

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 237 623
A1

12

EUROPEAN PATENT APPLICATION

② Application number: 86115238.3

⑤1 Int. Cl.³: H 01 H 73/04
H 01 H 77/10

(22) Date of filing: 12.03.82

⑩ Priority: 12.03.81 JP 35552/81U
12.03.81 JP 35554/81U
12.03.81 JP 35555/81U
12.03.81 JP 35556/81U
12.03.81 JP 35557/81U

(43) Date of publication of application:
23.09.87 Bulletin 87/39

⑧4 Designated Contracting States:
CH DE FR GB IT LI

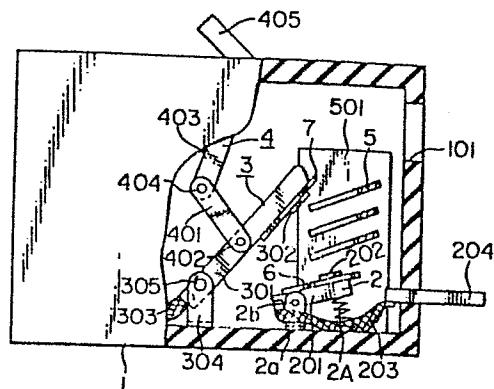
60 Publication number of the earlier application in accordance with Art. 76 EPC: 0 061 097

⑦1 Applicant: **MITSUBISHI DENKI KABUSHIKI KAISHA**
2-3, Marunouchi 2-chome Chiyoda-ku
Tokyo 100 (JP)

⑦2 Inventor: Yamagata, Shinji
2-20-2, Nogami-cho
Fukuyama Hiroshima Prefecture (IP)

⑦2 Inventor: Hisatsune, Fumi yuki
327-8, Daimon-cho Daimon
Fukuyama Hiroshima Prefecture (IP)

⑦ Inventor: Terachi, Junichi
211, Kasuga-dai
Fukuyama Hiroshima Prefecture(JP)


(72) Inventor: Yoshiyasu, Hajimu
11-2, Minami Nanryo-cho
Itami Hyogo Prefecture(JP)

74 Representative: Kern, Ralf M.
Kern, Lang & Partner Patent- und Rechtsanwälte
Postfach 14 03 29
D-8000 München 5 (DE)

54 A circuit breaker

57 The present invention relates to a circuit breaker wherein a pair of rigid conductors (201, 301) which are disposed therein and at least one of which has a movable portion that separates a pair of contacts (202, 302) by an electromagnetic force produced by an excess current flowing through the contacts (202, 203) adapted to come into and out of contact with and from each other, are provided with arc shields (6, 7) in a manner to surround the contacts (202, 302), thereby to bring forth the effects of increasing the arc voltage of an electric arc struck across the contacts (202, 302) and raising the separating speed of the contacts (202, 302).

FIG. 12(b)

1 "A CIRCUIT BREAKER"

5 The present invention relates to an improved circuit breaker, more particularly to a circuit breaker which is so constructed as to increase the separating speed of its contacts and to effectively increase the arc voltage of an electric arc struck across the contacts to thus attain an enhanced current-limiting performance.

10 Prior circuit breakers have the disadvantage that an electric arc struck across contacts expands its feet (base) to the parts of rigid conductors near the contacts, so that metal particles of the contacts cannot be effectively injected into the arc. With the prior 15 devices, it has been impossible to achieve the aforementioned effects of the circuit breaker according to the present invention.

20 The invention as claimed is intended to provide a circuit breaker wherein a pair of rigid conductors which are disposed therein and at least one of which has a movable portion that separates a pair of contacts under the action of the electromagnetic force of an excess current flowing through the contacts adapted to 25 come into and out of contact with and from each other, are provided with arc shields of a high resistivity material in a manner to surround the contacts. Owing to the arc shields, the feet of an electric arc are prevented from spreading to the parts of the rigid 30 conductors near the contacts, thereby to effectively inject the metal particles of the contacts into the arc and to raise the arc voltage of the electric arc, and the pressure of the arc space of the electric arc 35 is increased, thereby to raise the separating speed of the contacts.

1 Preferred ways of carrying out the invention are
described in detail below with reference to drawings,
in which: -

5 Figure 1a is a sectional plan view of a conventional
circuit breaker to which the present
invention is applicable,

10 Figure 1b is a sectional side view taken along line
b - b in Figure 1a,

15 Figure 2 is a model diagram showing the behaviour of
an electric arc which is struck across the
contacts of the circuit breaker in
Figure 1a,

Figure 3a is a side view showing a known contactor,

20 Figure 3b is a plan view of the contactor in
Figure 3a,

Figure 3c is a sectional front view taken along line
c - c in Figure 3b,

25 Figure 4a is a side view showing in a model fashion the
state of an electric arc in the case where
the contactor in Figure 3a is used in a
circuit breaker,

