich, in den die Spannelemente 6b versorgenden Hydraulikkreis Druckwächter einzubauen, um auf diese Weise den Anpreßdruck zu kontrollieren bzw. über eine Sicherheitsanordnung überwachen zu können und bei einer Störung deren Ursache zur Anzeige zu bringen.

Die Stempelwerkzeuge 13 sind gemäß Fig. 2 in einem Stempelwerkzeugblock 14 gelagert und in Büchsen 15 geführt. In ganz entsprechender Weise wie bei dem Matrizenwerkzeugblock sind an einer Spannfläche 29 dieses Werkzeugblocks 14 senkrecht zur Reihe der Stempelwerkzeuge 13 verlaufende T-Nuten 26a ausgespart, in welche entsprechend geformte Kolbenkopfabschnitte 32a von Spannelementen 6a eingreifen, die mit ihren druckmittelbetätigbaren Kolben-Zylinder-Einheiten in einer Aufspannplatte 24 einer Stempel-Verspanneinrichtung 30 untergebracht sind. Der Stempelwerkzeugblock 14 bildet zusammen mit der Stempel-Verspanneinrichtung 30 die stempelseitige Werkzeugwechselhalterung 27, die sich frontseitig an dem Preßschlitten 22 befindet. Die Spannelemente 6a sind entsprechend aufgebaut, wie die obenbeschriebenen Spannelemente 6b, einschließlich ihrer Druckmittelbetätigungseinrichtung.

30

45

In Fig. 2 ist ein hydraulisch betätigbares Zentrierelement 11a sichtbar, das beim Matrizenwerkzeugblock 5 gemäß Fig. 1 in entsprechender Weise zwischen der Spannplatte 7 und der Adapterplatte 4 vorgesehen ist. Ein derartiges Zentrierelement ist in Fig. 3 im einzelnen dargestellt und dient zur Zentrierung der jeweiligen Werkzeugblöcke 5 bzw. 14 an ihren Aufspannflächen in vertikaler und horizontaler Richtung während des Aufspannvorgangs. Das in Fig. 3 sichtbare Zentrierelement 11b ist in der Spannplatte 7 untergebracht und besitzt einen hydraulisch betätigbaren Kolben, dessen Kolbenabschnitt 34b konisch geformt ist, um in konische Flächen von Zentrieraussparungen 12b in der Adapterplatte 4 eingreifen zu können. Diese hydraulisch betätigbaren Zentrierelemente 11a und 11b werden abgestimmt auf die Spannwirkung der hydraulischen Spann elemente 6a und 6b, vom zentralen Kommandopult aus betätigt, so daß im wesentlichen gleichzeitig mit dem Aufspannen eine exakte Positionierung erfolgt. Nach einem Lösen der hydraulischen Spannelemente 6a und 6b können die Zentrierelemente 11a und 11b gewünschtenfalls noch solange in Eingriff mit ihren Zentrieraussparungen 12a und 12b gehalten werden, bis die Vertikalverlagerung des jeweiligen Werkzeugblocks, beispielsweise bei einem Austausch. erfolgen soll, um so eine vorzeitige Verlagerung des bereits gelösten Werkzeugblocks sicher unterbinden zu können. Für jeden Werkzeugblock sind mindestens zwei Zentrierelemente erforderlich.

Die Stempel-Verspanneinrichtung 30 weist gemäß Fig. 2 eine Reihe mit den jeweiligen Stempel-Längsmittelachsen fluchtende Koppelungs-Spannelemente 35 auf, welche eine kraftschlüssige spielfreie Verbindung zwischen den Stempelwerkzeugen 13 einerseits und dem Preßschlitten 22 andererseits erzeugen können. Die Koppelungs-Spannelemente 35 sind gemäß Fig. 4 an der der Spannfläche zugewandten Seite der Aufspannplatte 24 mit je einer Bajonettverbindung 17 versehen, welche spannelementseitig eine Anschlußmuffe 36 aufweist, die mit einem an dem jeweils hinteren Endabschnitt eines Stempelwerkzeug 13 vorgesehenen Muffengegenstück 37 zusammenschließbar ist. Ferner besitzt jedes der Spannelemente 35 einen Hohlkolben 16, der innerhalb der Aufspannplatte 24 druckmittelgesteuert relativverschiebbar geführt ist und in seinem Innenbereich ein relativverlagerbares Druckstück 19 aufnimmt, das einerseits an dem hinteren Ende des Stempelwerkzeugs 13 und andererseits an einer Abstützfläche 39 eines im Preßschlitten 22 vertikal verschiebbar geführten Verstellkeils 18 anliegt. Wenn gemäß der Darstellung in Fig. 4 der Hohlkol-16 über den Druckmittelkreis (Hydraulikkanäle) in Richtung des eingezeichneten Doppelpfeils nach rechts verlagert wird, erfolgt bei

