11) Publication number:

0 227 256

A2

(12)

EUROPEAN PATENT APPLICATION

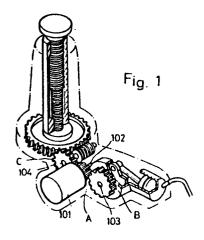
21 Application number: 86308292.1

(51) Int. Cl.⁴: **B** 66 **F** 3/08 B 66 **F** 3/44, **F** 04 B 9/02

(22) Date of filing: 24.10.86

30 Priority: 24.10.85 GB 8526270

43 Date of publication of application: 01.07.87 Bulletin 87/27


Besignated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE (71) Applicant: Yang, Tai-Her 5-1 Taipin Street Si-Hu Town Dzan-Hwa(TW)

(72) Inventor: Yang, Tai-Her 5-1 Taipin Street Si-Hu Town Dzan-Hwa(TW)

74 Representative: Arthur, Bryan Edward et al, Withers & Rogers 4 Dyer's Buildings Holborn London EC1N2JT(GB)

(54) Jack combined with an air pump and using a common drive motor.

57) This invention relates to a combined pneumatic jack/air pump device including an hydraulic motor selectively operable to drive the jack or the air pump independently or simultaneously.

TITLE OF THE INVENTION

A Jack having the pneumatic air pump functions and using a common drive motor.

BACKGROUND OF THE INVENTION

5 respectively include the air pump, jack, trouble market which often jam the luggage compartment, this design uses a common drive motor acting as the drive element of the original air pump and the electric jack, and also to drive the tire air pump and the hydraulic pump of the electric hydraulic jack in order to pump air into the tire and jack into motion, common morter and the concerning mechanism make the costs lowered, the structure simplified, the required space reduced and also achieves the dual functional effect.

15 SUMMARY OF THE INVENTION

Generally, the vehicles often are equipped with a wide variety of the vehicular affiliated tools such as the jack, tire air pump, trouble maker etc. for the drivers to conduct the repair and maintenance jobs

20 themselves during the emergency situations whenever my common troubles like tire punctures take place, however the great number of these accessory tools often jam the luggage compartment occupying a large space in the car, besides the costs to buy them form a burden to the

25 vehicle owners, therefore, the invention designs a compound tool with multiplification functions of the

common motor-driven air pump and jack to improve the above-said defects.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a view of the example of the multiaxial coupled and separately operated jack having the air pump functions and using the common motor.

Fig. 1-1 is a view of the example of the length way adjustment type jack having the air pump functions and using the common motor.

10 Fig. 1-2 is a view of the example of the sideway adjustment type having the air pump functions and using the common motor.

Fig. 1-3A is a view of the example of the electromagnetic clutch operated jack having the air pump 15 functions and using the common motor.

Fig. 1-3B is a view of the mechanical clutch operated jack having the air pump functions and using the common motor.

Fig. 2-1, 2-2 & 2-3 is a three-side view of the

20 stand type applicable example of the co-axial and

coupling jack and air pump fluid circuit installed with

a drain valve.

Fig. 2-4, 2-5 & 2-6 is a three-side view of the lain type applicable example of the co-axial and coupling jack and air pump fluid circuit installed with a drain valve.

25

Fig. 2-7 is a view of the applicable example of the co-axial coupling type gas pump and guild rod risen

. . ______

jack having the mechanical clutch operation.

Fig. 2-8, 2-9 & 2-10 is a view of the applicable example of co-axial and coupling type gas pump and shear jack.

Fig. 3 is a view of the example of separate type jack having the air pump functions and using the common motor.

Fig. 4 is a view of the example with the functions of the AC/DC air pump, jack and charger.

