| (19) |
 |
|
(11) |
EP 0 229 460 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
25.07.1990 Bulletin 1990/30 |
| (22) |
Date of filing: 05.11.1986 |
|
|
| (54) |
Improved building system for multi-storey buildings
Bausystem für mehrstöckige Gebäude
Système de construction pour bâtiments à plusieurs étages
|
| (84) |
Designated Contracting States: |
|
AT BE CH DE ES FR GB GR IT LI LU NL SE |
| (30) |
Priority: |
15.11.1985 AU 3419/85
|
| (43) |
Date of publication of application: |
|
22.07.1987 Bulletin 1987/30 |
| (73) |
Proprietor: Australian Stratacore Holdings Ltd |
|
Sydney
New South Wales (AU) |
|
| (72) |
Inventor: |
|
- O'Leary, Lawrence Dennis
Croydon Park
South Australia (AU)
|
| (74) |
Representative: Sheader, Brian N. et al |
|
Eric Potter & Clarkson
St. Mary's Court
St. Mary's Gate Nottingham NG1 1LE Nottingham NG1 1LE (GB) |
| (56) |
References cited: :
US-A- 3 800 493
|
US-A- 4 513 545
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to improvements relating to building systems, and more particularly
to multi-storey building having a core unit of the wet area of the building.
[0002] In Australian Patent Nos. 527,849; 544,452 and 544,461, there is described a method
of erecting a building particularly a domestic building, including the steps of constructing
a core unit of the wet area of the building, preparing a foundation of the building,
transporting the core unit to the foundation, placing the core unit in position and
then erecting the building around and/or about the core unit. This core unit becomes
the basic core structure from which the rest of the home is built, the core unit incorporating
the wet area rooms, such as the kitchen, bathroom, toilet and laundry, and this unit
is constructed under factory conditions, and then delivered and placed on pre-prepared
foundations at the home site.
[0003] In general, the core unit or module is fitted out with all the items desired or chosen
by the owner and found in a site built home within the applicable area. For example
the kitchens contain all cupboards, pantry, sink, cooker, tiles, flashbacks and fittings.
Laundries contain the laundry tub, ceramic tile floors and skirtings and all fittings
while the toilets are fitted out with a toilet suite, ceramic tile floors and skirtings
and fittings. Similarly the bathrooms have the bath, shower recess and the basin and
cabinet, ceramic tile floors and the whole core has all its electrical components
and wirings fitted and wired to a sub-fuse box ready for connection. Similarly the
plumbing is complete and also ready for interconnection at site.
[0004] The module is transported to site, and utilises beam or truss members to allow the
module to be crane lifted and placed on site. The foundation on which the module is
placed can either be a wooden foundation, or can be a concrete slab.
[0005] The placement on the concrete slab in the prior patent specification could create
some harm with connection of drainage points to waste disposal service pipes. Thus
the methods outlined were two alternatives where one could either fit all disposal
pipes above floor line and connected through walls, or by providing recesses in the
slab for the clearance of pipe work when the module was lowered into position.
[0006] Multi-storey buildings utilising the module have been constructed. However, if a
first module is placed in position and a concrete slab is provided for the floor above
covering the first module, difficulties arise in positioning the second module and
providing plumbing and other connections through the concrete slab floor.
[0007] It is an object of this invnetion to provide an alternate method whereby the module
can be constructed in such a way that it can be incorporated into multi-storey buildings
and yet still allow access to the underside for connection of services, sewage, drainage,
water and the like.
[0008] A building system for multi-storey buildings comprising at least two self-contained
load-bearing building modules mounted one upon the other and each comprising a wet
area, characterized in that each module comprise at each lower corner thereof base
attachment means and at each upper corner thereof upper attachment means, the base
attachment means of the upper module engaging the upper atachment means of the lower
module to locate the upper module on the lower module, the upper attachment means
of each module forming lifting points for transporting and placing the module, and
each module comprising a false ceiling spaced below the upper portion thereof so as
to form a space above the false ceiling providing access for the connection of plumbing
and electrical supply services.
[0009] In an embodiment of the invention, each module at its upper perimeter incorporates
a perimeter beam attached to the upper perimeter of the core unit, the perimeter beam
forming the formwork for a surrounding concrete slab floor and interlocking therewith
so that a further module may be positioned on the perimeter beam and thus supported
thereon by the concrete slab floor.