geschlossener Bajonettverbindung 17 eine gleichzeitige Verlagerung des betreffenden Stempelwerkzeugs in diese Richtung, wodurch das Werkzeug 13 entsprechend dem Hydraulikdruck, der auf den Hohlkolben 16 wirkt, gegen den Verstellkeil 18 und damitgegen die Front des Preßschlittens 22 angedrückt wird. Bei einer Aufrechterhaltung des Hydraulikdrucks auf den Hohlkolben 16 wird praktisch jedes Spiel zwischen dem Stempelwerkzeug und der Preßschlittenfront eliminiert.

Der in Fig. 4 sichtbare Verstellkeil 18 dient zur axialen Einstellung der Stempelwerkzeuge. Zu diesem Zweck muß der Hohlkolben 16 druckfrei gemacht werden, damit eine Verlagerung des Druckstücks 19 in seinem Inneren je nach der Vertikalverstellung des Keils 18 erfolgen kann. Zur Fernbetätigung der Keilverstellung ist in Fig. 4 ein Motorantrieb 23 schematisch dargestellt, der über eine Gewindespindel eine gewünschte Vertikalverschiebung des Verstellkeils 18 ausführen kann. Auch die Ansteuerung dieses Antriebs 23 läßt sich vom zentralen Kommandopult aus betätigen. Nach erfolgter Axialeinstellung des Stempelwerkzeugs 13 kann der Hohlkolben wieder in der beschriebenen Weise unter Druck gesetzt werden, um die Axialverspannung zu erreichen. Auch in den Druckmittelkreis 38 des Hohlkolbens 16 kann Druckwächter eingebaut sein, um den Spanndruck des Hohlkolbens überwachen zu können.

Für ein Austauschen des Stempelwerkzeugblocks 14 ist es neben dem bereits beschriebenen Lösen der Spannelemente 6a notwendig, auch die Bajonettverbindung 17 zwischen dem jeweiligen Stempelwerkzeug 13 und der Stempel-Vespanneinrichtung 30 zu öffnen. Dazu dient ein in Fig. 4 lediglich schematisch angedeuteter Drehantrieb 21. der, ebenfalls zentral gesteuert, alle Stempelwerkzeuge 13 so weit verdrehen kann, bis die Muffenteile 36, 37 auseinandergezogen werden können. Bei einem solchen Auseinanderziehen der Bajonettverbindungen 17 werden die Stempelwerkzeuge 13 gemäß Fig.4 nach links bewegt, bis ihre hinteren Enden aus dem Bereich des Hohlkolbens 16 herausgetreten sind und der Stempelwerkzeugblock 14 über die T-Nuten 26a geführt, in vertikaler Richtung aus dem Werkzeugraum herausgehoben werden kann. Diese Verlagerung des Stempelwerkzeugblocks 14 kann von Hand oder mittels einer geeigneten, nicht abgebildeten Hub-und Transporteinrichtung, gegebenenfalls auch ferngesteuert, ausgeführt werden.

Neben den bereits beschriebenen Vorteilen der matrizen-und stempelseitigen Werkzeugblockausführung wird mit der erfindungsgemäßen grundsätzlichen Umgestaltung und Automatisierung des Werkzeugraumes von Umformmaschinen ein Werkzeugblock-Schnellwechselsystem geschaffen, das die Produktionsmöglichkeiten derartiger