10 DETAILED DESCRIPTION OF THE INVENTION

In general, most vehicular jacks are of the manual type, and in recent years, the jacks directly driven by the electric supply on the vehicle have been marketed to help the people handle the vehicles with troubles,

- 15 similarly, the electric air pump to inflate the tires have also provided assistances to the people, unavoidable, the above said two tools are costlier than the conventional manual ones, because of the expensive drive motors, but the opportunity to commonly use these
- 20 two tools are very often, for instance, at the tire punctures, the jack has to be used to jack up the car body to change the flat tires and to pump the air into the replaced tires, after it is repaired since the above said two tools are separate respectively, this is often
- 25 not an ideal arrangement, in response to the above said defects, the invention provides a jack having the air pump functions and using a common drive motor, so to

use a common motor can reduce the costs required and the air pump and the jack are in integral structure with a smaller space and easy to carry for the users, the main feature of this design lies in that a single drive motor produces the multiplification functions to drive the air pump or jack into motion, and based on this principle, various mutual compatible structural states are as follows:

Multi-axial coupling separate operating type: The main features of this practical application is 10 described as follows: as shown in Fig. 1, the output shaft 102 of the drive motor 101 has a gear A for the selective coupling with the gear B to drive the air pump shaft 103 into motion or the gear C on the rotary shaft 104 of the oil hydraulic pump of the spiral jack or oil 15 hydraulic jack, ie. to move the relationship position among the gears groups A, B, and C achieves the coupling between the gears A and B to drive the air pump in motion using forward and reverse rotation of the motor and the gears A and C coupled, whereas the motor is made 20 to drive upward and downward the operating state of the jack as for the changes of the above said gear relationship, the lengthway displacement changes of the gear A can be in two states, ie. coupling with the gear 25 B or C as shown in Fig. 1-2; besides, an electromagnetic clutch 105 or mechanical clutch 106 may be provided in the shaft of the gear B or C to achieve

this purpose as shown in Fig. 1-3A and 1-3B; since the above said means are so common in the machinery structures that is known to the skilled men of arts, no detailed repetition on it is needed here.

5 B. Co-axial coupling type

This is another structural way among the above said air pump and jack drive shaft and the DC drive motor, as shown in Fig. 2-1 to 2-6, construction is shown the drive motor 210 has an enlongated shaft 201 which is 10 used to drive the piston 203 of the air pump 202 and velocity reducing toothed wheel set 206 and 207 and also serves as the input shaft for the jack at the same time for driving velocity reducing toothed wheels 206' and 207' of jack oil pump. To make the operator conduct the 15 selections on the operating and controlling the air pump and jack, the above-said structure is further provided with an operating device, so when it is used drive the oil pump 208 of the oil hydraulic jack, the elongated shaft 201 is used to drive the oil pump 208, in this 20 design, a drain back flow operating valve 205 is provided in the fluid return circuit of the outlet of air pump 202 or jack 208, the drain valve of the unit to be operated can be set at the blocked position during the operation, while drain valves of the units not to be 25 operated will be set at the respective drain position for the operating selections, thereby determining to drive the air pump or jack.

Fig. 2-1, 2-2 and 2-3 is an applicable example of the stand type jack, in which as shown in Fig. 2-1, a tand type jack main body 260 is installed vertically on the based seat 261; the main body is a cylinder type oil pressure tank coupled with a stand shaft 262 which can move upward and downward under the compression; a top block 263 is installed on the upper side of the stand shaft 262 and serves as carring working piece; a drive motor 210 with shaft 201 at its two ends is fixed transversely in the cylinder body, its end has a small 10 toothed wheel 206 and a bias mechanism 204 (including bias curved shaft or bias link rod moved by bias wheel) coupled with large toothed wheel 207, thus it can transmit the force to crank 209 and then moves gas pump 15 piston 203 to generate the gas pump function between the piston and gas pump; the gas pump has an intake opening for gas input, an exhaust opening for output of compressed gas and a gas channel connecting to a pressure manometer 264; then another output end shaft of the motor 210 transmits the force to a small toothed 20 wheel 206' and further moves another set of large toothed wheel 207'; a bias mechanism (including bias curred shaft or bias link rod moved by bias wheel) is located at an end of the large tooth wheel 207', in which bias shaft 220 moves crank set 209' and the forth 25 and back pump movement function is generated by the outer tank 208 of the oil pump and the coupling

movement of coupling pin 209"" and oil pump piston rod
209"; a set of drain circuit piston 205 is used for
drain reduction of the jack or for the release of drain
in order to showing a non-drived situation; the back

5 side of large toothed wheel is shown a ladder type
structure with a smaller diameter, on which minimum a
set of axial hole 207" (or screw hole) is installed for
inserting an operating rod, so that the driving of jack
oil pump can be done by the forth and back motion with

10 the band.