FIG. 1 shows in partial cross-section, three stacked modules, the centre one being
in cross-section, the upper and lower modules being in side elevation.
FIG. 2 shows a module corner attachmetn means,
FIG. 3 shows a module corner upper attachment means and lifting point,
FIG 4 shows a transport frame,
FIG. 5 shows a portion of the construction stand,
FIG. 6 shows in cross-section the interface of module to module,
FIG. 7 shows the bolting of the flooring of a module to the wall frame,
FIG. 8 shows the lowerst module on the floor of the parent building,
FIG. 9 shows the w.c. pan outlet,
FIG. 10 shows the vanity unit waste drainage,
FIG. 11 shows the bath waste drainage,
FIG. 12 shows the floor waste drainage, and
FIG. 13 shows an alternate method of joining the modules to the surrounding floor.
[0010] Referring to the drawings, there is shown in FIG. 1 a lower module 1 on which is
supported a second module 1 (a) in turn supporting a further module 1 (b). As shown
in module 1, the module has a floor 2 and a false ceiling 3. The ceiling being positioned
to allow a ceiling cavity 4 for the plumbing and drainage with ventilation for the
module 1 (b). As shown in module 1, the module has a floor 2 and a false ceiling 3.
The ceiling being positioned to allow a ceiling cavity 4 for the plumbing and drainage
with ventilation for the module 1 (b), and also the electrical services for module
1 (b). A similar arrangement is provided for all modules, where a false ceiling provides
access and space for the plumbing and drainage of the module immediately thereabove.
[0011] As shown, each module can comprise a bath 5 with a metal safe tray 6 therebeneath,
cistern 7 and pan 8, vanity unit 9, light 10 and mirror 11, and a shower recess or
alcove (not shown), and an entry door 12 providing access to the bathroom.
[0012] Each module has an upper frame 13 and lower frame 14, these frames being joined together
to unite one module to the next, the frame 14 of module 1 being mounted to a floor
or the like of the building on the ground floor. As shown in FIG. 1, module 1 and
module 1 (b) are shown in broken form, these showing the outer construction of the
modules. The floors for the adjoining rooms of the building are shown as concrete
floors 15.
[0013] The modules are manufactured at a central location and transported to the site for
erection. As noted above each module is produced fully equipped, with all the plumbing,
electrical and internal fittings included so that on erection the plumbing and electrical
services have merely to be connected.
[0014] The modules 1 are manufactured on a stand 16 (FIGS. 4 and 5) the stand having a shackle
17 and chain 18 to hold the module down onto a transport stand 19. The modules have
base attachment means 20 at each corner (one only being shown in FIG. 2) formed by
a cylindrical reducer 21 having a nut 22 welded thereto, the reducer being welded
to a base angle 23 on the module. A bolt 24 attaches the module to the construction
stand 16.
[0015] Each module has an upper attachment means and lifting point 25 at each corner (one
only being shown in FIG 3) this comprising a nut 26 welded to a plate 27 in the corner
stud 28 of each module.
[0016] The method of stacking one module on another is shown in FIG. 6 which shows the interface
along one side, the upper frame 29 of the lower module being in abutting arrangement
with the frame 30 of the upper module. The concrete floor 31 of the upper module is
supported on profiled steel decking 32 supported by the frame 30, fire proof boards
33 being underneath the decking 32 and also fire rated material 34 being positioned
on the outer side of the frames 29 and 30 and inside frame 29. On the uipper surface
of the concrete floor 31 are positioned tiles 35 on grouting 36. Stud 28 is attached
by a cleat 37, skirting material 38 being positioned on each side of stud 28. Also
shown is the floor 39 of the adjoining floor of the building, carpet 40 being positioned
thereon.
[0017] The modules are joined together by positioning the base attachment means 20 of the
upper module into the upper attachment of the lower module and bolting the two together.
[0018] FIG. 7 shows another view of one way of attaching the floor system to the wall frame.
The floor of each module comprising compressed fibro sheeting 41 bolted to the base
of stud 28, mortar 36 being layed on the fibro sheeting to support the tiles 35. The
fibro sheeting 41 is bolted by bolts 42 to base plate 43 of stud 28. The floor is
supported by grout 44 on concrete floor 45.