30 Figure 4b is a front view corresponding to Figure 4a,

Figure 5 is a model diagram showing the behaviour of
the arc in Figure 4a,

35 Figure 6a is a sectional plan view showing an
embodiment of a circuit breaker according to
the present invention,

1 Figure 6b is a sectional side view taken along line
b - b in Figure 6a and showing the state in
which the contacts of the circuit breaker
are disengaged,

5 Figure 7 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 6a are engaged,

10 Figure 8 is a model diagram showing the action of
arc shields for use in the circuit breaker
according to the present invention,

15 Figure 9 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 6a have started to
separate,

20 Figure 10 is a perspective view of one contactor
showing another embodiment of the arc
shield for use in the circuit breaker of
the present invention,

25 Figure 11 is a perspective view of the other contactor
which corresponds to the contactor in
Figure 10,

30 Figure 12a is a sectional plan view showing another
embodiment of the circuit breaker according
to the present invention,

35 Figure 12b is a sectional side view taken along line
b - b in Figure 12a and showing the state in
which the contacts of the circuit breaker
are disengaged,

1 Figure 13 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 12a are engaged,

5 Figure 14 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 12a have started to
separate,

10 Figure 15a is a sectional plan view showing still
another embodiment of the circuit breaker
according to the present invention,

15 Figure 15b is a sectional side view taken along line
b - b in Figure 15a and showing the state
in which the contacts of the circuit breaker
are disengaged,

20 Figure 16 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 15a are engaged,

. 25 Figure 17 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 15a have started to
separate,

30 Figure 18a is a sectional plan view showing a further
embodiment of the circuit breaker according
to the present invention,

35 Figure 18b is a sectional side view taken along line
b - b in Figure 18a and showing the state
in which the contacts of the circuit
breaker are disengaged,

1 Figure 19 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 18a are engaged,

5 Figure 20 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 18a have started to
separate,

10 Figure 21a is a sectional plan view showing a still
further embodiment of the circuit breaker
according to the present invention,

15 Figure 21b is a sectional side view taken along line
b - b in Figure 21a and showing the state
in which the contacts of the circuit
breaker are disengaged,

20 Figure 22 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 21 are engaged, and

25 Figure 23 is a sectional side view showing the state
in which the contacts of the circuit
breaker in Figure 21a have started to
separate.

30 In the drawings, the same symbols indicate identical or
corresponding parts.

35 Figures 1(a) and 1(b) illustrate a conventional circuit
breaker. In Figures 1(a) and 1(b), assuming now that a
movable contact 302 of a movable contactor 3 and a
stationary contact 202 of a stationary contactor 2 are
closed, current flows along the path from a stationary

1 rigid conductor 201 to the stationary contact 202, to
the movable contact 302 and to a movable rigid
conductor 301.

5 When, under this state, a high current such as short-
circuit current flows through the circuit, an
operating mechanism 4 works to separate the movable
contact 302 from the stationary contact 202. At this
time, an electric arc A appears across the stationary
10 contact 202 and the movable contact 302, and an arc
voltage develops thereacross. The arc voltage rises
as the distance of separation of the movable contact
302 from the stationary contact 202 increases.
Simultaneously therewith, the arc A is drawn toward
15 arc extinguishing plates 5 by a magnetic force and is
stretched, so that the arc voltage rises still further.
In this manner, the arc current reaches the current
zero point to extinguish the arc A, so that the
interruption is completed. During such interrupting
20 operation, large quantities of energy are generated
by the arc A across the movable contact 302 and the
stationary contact 202 in a short time of several
milliseconds. In consequence, the temperature of a gas
within an enclosure 1 rises, and also the pressure
thereof rises abruptly, but the gas at the high
. 25 temperature and under the high pressure is emitted
into the atmosphere through an exhaust port 101.

30 In case of the interruption, the circuit breaker and
its internal constituent parts perform the operations
as described above. Now, the operation of the
stationary contact 202 and the movable contact 302
will be especially explained. In general, the arc
resistance R is given by the following expression:

$$1 \quad R = \rho \frac{l}{S}$$

where ρ : arc resistivity ($\Omega \cdot \text{cm}$)

l: arc length (cm)

5 S: arc sectional area (cm^2)

In general, in a short arc A which has a high current of at least several kA and an arc length l of at most 50 mm, the arc space is occupied by the metal particles of rigid conductors with arc feet (bases) existing on their surfaces. Moreover, the emission of the metal particles occurs orthogonally to the conductor surfaces. At the emission, the emitted metal particles have a temperature close to the boiling point of the metal of the rigid conductors. Further, as soon as the metal particles are injected into the arc space, they are supplied with electrical energy to be raised in temperature and pressure and to bear a conductivity, and they flow away from the rigid conductors at high speed while expanding in a direction conforming with the pressure distribution of the arc space. The arc resistivity ρ and the arc sectional area S in the arc space are determined by the quantity of the metal particles produced and the direction of emission thereof. Accordingly, the arc voltage is determined by the behaviour of such metal particles. Next, the behaviour of such metal particles will be described with reference to Figure 2. Even when surfaces X are constructed of contact members, the behaviour of metal particles to be described below holds quite similarly.