Umformmaschinen entscheidend erweitert. Bedingt durch das schnelle Umrüsten können nun auch Kleinserien günstig produziert werden, da die Werkzeugstandzeit durch den neuartigen Aufbau der Werkzeugblöcke und die verschleißarme Aufspannweise größer wird als die Serienzahl, weshalb ein Auswechseln von verschlissenen Werkzeugen, notgedrungenermaßen einen schinenstillstand zur Folge hätte, unnötig geworden ist. Gerade die bei herkömmlichen Umformmaschinen üblichen relativ langen Umrüstzeiten haben die Produktion von Kleinserien kostenaufwendig gestaltet. Neben diesen produktionsbezogenen Vorteilen werden aber auch die Arbeitsbedingungen im Zusammenhang mit dem Werkzeugraum verbessert, da ein Werkzeugblockwechsel ohne großen Kraftaufwand vorgenommen werden kann. Auch bleibt infolge des geringen Zeitaufwandes für einen Werkzeugblockwechsel genügend Freiraum, um z.B. andere Aggregate der Umformmaschine überprüfen und gegebenenfalls austauschen zu können.

Ansprüche

1. Werkzeugwechseleinrichtung einer mehrstufigen, zur spanlosen Umformung von Metallteilen dienenden Umformmaschine mit einem hin-und herbeweglich angetriebenen Preßschlitten (22) und einem diesem in Hubrichtung gegenüberliegenden ortsfesten Maschinenkörper (25) mit jeweils an der Preßschlitten-und der Maschinenkörperfront vorgesehenen Werkzeugwechselhalterungen (27,28), die preßschlittenseitig einen austauschbaren Satz Stempelwerkzeuge (13) und maschinenkörperseitig einen entsprechend passenden austauschbaren Satz Matritzenwerkzeuge (1) tragen, dadurch gekennzeichnet, daß

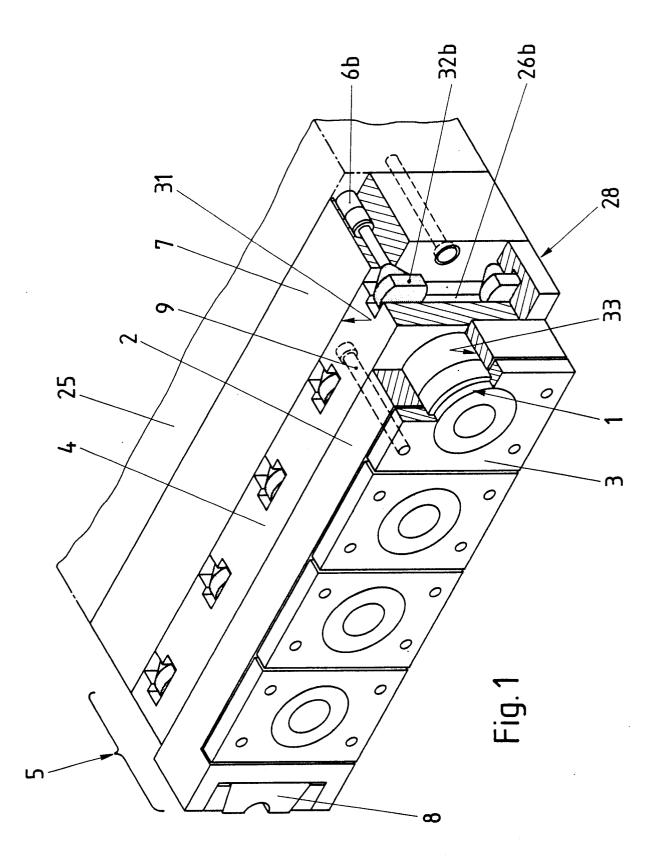
die Stempelwerkzeuge (13) in einem nach Art eines Wechselmagazins ausgebildeten Stempelwerkzeug-Kassettenblock (14) einsatzbereit zusammengesetzt gelagert sind, der mit einer quer zu den Stempel-Längsmittelachsen liegenden Spannfläche (29) an der Gegenfläche einer am Preßschlitten (22) angebrachten Stempel-Verspanneinrichtung (30) und gleichzeitig an der Preßschlittenfront durch zu den jeweiligen Stempel-Längsachsen fluchtende Kopplungs-Spannelemente (35) spielfrei und in Hubrichtung kraftschlüssig festspannbar ist und daß

die Matritzenwerkzeuge (1) in einem ebenfalls nach Art eines Wechselmagazins ausgebildeten Matritzenwerkzeug-Kassettenblock (5), matrizenhinterseitig an einer Adapter platte (4) abgestützt durch in Hubrichtung wirkende Spannelemente (9) einsatzbereit fest eingespannt sind, und diese Adapterplatte über eine bezüglich der MatrizenLängsmittelachsen querverlaufende Aufspannfläche (31) an einer am Maschinenkörper (25) befestigten Spannplatte (7), durch in dieser Spannplatte vorgesehene Spannelemente (6b) ,festspannbar ist.