[0019] FIG. 8 shows the position of the lowermost module on the concrete base floor 45 of
the base building. The figure also shows further details of the stud 28 which comprises
an aluminium column with a base plate 46 filloed with fire rated material 34, this
being positioned on a plate 47, the fibro sheeting 41 being bolted thereto as shown
in FIG. 7. A levelling pad 48 is positioned in the recess in the concrete base floor
45. the floor of the module being grouted to the base floor 45 as desired.
[0020] Referring to FIG. 9, this shows the w.c. pan waste drainage through the floor comprising
the fibro sheets 41, mortar 36 and tiles 35. A pipe 49 is embedded by an epoxy seal
50 into the opening in the floor, a fitting 51 being situated over the pipe 49. The
pan outlet 52 is retained by a clamping collar 53 and flexible collar 54 to the fitting
51. The flexible coupling 55 and pipe 55' is supplied and fitted by the plumber on
site. This is an example of the drainage of an upper module, the connections being
made by the plumber in the false ceiling space described above.
[0021] FIG. 10 shows a vanity unit waste drainage for the lowermost module situated on the
insitu concrete floor 45 of the building. The vanity unit coupling pipe 56 passes
down through the cupboard floor 57 and is attached to a coupling unit 58 embedded
in the fibro floor 41 resting on mortar bed 44 on concrete floor 45. A slab seal 59
is fitted into the slab floor 45, the outlet pipe 60 being fitted thereto by the plumber
after the module has been positioned
[0022] An example of the bath waste drainage for the base module is also shown, the bath
61 having a plugway 62 screwed to a fitting 63 passing through the bath safe tray
64 and connected to a socket extension 65 with collar 66 connected to socket 67 in
the floor of the module. A PVC slab seal 68 for pipe 69 is formed in the slab, the
pipe 69 being fitted by the plumber on site.
[0023] Similarly FIG. 12 shows a floor waste drainage with the removal grating 70 resting
in fitting 71 to which is adhered a PVC collar 72 adhered to fibro sheeting 41. A
slab seal 73 is fitted to the slab to receive the waste pipe 74, the pipe 74 being
fitted by the plumber on site.
[0024] In FIGS. 10 to 12, which described the connection through the base concrete floor,
also can be applied to the upper modules. In this case as the base floor 45 is not
present, the outlet pipes are fitted into the ceiling space above the false ceiling,
suitable elbows and traps being provided as desired in the ceiling space.
[0025] FIG. 13 shows an alternative construction for mounting the modules on each other
with modules being tied into the surrounding floor of the building.
[0026] Referring to FIG. 13 there is shown a first module 80 with a second module 81 placed
vertically thereabove and is supported thereto by a surrounding concrete floor slab
82.
[0027] On the top of the wall plate 83 of the wall 84 of each unit, there is attached for
example by welding, bolting or the like a perimeter beam 85, this passing completely
around the upper perimeter of the wall 84 of the module. Also each module has, extending
from the bottom plate 86 of each wall 84 an angle perimeter beam 87 to support the
floor panel 88 and floor finishing material 89 and tiles 90 of the floor of the module.
[0028] It will be realised that the perimeter beam 85 and angled perimeter beam 87, floor
88, 89 and 90 of each unit as well as all the plumbing fittings, water supply services,
sinks, basins, tubs and the like are completed in each module before placement.
[0029] The perimeter beam 85 can be used to assist in supporting the insitu plywood formwork
91 surrounding the module for the pouring of the concrete floor slab 82 incorporating
suitable reinforcement (not shown).
[0030] When a module is positioned, the top may be covered with a platform or decking to
provide access for the workmen pouring the concrete floor slab which surrounds the
module, which slab is locked thereto by the perimeter beam which also forms the formwork
for the opening in the floor slab above the module.
[0031] After the floor slab has cured and after the temporary decking is removed, the next
module can be positioned, the bottom plate 86 resting on the perimeter beam 85 of
the lower unit. Access is thus available under the floor of the unit 1 (a). On removing
the ceiling panels 92 connection of the plumbing services and the like are made after
which the ceiling panels 92 of the lower unit can be replaced.