30 Referring to Figure 2, a pair of rigid conductors 201 and 301 are ordinary conductors in the form of metallic cylinders confronting each other. The rigid conductor 201 is an anode, while the rigid conductor 301 is a cathode. The surfaces X of the respective conductors

1 201 and 301 are opposing surfaces which serve as
contacting surfaces when the conductors 201 and 301
come into contact, and the surfaces Y of the respective
conductors 201 and 301 are conductor surfaces which are
5 electrically contacting surfaces other than the opposing
surfaces X. A contour 2 indicated by a dot-and-dash
line in the Figure 2 is the envelope of the arc A
struck across the rigid conductors 201 and 301. Further,
metal particles a and metal particles b are typically
10 representative of the metal particles which are
respectively emitted from the surfaces X and Y of the
conductors 201 and 301 by vaporization, etc. The
directions of emission of the metal particles a and b
15 are the directions of flow lines indicated by arrows
m and n, respectively.

Such metal particles a and b emitted from the
conductors 201 and 301 have their temperature raised by
the energy of the arc space from approximately 3,000°C,
20 being the boiling point of the metal of the conductors,
to a temperature at which the metal particles bear a
conductivity, i.e., at least 8,000°C, or to a still
higher temperature of approximately 20,000°C. In the
process of the temperature rise, the metal particles
25 take energy out of the arc space and thus lower the
temperature of the arc space, resulting in an increased
arc resistance R. The quantity of energy which the
metal particles a and b take from the arc space
increases with the extent of the temperature rise of
30 the metal particles. In turn, the extent of the
temperature rise is determined by the positions and
emission paths in the arc space, of the metal
particles a and b emitted from the conductors 201 and
301.

1 Further, the paths of the metal particles a and b emitted from the conductors 201 and 301 are determined depending upon the pressure distribution of the arc space.

5

10 The pressure of the arc space is determined by the mutual relationship between the pinch force of the current itself and the thermal expansion of the metal particles a and b. The pinch force is a quantity which is substantially determined by the density of the current. In other words, it is determined by the size of the foot of the arc A on the conductors 201 and 301. In general, the metal particles a and b may be considered to fly in the space determined by the 15 pinch force while thermally expanding.

20 It is also known that, in case the feet of the arc A on the conductors 201 and 301 are not limited, the metal particles a fly unidirectionally from one conductor 301 against the other conductor 201 in the form of vapor jet. When, in this manner, the metal particles a fly unidirectionally from the one conductor 301 toward the other conductor 201, the metal particles a to be injected into the positive 25 column of the arc A are supplied substantially from only the conductor on one side 301. While Figure 2 illustrates by way of example the case where the metal particles are flying strongly from the cathode against the anode, they sometimes fly in the opposite 30 direction.

35 The above circumstances will now be described. In Figure 2, it is supposed that the metal particles fly unidirectionally from the conductor 301 toward the conductor 201 for any reason. The metal particles a

1 starting from the surface X, the opposing surface of
conductor 301, tend to fly orthogonally to the
conductor surface, i.e. toward the positive column of
the arc. At this time, the metal particle a having
5 started from the surface X of one conductor 301 is
injected into the positive column by the pressure
caused by the pinch force. In contrast, the metal
particle a having started from the surface X of the
other conductor 201 is pushed by the particle stream
10 in the positive column and ejected outside the
surface X, and it is immediately forced out of the
system without entering the positive column. In this
manner, the movement of the metal particle a emitted
from the conductor 201 and that of the metal particle
15 a emitted from the conductor 301 are different as
indicated by the flow lines of the arrows m and m'
in Figure 2. As stated before, this is based on the
difference between the pressures caused by the pinch
forces on the conductor surfaces. Thus, the
20 unidirectional blow from the conductor 301 heats the
conductor 201 on the blown side and expands the foot
(anode spot or cathode spot) of the arc on the surface
of the conductor 201 from the front surface X thereof
to the other surface thereof. In consequence, the
25 current density on the conductor surface of the
conductor 201 lowers, same as the pressure of the arc.
Accordingly, the unidirectional blow from the conductor
301 is increasingly intensified. The discrepancy of the
flight paths of the metal particles a emitted from the
30 respective conductors 201 and 301 as has thus occurred,
results in the discrepancy of the quantities of energy
to be taken from the arc space. Accordingly, the metal
particle a having started from the surface X of the
35 conductor 301 can absorb energy from the positive column
sufficiently, whereas the metal particle a having

1 started from the surface X of the conductor 201 cannot
absorb energy sufficiently and is ejected out of the
system without cooling the arc A effectively. On the
other hand, the metal particles b emitted from the
5 surfaces Y of the respective conductors 201 and 301 do
not deprive the arc A of sufficient heat, as
indicated by arrows n in Figure 2. Moreover, they
increase the arc sectional area S, resulting in a
lowered resistance R of the arc A.