Fig. 2-2 is a sectional diagram of Fig. 2-1; Fig 2-3 is another sectional diagram of Fig. 2-1; Fig. 2-4, 2-5 and 2-6 is an applicable example of this co-axial lain type jack, in which its structure is same as the traditional lain type jack, a wheel shaft 272 and wheel 15 273 are installed on the one side of the lain type machine body and a wheel 273 is installed on the other side for motion driving; a drive rod 281 drived by an active oil pressure tank 280 is coupled with a risen arm set 274 using the coupling pin 276, the risen arm set 274 is coupled with two openings on the upper side of the machine body 271 using a set of penetrated rod 275 and it acts as the centre of the oscillation to accept the driving of the drive rod 281 or the active oil tank and then to move the upper arm 277 coupled with the 25 other coupling pin 278 at its other end for the upward or downward motion of the supporting block 279; its

main characters: a set of common drive motor 210 with the end shaft 201 at its two ends is fixed on the one side of the machine body; its end has a small toothed wheel 206 and a bias mechanism 204 (including bias 5 curred shaft or bias link rod moved by bias wheel) coupled with large toothed wheel 207, thus it can move the crank 209 and then gas pump piston 203 to generate the gas pump function between the piston and gas pump; the gas pump has an intake opening for gas input, an exhaust opening for output of compressed gas and a gas 10 channel connecting to a pressure manometer 264; the other output shaft of motor 210 moves a small umbrella toothed wheel 206' and then a large toothed wheel with the disc type side teeth 207'''; the bias mechanism (including bias curved shaft or bias link rod moved by 15 bias wheel); the crank 220' and the forth and back pump motion function is generated by the outer tank 208 of the oil pump and the coupling motion of the coupling pin 209''' and oil pump piston rod 209'''; a set of drain 20 circuit piston 205 is used for the drain in order to showing a non-drived situation; the back side of large toothed wheel is shown a ladder type structure with a small diameter, on which at least a set of axial hold 207" (or screw hold) is installed for inserting an operating rod, so that the driving of the jack oil pump 25 can be also done by the forth and back motion with the hand.

the other example of the above said co-axial coupling way is shown in Fig. 2-7, in which the mechanical type clutch operating and controlling method conducts the operating selections on the air pump of spiral jack. In the example shown in Fig. 2-7, its constructions is described as follows:

- -- an air pump 202 directly couples with the rear side of the drive motor 210 or has a pull/push or rotary movable mechanical structure to make the air pump 202 become engaged or disengaged with the motor 210.
- driven motor 210 is in an elongated shaft shaped, and is in a terraced rod shape 211 with a slightly smaller diameter, and the diameter of its front section is

 15 larger, the middle section of the said terraced rod has an axial key slot 212 and its end section has threads
 213, the end of its smaller terraced rod also has lock opening 214, the end of the elongated shaft close to the

motor has an annular slot 216 to receive a limiting snap

20 ring 215 therein;

25

-- a worm rod 216 with a smooth round hole inside couples with the drive female worm gear 217 of the sprial jack, its one end close to the motor is flat and smooth, whilst the other end has a tooth-shaped surface 218 for coupling transmission and its centre has a hole 219 with a slightly inward recess;

- -- a ring-shaped spring 220 to be set into the said recess hole 219;
- -- an annular structure for the tooth-shaped surface 218 of the above said worm rod for the
- transmission coupling its feature lies in that it has a round hole 221 in its centre, its side to couple with the tooth-shaped surface 218 of the worm rod using for coupling transmission has an opposite and complementary tooth-shaped structure 222 and a recess shaped hole 223
- to receive the above-said ring spring 220 also has an axial key slot 224, an elongated strip shaped key slot 225 is to be set into a place between the above said key slot 224 and the key slot 212 of the shaft to make both of them mutually conduct the transmission; this
- transmission coupling annular structure is to make the annular structure tightly press against the ring-shaped spring 220 when the annular structure is pushed by an external force and then couple with the coupling tooth 218 on the side face of the worm rod for transmission,
- and when the tightly pressing external force vanished, the ring shaped structure is bounced away by the spring 220;
- -- an operating ring 226 having threads inside couples with the threads 213 on the end of the terraced rod with a larger diameter on the front section of the elongated shaft, the tightly screwing of the ring 326 into the threads 213 is to force the transmission

coupling annular structure and to engage the worm rod and also the release thereon, thereby making both of them bounced apart by the ring-shaped spring for separation;