[0032] Thus, it will be seen that the reinforcing of the floor slab is designed to provide
a void in the slab over most of the core area. When the floor slab is poured and cured
the core unit for that floor is placed on the perimeter beam which has been strengthened
by the addition of the concrete.
[0033] A further advantage of using this system is that once the lower floor core is placed
in position the concrete workers are relieved of the responsibility of providing accurate
nesting in the concrete slab as required with previous systems. A further advantage
is that sleeves for drainage and pipe work do not have to be provided in the concrete
slab. All pipe work connections are made at some convenient time after the cores are
placed in position and this is simplified by providing a normal suspended panel ceiling
in the lower unit which can be sound rated and fire rated as desired.
[0034] It is noted above as a safety measure, panels of formwork and plywood which are removable
are screwed to the top face of the perimeter beam so that workmen engaged in operations
adjacent the open ceiling of the lower module are not at risk. These temporary panels
are covered with waterproof sheeting which stays in place until they need to be removed
for the placement of the upper module.
[0035] In the method described each module supports the next module above in a vertical
stacking procedure. This method allows the concrete floors to be poured at any convenient
time after the initial two or more modules are placed on top of each other. This method
gives the site builder more flexibility in choosing concrete pour times. The modules
are structurally designed to support a number of modules placed one on top of another,
but will not structurally support the building. However, once each concrete floor
slab is poured and cured the effect of the concrete keying into the perimeter beam
of each module provides positive locking of the module into the surrounding floor
structure. Thus the long term structural support for each module is provided by the
pouring and curing of each successive floor as they progress upwards. A further advantage
of stacking at least one module above the level where concrete is being poured is
that greater protection for workmen is provided by not relying on the strength of
the temporary platform or decking to support the weight of undetermined numbers of
workmen and materials and equipment
1. A building system for multi-storey buildings comprising at least two self-contained
load-bearing building modules (1,80,81) mounted one upon the other and each comprising
a wet area, characterized in that each module (1,80,81) comprises at each lower corner
thereof base attachment means (20.) and at each upper corner thereof upper attachment
means (25), the base attachment means (20) of the upper module (1,81) engaging the
upper attachment means (25) of the lower module (1,80) to locate the upper module
on the lower module, the upper attachment means (25) of each module forming lifting
points for transporting and placing the module, and each module comprising a false
ceiling (3) spaced below the upper portion thereof so as to form a space (4) above
the false ceiling (3) providing access for the connection of plumbing and electrical
supply services.
2. A building system as defined in claim 1, characterized in that each said base attachment
means (20) comprises a reducer element (21) and a nut (22), and each said upper attachment
means (25) of the lower module (1,8) is connected to the corresponding base attachment
means (20) of the upper module by a bolt engaging said nut (22).
3. A building system as defined in claim 1 or 2, characterized in that each module
(1) is constructed with all fittings at a central construction area on a construction
stand (16), said module (1) and stand (16) being transported while positioned on a
transport stand (19) to the erection site, shackles (17) and chains (18) jointing
said construction stand (16) to said transport stand (19).
4. A building system as defined in claim 1, 2 or 3, characterized in that each module
(1) includes an upper frame (13) and a lower frame (14) joined by structural studs
(28), with said upper and lower frames (13,14) of adjacent modules (1) abutting each
other.
5. A building system as defined in any one of the preceding claims, characterized
in that each module (1) has a floor, said floor comprising compressed fibro sheeting
(41) bolted to a plate (43) attached to said studs (28), tiles (35) being laid on
mortar (36) on said compressed fibro sheeting (41).
6. A building system as defined in any one of the preceding claims, characterized
in that the lowermost module (1) is positioned on a concrete slab floor (45) of the
building, a recess is provided in said slab (45) to accommodate said module (1) so
that the floor of the module is at the desired level in the building, and levelling
pads (48) are provided in said recess to position and level said module (1).
7. A building system as defined in any one of the preceding claims, characterized
in that the waste service pipes (49,56,65) for the wet area are provided in each module
(1), these having means to allow connection to the waste services on site.
8. A building system as defined in claim 1, characterized in that each module (8)
has attached at its upper perimeter a perimeter beam (85), the perimeter beam (85)
forming the formwork for a surrounding concrete slab floor (82) and interlocking therewith
so that a further module (81) may be positioned on the perimeter beam (85) and attached
to the building by said concrete floor (82).