10

In this manner, in the presence of the blow from one conductor 301, the efficiency of the cooling of the positive column by the metal particles a is impaired. In addition, the metal particles b emitted from the
15 non-opposing surfaces Y of both conductors 201 and 301 do not contribute to the cooling of the positive column at all, and they even lower the arc resistance R by increasing the arc sectional area S.

20

Accordingly, the presence of the unidirectional blow of the metal particles from one conductor to the other is disadvantageous for raising the arc voltage and renders it impossible to enhance the current-limiting performance at the tripping.

25

In general, the stationary rigid contactor and the movable rigid contactor used in the conventional circuit breaker are large in the surface area of the opposing surfaces, similarly to the rigid conductors of the
30 model of Figure 2, so that they cannot limit the size of the foot of the struck arc, disadvantageously. Moreover, the contactors have the exposed surfaces such as side surfaces besides the opposing surfaces, so that as explained with reference to Figure 2, the
35 position and size of the feet (anode spot and cathode

1 spot) of the arc appearing on the surfaces of both
conductors cannot be limited. In the mechanism
explained with reference to Figure 2, accordingly,
the unidirectional blow of the metal particles a from
5 one contactor against the other contactor proceeds
and therefore the arc sectional area increases, so
that as stated above, the current-limiting performance
at the tripping cannot be enhanced.

10 As an example of another contactor used in a prior
circuit breaker, there has been one in which the part
of a conductor surface adjacent to a contact is
covered with an insulator 11 in order to prevent the
fusion of a conductor to the area around the contact.
15 Figures 3(a) to 3(c) show such contactor 2. In the
example shown, the fore end part of the conductor is
not covered with the insulator 11.

20 In a circuit breaker constructed as shown in Figures
4(a) and 4(b) and including a pair of rigid
conductors of such construction, an electric arc A as
illustrated in these Figures develops across the
paired stationary contactor 2 and movable contactor 3.
25 In the arc A, its feet or the positions of an anode
spot and a cathode spot flare greatly toward the fore
ends of the rigid conductors as appears from Figures
4(a) and (b), so there has been the disadvantage that
the current-limiting performance at the tripping cannot
be enhanced for the same reason as explained with
30 reference to Figure 2. Further, regarding a case where,
as shown in Figure 5, only one of a pair of contacts
is provided with a coating which has a plate-shaped
member 11 of an insulator covering the peripheral part
35 of the contacting surface thereof, the state of the
surface has been examined. In this example, metal

1 the
1 particles of flow directions of which are confined are
5 injected into an arc positive column portion from the
surface X of a rigid conductor 301 which has the
contact enclosed with the insulator 11. However, as
5 regards metal particles from the surface X of a rigid
conductor 201 which has the contact not coated with
the insulator 11, the foot of an arc or the anode spot
or cathode spot thereof spreads on the whole conductor
surface without being limited, and further spreads to
10 surfaces Y, i.e. the side surfaces of the contact, so
that the current density decreases. It is accordingly
the same as in Figure 2 that the pinch force weakens
and that the metal particles run out of the arc.
Therefore, even when the insulator is disposed in the
15 vicinity of one conductor, the aspect of the arc
positive column portion eventually becomes the
phenomenon of the unidirectional blow of the metal
particles. Accordingly, both conductors are subject
to the same circumstances as in the case where the size
20 of the foot of the arc is not limited, and the arc
voltage does not show any especially great rise, so
that the current-limiting performance is not enhanced.

25 As explained above, in order to raise the arc voltage,
the metal particles having appeared in the feet of the
arc need to be effectively injected into the positive
column from both electrodes. The force which injects
the metal particles into the positive column is the
pressure based on the pinch force arising in the foot
30 of the arc. Since the pinch force changes greatly
depending upon the size of the foot of the arc on the
contactor or upon the current density, it can be
controlled. For example, in the conventional contactors,
the area of the surface X of at least one contactor is
35 large, and it does not limit the size of the foot of

1 the arc to an effective degree. Even in such contactors
employing no insulator, however, when the opposing
surfaces X of both contactors are made sufficiently
small, the density of current on the surfaces X rises
5 to some extent, to increase the pinch forces, and the
metal particles of the respective contactors are
injected from both sides into the positive column to
some extent, unlike the situations of the prior
devices, whereby the arc voltage becomes higher than
10 in the prior devices.