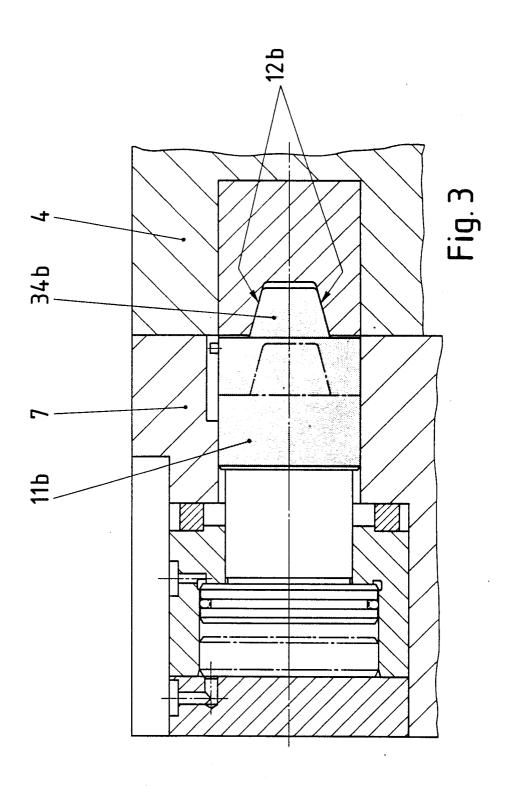
- 2. Werkzeugwechseleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Koppelungs-Spannelemente (35) an der der Spannfläche (29) zugewandten Seite einer Aufspannplatte (24) der Stempel-Verspanneinrichtung (30) je eine Anschlußmuffe (36) aufweisen, die mit entsprechenden, an den hinteren Endabschnitten der Stempelwerkzeuge (13) vorgesehenen Muffengegenstücken (37) zu einer Bajonettverbindung (17) zusammenschließbar sind, daß jede Anschlußmuffe (36) mit einem druckmittelgesteuert in der Aufspannplatte -(24) relativverschiebbar geführten Hohlkolben (16) verbunden ist, der ein in den Abstand zwischen einem jeden hinteren Stempelende und einer Abstützfläche (39) eines im Preßschlitten (22) vertikal verschiebbar geführten Verstellkeils (18) eingesetztes Druckstück (19) relativbeweglich umschließt und bei entsprechender Druckmittelbeaufschlagung das betreffende Stempelwerkzeug (13) über das zugeordnete Druckstück(19) sowie die gleichzeitig verspannte Bajonettverbindung (17) gegen die Abstützfläche (39) des Verstellkeils (18) preßt.
- 3. Werkzeugwechseleinrichtung nach Anspruch 2, dadurch **gekennzeichnet**, daß an der Aufspannplatte (24) ein Drehantrieb (21) für ein gemeinsames Verdrehen sämtlicher Stempelwerkzeuge (13) zum Öffnen bzw. Schließen der die Bajonettverbindung (17) bildenden Muffenteile (36, 37) vorgesehen ist.
- 4. Werkzeugwechseleinrichtung nach Anspruch 2 oder 3, dadurch **gekennzeichnet**, daß für die Vertikalverlagerung eines jeden Verstellkeils (18) ein fernbetätigbarer Antrieb (23) vorgesehen ist.
- 5. Werkzeugwechseleinrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß zumindest in den die Verlagerung des Hohlkolbens (16) steuernden Druckmittelkreis (38) ein Druckwächter eingebaut ist, der mit einer bei zu geringem über den Hohlkolben ausgeübten Spanndruck auslösenden Alarmsignaleinrichtung verbunden ist.
- 6. Werkzeugwechseleinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Stempelwerkzeug-Kassettenblock (14) an der Spannflächenseite mehrere senkrecht zur Reihe der Stempelwerkzeuge (13) verlaufende T-Nuten (26a) ausgespart sind, in welche entsprechend geformte Kolbenkopfabschnitte (32a) von in einer Aufspannplatte (24) der Stempel-Verspanneinrichtung (30) den T-Nuten (26a) gegenüberliegend angeordneten, jeweils aus druckmittelbetätigbaren Kolben-Zylinder-Einheiten bestehenden Spannelementen (6a) einsetzbar sind, daß in der Spannfläche (29) ferner mindestens zwei Zentrie-