- 5 an auxiliary knob 227 uses a fixed pin 228 to insert the pin hole 214 of the end of smaller diameter of the elongated shaft of the motor for manually fixing the motor shaft in order to convenience the operation, when the above said operating ring is rotated.
- To join the above-said structure, we can conduct the following operations;
- tightly press the coupling ring and the worm rod thereby making them driven by the motor into motion, which, in turn, drive the female worm gear with threads inside to drive the screw of the spiral-type jack jacking up, or the reverse revolution of the motor makes the spiral-type jack lowered downwardly;
- -- to release the operating ring is to make the

 20 coupling ring and the screw separated and thus the jack
 structure part not driven by the motor into motion;
- the motor is of the direct coupling, it is constantly driven by the motor since the required horse power is constantly smaller than that of the jack, that the air pump is used concurrently with the jack will never adversely affect the driving over the jack, in

consideration of the economic type, it way is adoptable, and if it is necessary to conduct the clutch actions, it can conduct the clutch action and add usual mechanic or electro-magnetic clutch according to the needs.

Fig. 2-7 shows its structure used for the drive of shear jack, its applicable example are shown in Fig. 2-8, 2-9 and 2-10, in which the based seat 280 is used for installation of 4 sets of supporting arms 281 on it; the lower parts of supporting set is coupled with the based 10 seat using coupling pin 282, and its upper parts is also coupled with the supporting plate using a coupling pin 282; its two ends are coupled using screw hole pin 285 for the penetration of screw rod 216', the chute 289 on the guide rod is limited by the coupling pin 288 of 15 penetrated hole 287 with the limited pin 286, thus the guide rod 216' is limited for its rotation; the relationship of the guide rod and coupling pin 288 with the penetrated hole 287 is the rotation in the original position, so that the screw hole pin 285 combinated screwedly by guide rod 216' is moved and let supporting 20 arm 281 move upper supporting plate for upward and downward motion.

The above-said various air pump and oil pump devices applicable to the oil hydraulic jacks and using a common drive motor can be further in the examplary state of the separate type just like the marketed pumps and the jack bodys as shown in Fig. 3 to conveniently

meet the requirements of the special places, so this is the structural example which can be changed in its design and uses.

The above-said various compound structures can be further made into the AC/DC dual purpose type as shown in Fig. 4, its feature lies in that inside the base a transformer 401 is provided to transform the household power supply into a low voltage output, its low voltage output end is connected to a rectifier 402 forthe low 10 voltage output, its output end can also be connected in parallel to the socked 403 on the above said DC input end to drive the above said DC motor 404 for driving the air pump or jack into motion, and this input socket 403 can make the DC output to act as a charger, or an output 15 terminal is added to serve as a charger, thereby further making the invention become a tri-functional compound tool form, in this structure, a switch 405 is connected in series with the input end of the DC motor 404 to cut off the DC motor 404, when it serves as a charging power 20 supply.

The above said various descriptions and examples mainly provide the compound device of the air pump and the jack using a common motor as the objective of the invention with disclosures

25 concerning the practicalizable evidences and various mutually compatible means, if compared with the conventional separately installed motors, the

common motor in the invention has indeed the multiplification effects, especially its means with the economic benefits are simple and feasible, so this is a practicalizable design without any doubt.

CLAIMS:

l. A compound device of the air pump and the jack using a common drive motor is mainly joined and composed by an air pump and a jack to be driven by a motor in rotary movement, in which the jack is screwed type after the velocity reducing drive, or shear type after the velocity reducing drive of the motor, or the oil hydraulic tank type moved by the motor drive oil pump, the major features of which lies in that both of them are driven by the same motor.