Merely with this measure, however, the spread of the
foot of the arc to the other parts than the surfaces X
or to the surfaces Y cannot be checked, and the current
15 density on the surfaces X decreases by a component
corresponding to the spread of the foot of the arc to
the surfaces Y, so that the injection pressure of the
metal particles lowers. In the case of the conventional
contactors, accordingly, the effect of cooling the
20 positive column by the metal particles is not obtained
to maximum degree.

Further, the serious disadvantage of the conventional
contactors is that, on account of the spread of the
25 foot of the arc to the surface Y, the foot of the arc
is liable to spread directly to the joint part between
the contact and the conductor as is usually set on the
surface Y, so the joint member of low fusing point is
melted by the heat of the arc, the contact being prone
30 to fall off.

Now, the invention provides a circuit breaker which has
a high arc voltage and exhibits a good current-limiting
performance at the tripping thereof and which is free
35 from the risk of the falling-off of contacts.

1 The circuit breaker of this invention is characterized
in that, except for a part of the electrically
contacting surface of either contact of the circuit
breaker, the part of a rigid conductor adjacent to the
5 contact as projects to the surrounding space is
concealed behind an arc shield (a plate-shaped pressure
reflector or a covering such as taping and coating)
which is made of a substance of a highly resistive
material (called the "high resistivity material"
10 hereinbelow) having a resistivity higher than that of
a material forming the rigid conductor, thereby to
forcibly inject metal particles into an arc space, and
that the electrodes are separated at high speed by a
high pressure established owing to the provision of
15 the arc shield.

As the high resistivity material, there can be used,
for example, an organic or inorganic insulator, or a
high resistivity metal such as copper-nickel, copper-
20 manganese, manganin, iron-carbon, iron-nickel and iron-
chromium. It is also possible to use iron whose
resistance increases abruptly in accordance with a
temperature rise.

25 Figures 6(a) and 6(b) illustrate one embodiment of the
circuit breaker according to this invention. In Figures
6(a) and 6(b), an enclosure 1 made of an insulator
forms the outer frame of a switching device and is
provided with an exhaust port 101. A first movable
30 contactor 2 comprises a first movable rigid conductor
201 with the part intermediate its ends being turnably
(pivotally) supported by a pivot pin 103 on a holder
102 that is fixed to the enclosure 1, as well as a
first contact 202 which is mounted to one end part of
35 the first conductor 201. A second movable contactor 3

1 comprises a second movable rigid conductor 301 which
moves relative to the first movable rigid conductor 201
in order to close or open the circuit breaker, and a
5 second contact 302 which is mounted on one end part of
the second conductor 301 in a manner to confront the
first contact 202. An conventional operating
mechanism 4 operates the second movable contactor 3
relative to the first movable contactor 2 in order to
close or open the circuit breaker (compare e.g.
10 U.S. Patent 3,171,922). In the present embodiment,
this mechanism comprises a supporter 402 which
turnably (pivotally) supports the other end part of
the second movable rigid conductor 301 by means of a
15 pivot pin 401, a lower link 404 one end part of which
is turnably mounted to the intermediate or central
part of the second movable rigid conductor 301 by a
pivot pin 403, an upper link 406 one end of which is
turnably mounted to the other end part of the lower
20 link 404 by a pivot pin 405, and an operating handle
407 which is turnably mounted to the other end part
of the upper link 406 by a pivot pin (not shown). Arc
extinguishing plates 5 which extinguish an electric
arc struck when the second contact 302 is separated
25 from the first contact 202, are supported by a pair of
side plates 501 and 502. Arc shields 6 and 7, made of
the aforementioned high resistivity material, are
respectively mounted on the first and second movable
rigid conductors 201 and 301 in a manner to have the
30 first and second contacts 202 and 302 projecting
therethrough and to oppose to the electric arc. A
spring 8 being interposed between the enclosure 1 and
the first movable rigid conductor 201 urges the first
contact 202 against the second contact 302. A
connection terminal 9 is connected to the first
35 movable rigid conductor 201 through a flexible

1 conductor 10, and also to an external conductor (not
5 shown).

Now, when the operating handle 407 is turned clockwise
5 according to Figure 6(b), the linkage composed of the
upper and lower links 406 and 404 operates to engage
the first and second contacts 202 and 302 as
10 illustrated in Figure 7. Accordingly, current flows
from a power supply side onto a load side from the
connection terminal 9, to flexible conductor 10, to
first movable rigid conductor 201, to first contact
15 202, to second contact 302 and to second movable rigid
conductor 301. When, under this state, a high current,
such as a short-circuit current, flows through the
circuit, the second contact 302 is separated from the
15 first contact 202 by an electromagnetic repulsive
force based on current concentration in the contacting
points of the contacts 202 and 302. At this time, an
electric arc develops across the first contact 202 and
20 the second contact 302. As illustrated in Figure 8,
metal particles are reflected in the arc by the arc
shields 6 and 7 to render the pressure of the arc
space high, with the result that the separation of the
25 contacts is promoted and that the arc is effectively
cooled.