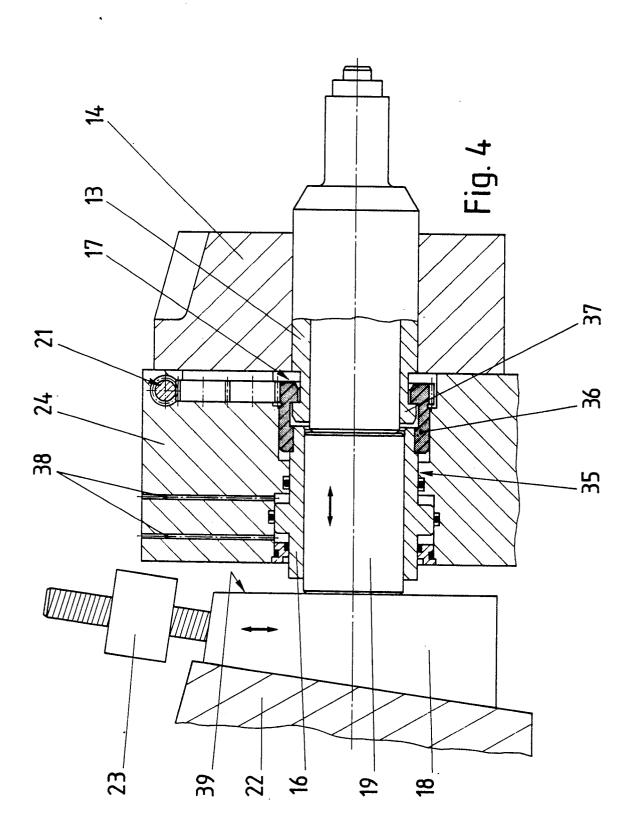
15

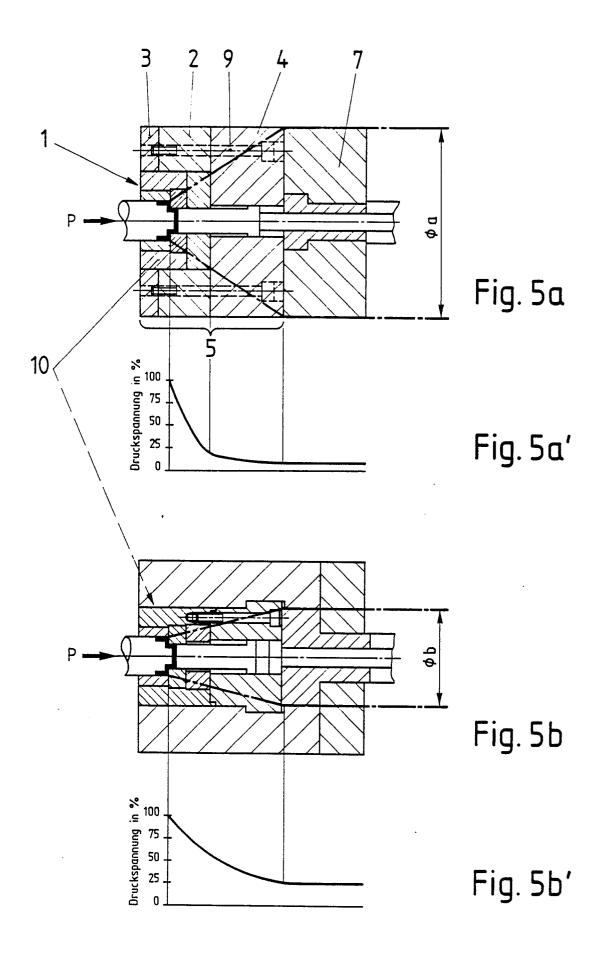
30


raussparungen (12a) vorgesehen sind, in welche entsprechend passende Kolbenabschnitte (34a) von in der Aufspannplatte (24) angeordneten, ebenfalls druckmittelbetätigbaren Zentrierelementen (11a) einführbar sind.