9. A building system as defined in claim 4, characterized in that said frames (13,14)
and studs (28) are load bearing frames to support additional modules thereon.
1. Système de construction pour des immeubles à plusieurs étages, comprenant au moins
deux modules de structure auto-porteurs autonomes (1, 80, 81) montés l'un au-dessus
de l'autre et comprenant chacun une zone de pièces humides, caractérisé en ce que
chaque module (1, 80, 81) comprend, au niveau de chacun de ses coins inférieurs des
moyens de fixation inférieurs (20) et, au niveau de chacun de ses coins supérieurs,
des moyens de fixation supérieurs (25), les moyens de fixation inférieurs (20) du
module supérieur (1, 80) venant en prise avec les moyens de fixation supérieurs (25)
du module inférieur (1, 80) pour positionner le module supérieur sur le module inférieur,
les moyens de fixation supérieurs (25) de chaque module formant des points de levage
pour transporter et mettre en place le module, chaque module comprenant un faux-plafond
(23) espacé en-dessous de sa portion supérieure de façon à former un espace (4) au-dessus
du faux-plafond (3) permettant l'accès pour le raccordement de la plomberie et des
alimentations en courant électrique.
2. Système de construction selon la revendication 1, caractérisé en ce que chaque
moyen de fixation inférieur (20) comporte un élément réducteur (21) et un écrou (22)
et en ce que chaque moyen de fixation supérieur (25) du module inférieur (1, 81) est
relié au moyen de fixation inférieur correspondant (20) du module supérieur par un
boulon vissé dans cet écrou (22).
3. Système de construction selon la revendication 1 ou la revendication 2, caractérisé
en ce que chaque module (1) est construit avec tous ses agencements dans une zone
de construction centrale sur un socle de construction (16), ce module (1) et ce socle
(16) étant transportés en étant placés sur une palette de transport (19) jusqu'au
site de montage, des manilles (17) et des chaînes (18) reliant la base de construction
(16) à la palette de transport (19).
4. Système de construction selon l'une des revendications précédentes, caractérisé
en ce que chaque module (1) comporte un bâti supérieur (13) et un bâti inférieur (14)
reliés par des montants structuraux (28), les bâtis, supérieur et inférieur (13, 14),
de modules adjacents (1) étant en butée l'un contre l'autre.
5. Système de construction selon l'une quelconque des revendications précédentes,
caractérisé en ce que chaque module (1) a un plancher, ce plancher comprenant des
plaques de fibres comprimées (41) boulonnées sur une plaque (43) fixée sur les montants
(28), des carreaux (35) étant posés sur un mortier (36) sur ces plaques de fibres
comprimées (41
6. Système de construction selon l'une quelconque des revendications précédentes,
caractérisé en ce que le module le plus bas (1) est disposé sur une dalle de plancher
en béton (45) de l'immeuble, qu'un évidement est prévu dans cette dalle (45) pour
recevoir le module (I), de telle sorte que le plancher du module se trouve au niveau
désiré dans l'immeuble et en ce que des semelles de mise à niveau (48) sont prévues
dans cet évidement pour positionner et mettre à niveau le module (1).
7. Système de construction selon l'une quelconque des revendications précédentes,
caractérisé en ce que les tuyaux d'évacuation des eaux usées (49, 56, 65) pour la
zone de pièces humides sont prévus dans chaque module (1) et ont des moyens pour permettre
le raccordement aux évacuations d'eaux usées sur le site.
8. Système de construction selon la revendication 1, caractérisé en ce qu'une poutre
périphérique (85) est fixée sur la périphérie extérieure de chaque module (8), cette
poutre périphérique (85) formant le coffrage pour la dalle de plancher en béton environnante
(82) et s'en solidarisant, de sorte qu'on peut disposer un autre module (81) sur la
poutre périphérique (85) et que cet autre module est fixé sur l'immeuble par le plancher
en béton (82).
9. Système de construction selon la revendication 4, caractérisé en ce que les bâtis
(13, 14) et les montants (28) sont des cadres porteurs pour supporter des modules
additionnels.