Figure 8 is an explanatory model diagram of the
behaviour of the metal particles in the circuit breaker
30 of Figures 6(a) and 6(b). Even in a case where surfaces
X are formed of contact members, the behaviour of the
metal particles does not differ from the ensuing
explanation at all. In Figure 8, a pair of rigid
conductors 201 and 301 are constructed in the same
35 shape as in Figure 2, and the arc shields 6 and 7 are
respectively mounted on the conductors 201 and 301 in

1 a manner to expose the surfaces X, i.e. the mutually
confronting surfaces of the conductors 201 and 301,
and to oppose to the arc A. Although pressure values
in spaces Q, Q cannot exceed the pressure value of the
5 space of the arc A itself, much higher values are
exhibited at least in comparison with the values in
the case where the arc shields 6 and 7 are not provided.
Accordingly, the peripheral spaces Q, Q in which the
10 relatively high pressures are caused by the arc
shields 6 and 7, afford forces suppressing the spread
of the space of the arc A and "narrow" (confine) the
arc A within a small space. This results in narrowing
and confining into the arc space the flow lines m, m',
15 o and o' of the metal particles a, c, etc. emitted from
the opposing surfaces X. Therefore, the metal
particles a and c emitted from the surfaces X are
effectively injected into the arc space. As a result,
the metal particles a and c effectively injected in
large quantities deprive the arc space of large
20 quantities of energy beyond comparison with those in
the prior device, to therefore cool the arc space
remarkably. Accordingly, the resistivity ρ or the arc
resistance R is raised remarkably, and the arc voltage
is raised very greatly.

25 Further, when the arc shields 6 and 7 are installed
closely around the contacting surfaces of the first
contact 202 and the second contact 302 as shown by way
of example in Figures 6(a) and 6(b), i.e. the opposing
30 surfaces X according to Figure 8, the arc A is
prevented from moving to the conductor surfaces Y,
so that the size of the feet of the arc A is also
limited. For this reason, the generation of the metal
particles a and c can be concentrated on the surfaces
35 X, and also the arc sectional area S can be reduced,

1 whereby the effective injection of the metal particles
a and c into the arc space can be further promoted.
Accordingly, the cooling of the arc space, the rise of
the arc resistivity ρ and the rise of the arc
5 resistance R are further promoted, and the arc voltage
can be raised further.

The first movable rigid conductor 201 is turnably held
on the holder 102 by the pivot pin 103, so that when
10 the arc A has developed immediately after the
separation of the first and second contacts 202 and
302, this first conductor 201 is separated from the
second movable rigid conductor 301 at very high speed
15 by the forces produced by the pressures of the spaces
Q rendered very high owing to the effect of the arc
shields 6 and 7. This state immediately after the
separation is shown in Figure 9. More specifically,
before the open state shown in Figure 6(b) is
20 established, the second movable rigid conductor 301
can have only a comparatively low separating speed on
account of the inertia of the operating mechanism 4,
whereas the first movable rigid conductor 201 has the
very high separating speed owing to the pressure of
25 the space Q. Therefore, the rise of the arc voltage
immediately after the separation of the first and
second contacts 202 and 302 becomes abrupt, and the
peak value of the current to flow through the circuit
is suppressed.

30 For the arc extinguishing plates 5, a magnetic material
may be employed so as to attract the arc A and to
consequently raise the arc voltage; alternatively,
a nonmagnetic material may be employed so as to split
the arc A and to consequently raise the arc voltage.
35 With the magnetic material, the arc A is favorably

1 cooled, but a temperature rise attributed to eddy
current due to the magnetic material poses a problem
in a circuit breaker of a high rated current. With
the non-magnetic material, this problem is avoided.

5 Figures 10 and 11 are perspective views showing
another embodiment of the arc shields, which can be
applied also to other embodiments to be described
later. Referring to Figures 10 and 11, grooves or arc
10 runways 601 and 701 are respectively provided in the
arc shields 6 and 7 to extend from the first and
second contacts 202 and 302 toward the arc
extinguishing plates 5, so as to expose the first and
second movable rigid conductors 201 and 301. Owing to
15 the provision of the grooves 601 and 701, the arc A
runs toward the arc extinguishing plates 5 within
these grooves, to become effectively extinguished in
direct contact with the arc extinguishing plates 5.

20 This described embodiment of the circuit breaker
according to the invention is adapted to separate the
first movable rigid conductor 201 at high speed by
mounting the arc shields 6 and 7, so that the arc
voltage can be remarkably raised far beyond the limit
25 thereof in the prior circuit breaker, and so that a
high current-limiting performance can be attained.