7. Werkzeugwechseleinrichtung nach Anspruch dadurch gekennzeichnet, Matrizenwerkzeug-Kassettenblock (5) an der Seite der Aufspann fläche der Adapterplatte (4) mehrere senkrecht zur Reihe der Matrizenwerkzeuge (1) verlaufende T-Nuten (26b) ausgespart sind, in entsprechend geformte Kolbenkopfabwelche schnitte (32b) der in der Spannplatte (7) den T-Nuten gegenüberliegend angeordneten, jeweils aus druckmittelbetätigbaren Kolben-ZylinderEinheiten bestehenden Spannelementen (6b) einsetzbar sind, daß in der Aufspannfläche (31) ferner mindestens zwei Zentrieraussparungen (12b) vorgesehen sind, in welche entsprechend passende Kolbenabschnitte (34b) von in der besagten Spannplatte (7) angeordneten, ebenfalls druckmittelbetätigbaren Zentrierelementen (11b) einführbar sind.


8. Werkzeugwechseleinrichtung nach Anspruch 7, dadurch gekennzeichnet. daß Matrizenwerkzeug-Kassettenblock (5), bestehend aus der Adapterplatte (4), welche die Preßkräfte auf den Körper überträgt und nur kleine Bohrungen für die Auswerfer aufweist, einer einstückigen, die einzelnen Matrizenwerkzeuge (1) und gegebenenfalls weitere Hilfswerkzeuge, wie Stangenmesser (8), in Aufnahmebohrungen (33)umfangseitig führendenZentrierplatte (2)sowie aus stirnseitig auf diese und die jeweiligen Matrizenwerkzeuge (1) einzeln aufgesetzte Spannbrillen (3), ausgehend von der Adapterplatte (4) durch je vier die Spannelemente (9) bildende Schrauben pro Spannbrille -(3) zu der einbaubereiten Werkzeugeinheit verspannt ist.


9. Werkzeugwechseleinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzelchnet, daß zum Einbringen und Herausverlagern der Werkzeug-Kassettenblöcke (5,14) in den bzw. aus dem zwischen dem Preßschlitten (22) und dem Maschinenkörper (25) gebildeten Werkzeugraum der Umformmaschine eine Transportvorrichtung vorgesehen ist.


50

EUROPÄISCHER RECHERCHENBERICHT

EP 86 11 5967

EINSCHLÄGIGE DOKUMENTE					
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)	
D,A	US-A-3 559 446 * Spalte 3, Z Zeile 15; Figu	eile 59 - Spalte 7,	1,6	B 21 D B 21 J	37/04 13/08
D,A	DE-A-1 966 879 MACHINERY CO.) * Insgesamt *	 (THE NATIONAL	1,6		
A	US-A-3 002 479 al.) * Spalte 5, Ze Zeile 23; Figu	ile 48 - Spalte 6,	1,6,7,		
A	2, Februar 196 Berlin, DE; R. "Schnellwechse Stanzwerkzeuge	ln von	1,6,7, 9	RECHERCH SACHGEBIETE	
A	DE-A-2 740 617 EHLERS) * Seiten 5,7-9	·	1	B 21 D B 21 J B 30 B	
A	DE-B-1 177 935	 (MÜLLER)			
A	CH-A- 573 281 (THE GEM CITY ENGINEERING CO.)				
Derv	Orliegende Racherchenhericht w	urde für alle Patentansprüche erstellt.			
,	Recherchenort			0 "1	·* · · · · · · · · · · · · · · · · · ·
DEN HAAG 05-03-1987		Abschlußdatum der Recherche	Prüfer ROSENBAUM H.F.J.		

EPA Form 1503 03 82

& : Mitglied der gleichen Patentfamilie, überein-stimmendes Dokument

von besonderer Bedeutung allein betrachtet von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie technologischer Hintergrund nichtschriftliche Offenbarung Zwischenliteratur der Erfindung zugrunde liegende Theorien oder Grundsätze

D: in der Anmeldung angeführtes Dokument : L: aus andern Gründen angeführtes Dokument