10

- 2. The motor, the jack and the input shaft of the air pump of the claim 1 comprises the transmission of the motor and the air pump and the jack in an equipment to cut off or to couple the linkable and separable
 15 operating and controlling over both of them or either of them.
- 3. As described in the claim 1, the relationship of the motor and the jack and the air pump input shaft comprise simultaneous drive of two parts. The simultaneous input type for the air pump and the jack of the claim 1 comprises the direct co-axial joining the air pump and the drive shaft of the oil hydraulic pump; its structures comprise:
- Stand type jack body 260 is equipped on the based seat 261; its body is a cylinder oil hydraulic tank,

in which a stand shaft 262 which can move upward and downward under the compression in coupled; a top block 263 is installed on the upper parts of the stand shaft 5 262 for carrying the working piece; a drive motor 210 with the shaft 201 at its two ends are fixed transversely in the cylinder body; at its end, a small toothed wheel and a large toothed wheel 207 coupled with the bias mechanism (including bias curved shaft or bias 10 link rod moved by the bias wheel) for moving crank 209 and then the gas pump piston 203, thus the gas pump function is generated between the piston and the gas pump body 202; the gas pump has an inlet opening for the gas input, an exhaust opening for the ouput of the 15 compressed gas and a gas channel connecting a pressure manometer:

The another output end shaft of the motor 210 moves a small toothed wheel 206' and a large toothed wheel 207'; a bias mechanism (including the bias vurved shaft or bias link rod moved by the bias wheel) is located at end of the large toothed wheel 207', in which bias shaft 220 moves the crank set 209' and the forthe and back pump movement function is generated by the outer tank 208 of the oil pump and coupling movement of the coupling pin 209''' and the oil pump piston rod 209''; a set of the drain circuit piston 205 is used for the drain reduction of the jack or for the release of the

drain in order to showing a non-drived situation;

The back side of the large toothed wheel is shown a ladder type structure with a smaller diameter, on which at least a set of axial hole 207'' (or screw hole) is installed for inserting an operating rod, thus the driving of jack oil pump can be also done by the forth and back movement with the hand.

- 4. The co-axial drive jack of the gas pump and the 10 oil pump shown in claim 3 besides having the lain type machine body also has the following features:
- a set of the common drive motor 210 with the end shaft 201 at its two ends is fixed on the one side of the machine body and its end has a small toothed wheel 206 and a bias mechanism 204 (including bias curved shaft or bias link rod moved by the bias wheel) coupled with the large toothed wheel 207, thus it can move the crank 209 and then the gas pump piston 203 to generate the gas pump fuction between the piston and the gas pump; the gas pump has an intake opening for thegas input, and exhaust opening for the output of the compressed gas and a gas channel connecting to a pressure manometer;

The another ouput shaft of the motor 210 moves a 25 small umbrella toothed wheel 206'' and then a large toothed wheel with the disc type side teeth 207''';

the bias mechanism (including bias curved shaft or bias link rod moved by the bias wheel) is located at the end of a large toothed wheel); the crank 220' and the forth and back pump motion function is generated by the outer tank 208 of the oil pump and the coupling motion of the coupling pin 209'' and the oil pump piston rod 209''; a set of the drain circuit piston 205 is used for the drain in order to showing a non-drived situation;

The back side of the large toothed wheel is shown a lo ladder type structure with a small diameter, on which at least a set of the axial hole 207'' (or screw hole) is installed for inserting an operating rod, thus the driving of the jack oil pump can be also done by the forth and back movement with the hand.

15

5. The structure features of the co-axial coupling drive screw type jack shown in claims are described as follows:

an air pump 202 directly couples with the rear side

20 of the drive motor 210 or has a pull/push or rotary

movable mechanical to make the air pump 202 become

engaged or disengaged with the motor 210;

the front shaft of a positively or reversely driven motor 210 is in an elongated shaft shaped, and its end is a terraced rod shape 211 with a slightly smaller diameter, and the diameter of its front section is larger, the middle section of the said terraced rod has

an amial key slot 212 and its end section has threads
213, the end of its smaller terraced rod also has lock
opening 214, the end of the elongated shaft close to the
motor has an annular slot 216 to receive a limiting snap
ring 215 therein;

5

10

a worm rod 216 with a smooth round hole inside couples with the drive female worm gear 217 of the spiral jack, its one end close to the motor is flat and smooth, while its other end has a tooth-shaped surface 218 for the coupling transmission and its center has a hole 219 with a slightly inward recess;