30 Figures 12(a) and 12(b) show another embodiment of the
circuit breaker according to this invention, in which
an enclosure 1 forming the outer frame of a switching
device is made of an insulator and is provided with an
exhaust port 101.

35 A first contactor 2 is constructed of a first rigid
conductor 201 which is turnably supported by a pivot

1 pin 2b on a holder 2a that is fixed to the enclosure
1, and a first contact 202 which is mounted on one end
part of the first rigid conductor 201. The first rigid
conductor 201 is connected to a connection terminal 204
5 through a flexible conductor 203. A second contactor 3
moves relative to the first contactor 2 in order to
close or open the circuit breaker, and it comprises
a second rigid conductor 301 which is operated relative
to the first rigid conductor 201 so as to close or
10 open the circuit breaker, and a second contact 302
which is mounted on one end part of the second rigid
conductor 301 in a manner to confront the first
contact 202. The second rigid conductor 301 is
connected to an external conductor (not shown) through
15 a flexible conductor 303, and the other end part
thereof is turnably held by a pivot pin 305 on a holder
304 that is fixed to the enclosure 1. A spring 2A
being interposed between the first rigid conductor 201
and the enclosure 1 urges the first contact 202
20 against the second contact 302. An operating mechanism
4 for operating the second contactor 3 so as to close
or open the circuit breaker, is formed so that one end
part of a lower link 401 constituting a linkage is
turnably coupled to the second rigid conductor 301 by
25 a pivot pin 402, that one end part of an upper link
403 is turnably coupled to the other end part of the
lower link 401 by a pivot pin 404, and that an
operating handle 405 is turnably coupled to the other
end part of the upper link 403 by a pivot pin (not
30 shown). Arc extinguishing plates 5 extinguish an
electric arc struck when the second contact 302 is
separated from the first contact 202, and they are
supported by a pair of side plates 501 and 502. Arc
shields 6 and 7 made of the aforementioned high
35 resistivity material are respectively mounted on the

1 first and second rigid conductors 201 and 301 in a manner to have the first and second contacts 202 and 302 projecting therethrough and to oppose to the electric arc.

5 Next, the operation of this embodiment will be described. When the operating handle 405 is turned clockwise, the first and second contacts 202 and 302 are engaged as illustrated in Figure 13. When in this 10 state a high current such as short-circuit current flows, the first and second rigid conductors 201 and 301 are electromagnetically repelled on account of parallel currents which flow through these rigid conductors in senses opposite to each other, and the 15 first rigid conductor 201 is separated as shown in Figure 14, so that the electric arc A develops across the first and second contacts 202 and 302.

Subsequently, the operating mechanism 4 works to completely separate the second rigid conductor 301. In 20 the arc A in this case, as illustrated in Figure 8, metal particles are reflected by the arc shields 6 and 7 to render the pressure of the arc space high, with the result that the arc is effectively cooled and extinguished.

25 In the embodiment as described above, the first rigid conductor 201 is turnably held on the holder 2a by the pivot pin 2b. Therefore, when the high current, such as a short-circuit current flows, the first and second 30 rigid conductors 201 and 202 are electromagnetically repelled by the currents flowing therethrough, without waiting for the operation of the operating mechanism 4, so that the first rigid conductor 201 is separated to generate the arc A. Upon the generation of the arc A, 35 the pressure of the space Q between the arc shields 6

1 and 7 becomes very high, and hence, the first and
5 second rigid conductors 201 and 301 can be separated
at very high speed by the effect of the arc shields
6 and 7 in addition to the electromagnetic repellent
5 force, so that the arc voltage starts rising very
quickly and rises very greatly. Accordingly, the peak
value of the current to flow through the circuit can
be made very small, the arc voltage can be made
remarkably higher than in the prior circuit breaker,
10 and a very high current-limiting performance can be
attained.

15 Figures 15(a) and 15(b) show still another embodiment,
20 in which an enclosure 1 made of an insulator forms the
outer frame of a switching device and is provided with
an exhaust port 101. A first contactor 2 is constructed
25 of a first rigid conductor 201, and a first contact
202 which is mounted on one end part of the first
rigid conductor 201, the other end part of which is
turnably supported by a pivot pin 2b on a holder 2a
fixed to the enclosure 1. The first rigid conductor
201 is connected to a connection terminal 204 through
a flexible conductor 203. A second contactor 3 being
30 movable relative to the first contactor 2 in order to
close or open the circuit breaker, is constructed of a
second rigid conductor 301 which is operated relative
to the first rigid conductor 201 so as to close or
open the circuit breaker, and a second contact 302
35 which is mounted on one end part of the second rigid
conductor 301 in a manner to confront the first contact
202. The second rigid conductor 301 is connected to an
external conductor (not shown) through a flexible
conductor 303, and the intermediate part thereof is
turnably supported on one end part of a movable frame
member 305 by a pivot pin 304. The other end part of