1. Bausystem für mehrstöckige Gebäude, bei dem wenigstens zwei unabhängige, lasttragende
Baumodule (1, 80, 81) vorgesehen sind, die übereinander angeordnet sind und von denen
jedes einen Naßbereich aufweist, dadurch gekennzeichnet, daß jedes Modul (1, 80, 81)
an jeder seiner unteren Ecken eine Basis-Befestigungseinrichtung (20) und an jeder
seiner oberen Ecken eine obere Befestigungseinrichtung (25)d aufweist, daß die Basis-Befestigungseinrichtung
(20) des oberen Modules (1, 81) an den oberen Befestigungseinrichtungen (25) des unteren
Modules (1, 80) angreifen, um das obere Modul auf dem unteren Modul anzuordnen, daß
die oberen Befestigungseinrichtungen (25) jedes Modules Anhebepunkte zum Transportieren
und Anordnen des Modules in der richtigen Lage bilden, und daß jedes Modul eine eingeschobene
Decke (3) unterhalb seines oberen Bereiches von diesem beabstandet aufweist, so daß
ein Raum (4) oberhalb der eingeschobenen Decke (3) gebildet wird, der einen Zugang
für die Herstellung von Verbindungen der Installationsrohre und der elektrischen Versorgungsanschlüsse
bildet.
2. Bausystem nach Anspruch 1, dadurch gekennzeichnet, daß jede Basis-Befestigungseinrichtung
(20) ein Reduzierelement (21) und eine Mutter (22) aufweist und daß jede obere Befestigungseinrichtung
(25) des unteren Modules (1, 80) mit der entsprechenden Basis-Befestigungseinrichtung
(20) des oberen Modules durch einen in die Mutter (22) eingreifenden Bolzen befestigt
ist.
3. Bausystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jedes Modul (1) mit
allen Einrichtungen an einem zentralen Konstruktionsbereich auf einem Konstruktionsstand
(16) hergestellt wird, daß das Modul (1) und der Stand (16) zum Ort der Gebäudeerrichtung
transportiert werden, wähnend sie auf einem Transportstand (19) positioniert sind,
und daß Lastösen (17) und Ketten (18) den Konstruktionsstand (16) mit dem Transportstand
(19) verbinden.
4. Bausystem nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß jedes
Modul (1) einen oberen Rahmen (13) und einen unteren Rahmen (14) aufweist, die durch
strukturelle Säulen (28) miteinander verbunden sind, und daß der obere Rahmen und
der untere Rahmen (13,14) benachbarter Module (1) aneinander angrenzen.
5. Bausystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
jedes Modul (1) einen Boden aufweist, daß der Boden eine verdichtete Faserschicht
(41) aufweist, die durch Bolzen an einer Platte (43) befestigt ist, die ihrerseits
an den Säulen (28) befestigt ist, und daß Fliesen (35) auf Mörtel (36) verlegt werden,
der sich auf der verdichteten Faserschicht (41) befindet.
6. Bausystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
das unterste Modul (1) auf einer Beton-Bodenplatte (45) des Gebäudes angeordnet wird,
daß in der Platte (45) eine Vertiefung vorgesehen ist, um das Modul (1) derart aufzunehmen,
daß der Boden des Modules sich auf dem gewünschten Pegel in dem Gebäude befindet,
und daß Nivellierunterlagen (48) in der Vertiefung vorgesehen sind, um das Modul (1)
zu positionieren und in die richtige Höhe zu bringen.
7. Bausystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
die Abflußrohre (49, 56, 65) für den Naßbereich in jedem Modul (1) vorgesehen sind,
und daß diese Einrichtungen aufweisen, die die Verbindung mit den Abflußanschlüssen
vor Ort ermöglichen.
8. Bausystem nach Anspruch 1, dadurch gekennzeichnet, daß am oberen Umfang jedes Modules
(8) ein Umfangsbalken (85) befestigt ist, daß der Umfangsbalken (85) eine Verschalung
bildet, die die Beton-Bodenplatte (82) umgibt und mit dieser verriegelt ist, so daß
ein weiteres Modul (81) auf dem Umfangsbalken (85) positioniert und an dem Gebäude
durch den Betonboden (82) befestigt werden kann.
9. Bausystem nach Anspruch 4, dadurch gekennzeichnet, daß die Rahmen (13, 14) und
Säulen (28) lasttragende Rahmen sind, auf denen zusätzliche Module getragen werden.