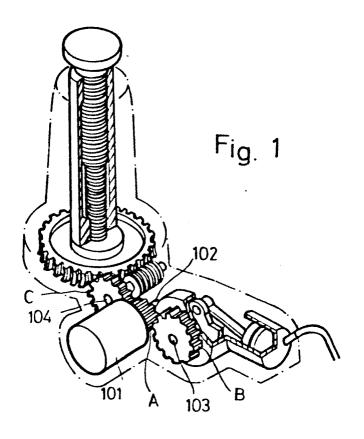
a ring-shaped spring 220 to be set into the said recess hole 219;

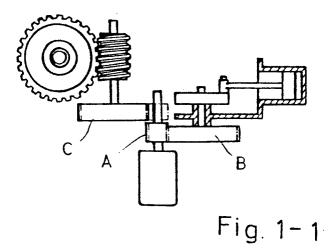
an annular structure for the tooth-shaped surface 218 of the above said worm rod for the transmission 15 coupling its feature lies in that it has a round hole 221 in its centre, its side to couple with the toothshaped surface 218 of the worm rod using for the coupling transmission has an opposite and complementary 20 tooth-shaped structure 222 and a recess-shaped hole 223 to receive the above said ring spring 220 al-o has an axial key slot 224, an elongated strip-shaped key slot 225 is to be set into a place between the above said key slot 224 and the key slot 212 of the shaft to make both of them mutually conduct the transmission; this 25 transmission coupling annular structure is to make the

annular structure tightly press against the ring-shaped spring 220 when the annular structure is pushed by an external force and the couple with the coupling tooth 218 on the side face of the worm rod for the

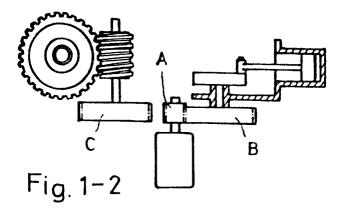
5 transmission, and when the tightly pressing external force vanished, the ring-shaped structure is bounced away by the spring 220;

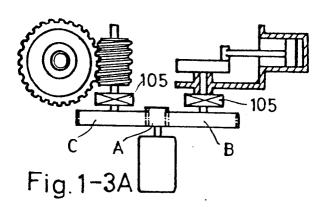
an operating ring 226 has the threads inside coupling with the threads 213 on the end of the terraced 10 rod with a larger diameter on the front section of the elongated shaft, the tightly screwing of the ring 326 into the threads 213 is to force the transmission coupling annular structure and to engage the worm rod and also to release thereon, thereby making both of them 15 bounced apart by the ring-shaped spring for the separation:

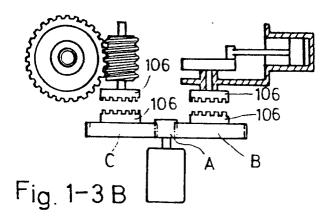

an auxilliary knob 227 uses a fixed pin 228 to insert the pin hole 214 of the end of the smaller diameter of the elongated shaft of the motor for 20 manually fixing the motor shaft in order to convenience the operation, when the above said operating ring is rotated.


6. The structure features of the co-axial coupling 25 drive shear type jack shown in claim 1 are described as follows: the based seat 280 is used for the installation of
4 sets of the supporting arms 281 on it; the lower parts
of the supporting set is coupled with the based seat
using coupling pin 282 and its upper parts is also
5 coupled with the supporting plate using a coupling pin
282; its two neds are coupled using the screw hole pin
285 for the penetration of the screw rod 216';

the chute 289 on the guide rod is limited by the coupling pin 288 of the penetrated hole 287 with the limited pin 286, thus the guide rod 216' is limited for its rotation; the relationship of the guide rod and the coupling pin with the penetrated hole 287 is the rotation in the original position, so that the screw hole pin 285 combinated screwedly by the guide rod 216' is moved and let the supporting arm 281 move upper supporting plate for upward and downward motion.


- 7. The place between he oil hydraulic or jack and air pump oil hydraulic pump device using a common drive 20 motor of the claim 1, 3 and 4 can be the discrete structural form for the pump and the jack body.
 - 8. The compound structure of the claims 1, 3, 4 and 7 can be further made into the AC/DC dual purpose type, the feature of which lies in that inside base, a transformer is provided to transform the household power supply into a low voltage output, its low voltage output


end is connected to a rectifier for the low voltage
ouput, its output end can also be connected in parallel
to the socket on the above said DC input end to drive
the above said DC motor for driving the air pump or jack
into the motion, and this socket can make the DC output
to act as a charger, or an output terminal is added to
serve as a charger, thereby further making the invention
a tri-functional compound tool form, in this structure,
a switch is connected in series with the input end of
the DC motor to cut off the DC motor, when it serves as
charging power supply.



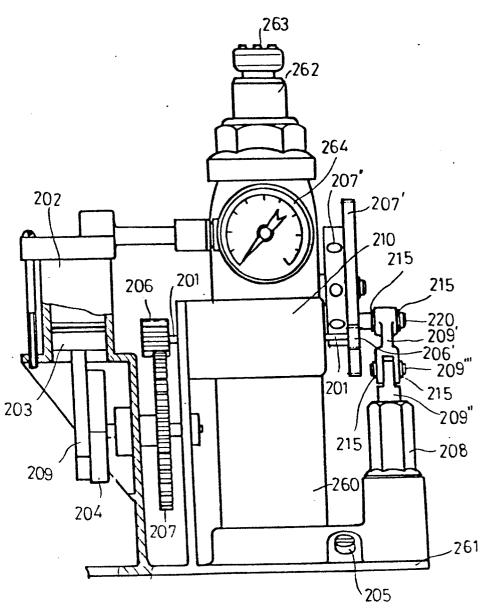
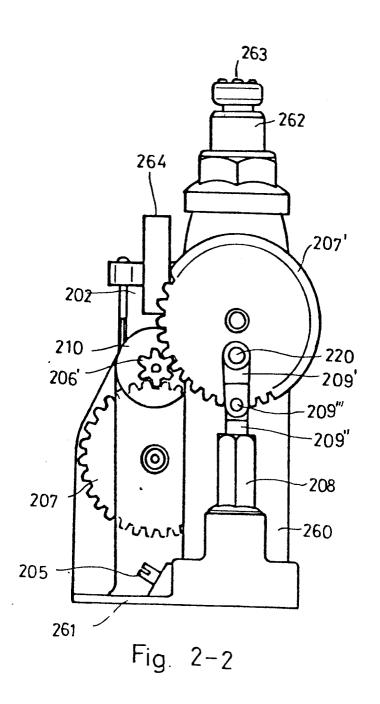



Fig. 2-1

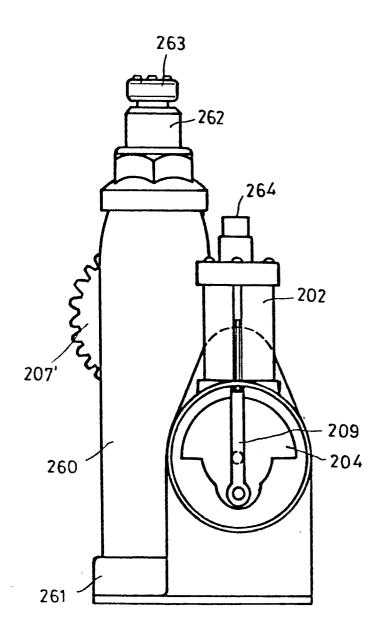
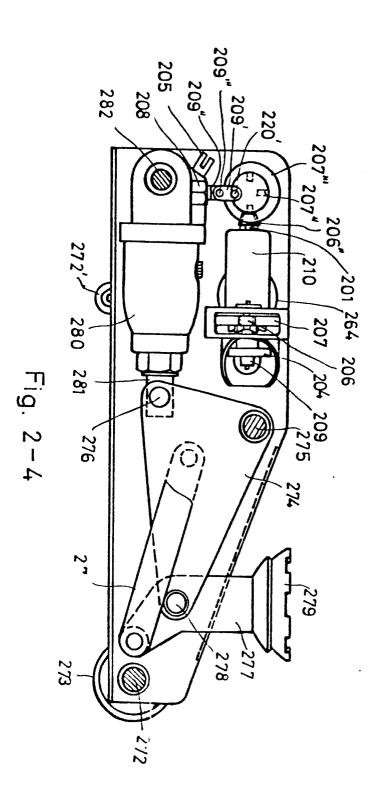
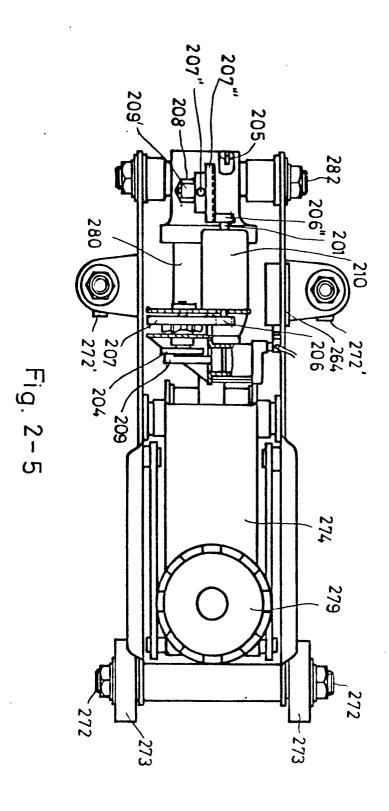
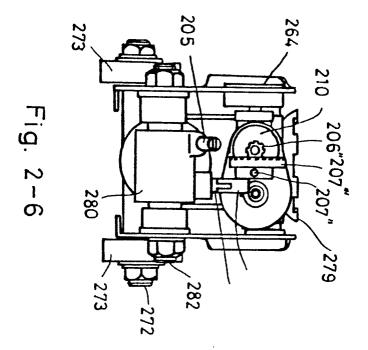
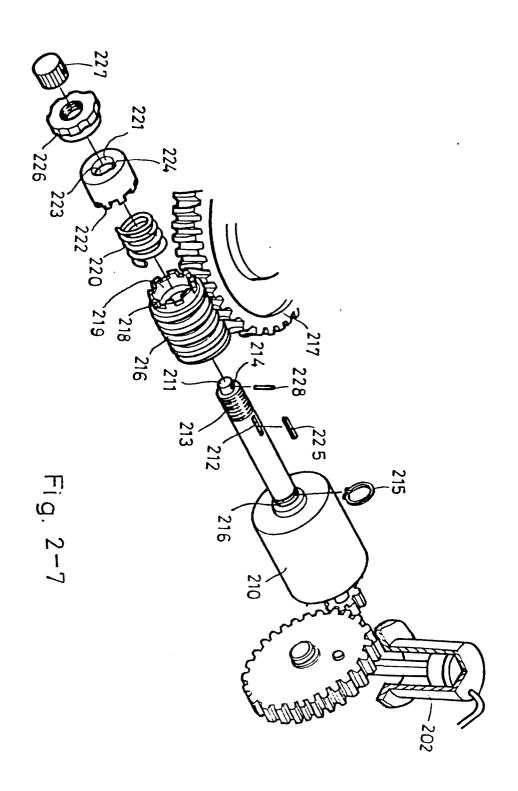
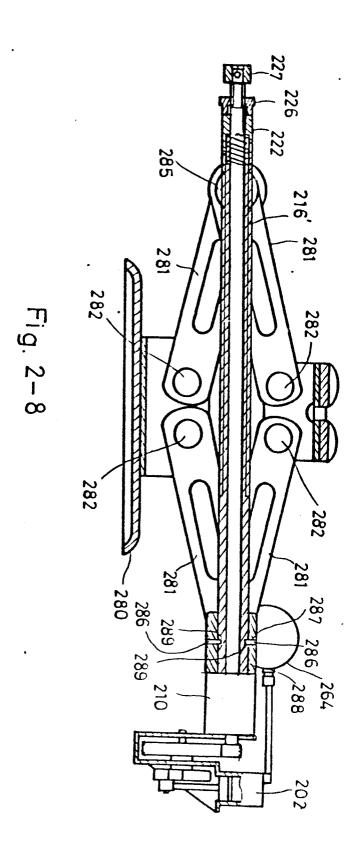





Fig. 2-3




0227256