1 the movable frame member 305 is turnably supported on
a supporter 306 by a pivot pin 307. A spring 2A is
interposed between the first rigid conductor 201 and
the enclosure 1, and a torsion spring 3A is applied
5 to the pivot pin 304 and has its respective end parts
held in engagement with the second rigid conductor 301
and the movable frame member 305. These springs bias
the first and second contacts 202 and 302,
respectively. An operating mechanism 4 for operating
10 the second contactor 3 so as to close or open the
circuit breaker, is formed so that one end part of a
lower link 401 constituting a linkage is turnably
coupled to the pivot pin 304 and that also an operating
handle 402 is turnably coupled to the linkage. Arc
15 extinguishing plates 5 extinguish an electric arc
struck when the second contact 302 is separated from
the first contact 202, and they are supported by a
pair of side plates 501 and 502. Arc shields 6 and 7
made of the aforementioned high resistivity material
20 are respectively mounted on the first and second rigid
conductors 201 and 301 in a manner to have the first
and second contacts 202 and 302 projecting therethrough
and to oppose to the electric arc A.

25 When the operating handle 402 is turned clockwise, the
first and second contacts 202 and 302 are engaged as
illustrated in Figure 16. When a high current, such as
a short-circuit current flows under these conditions,
the first and second rigid conductors 201 and 301 are
30 electromagnetically repelled on account of parallel
currents flowing in senses opposite to each other
through these rigid conductors, and the first and
second rigid conductors 201 and 301 are both separated,
so that the electric arc A develops across the first
35 and second contacts 202 and 302 as illustrated in

1 Figure 17. Thereafter, the operating mechanism 4 works
to completely separate the second rigid conductor 301.
In the arc A in this case, as illustrated in Figure 8,
metal particles are reflected by the arc shields 6
5 and 7 to render the pressure of the arc space high,
with the result that the arc is effectively cooled
and extinguished.

10 In the embodiment as described above, the other end
part of the second rigid conductor 301 is turnably
supported on the movable frame member 305 by the
pivot pin 304, the other end part of the first rigid
conductor 201 is turnably supported on the supporter
2a by the pivot pin 2b, and the currents flowing
15 through the first and second rigid conductors 201
and 301 are in parallel and opposite in sense to each
other. Therefore, when the high current, such as
short-circuit current flows, the first and second
rigid conductors 201 and 301 are electromagnetically
20 repelled by the currents flowing therethrough, without
waiting for the operation of the operating mechanism 4.
The electromagnetic repellence separates both the
first and second rigid conductors 201 and 301, to
generate the arc A. Upon the generation of the arc A,
25 the rigid conductors can be separated at very high
speed by the pressure rise of the space Q between
the arc shields 6 and 7, in addition to the electro-
magnetic repellent force. Accordingly, the arc voltage
starts rising very quickly. Since both the first and
30 second rigid conductors 201 and 301 separate, the arc
length stretches, and this raises the arc voltage
very greatly conjointly with the effect of the arc
shields 6 and 7, so that the peak value of the current
35 to flow through the circuit can be made very small.

1 In a circuit breaker for alternating current, the
polarity of the current on a contact during arcing is
not decided; moreover, the polarity on the same contact
changes even during arcing. In this regard, the circuit
5 breaker of the present embodiment can prevent the
polarity effect on the current-limiting performance
from becoming different in dependence on whether the
polarity on the contact to be separated by the electro-
magnetic repellence is a cathode or an anode, and it
10 can stabilize the current-limiting performance. That
is, such beneficial result is achieved by the measure
that both the first rigid conductor 201 and the second
rigid conductor 301 on which the first contact 202
and the second contact 302 are respectively mounted,
15 are formed of the turnable electromagnetic repulsion
type.

Figure 18(a) and 18(b) show yet another embodiment,
20 wherein an enclosure 1 made of an insulator forms the
outer frame of a switching device and is provided with
an exhaust port 101. A stationary contactor 2 is
constructed of a stationary rigid conductor 201 which
is fixed to the enclosure 1, and a stationary-side
25 contact 202 which is mounted on one end part of the
stationary rigid conductor 201. A movable contactor 3
being movable relative to the stationary contactor 2
in order to close or open the circuit breaker, is
30 formed of a movable rigid conductor 301 which is
operated relative to the stationary contactor 2 so
as to close or open the circuit breaker, and a
movable-side contact 302 which is mounted on one end
35 part of the movable rigid conductor 301 in a manner
to confront the stationary-side contact 202. The
movable rigid conductor 301 is connected to an external
conductor (not shown) through a flexible conductor 303,

1 and the intermediate part thereof is turnably supported on one end part of a movable frame member 305 by a pivot pin 304. A cross bar 306 is penetratingly inserted in the other end part of the
5 movable frame member 305 in a direction perpendicular to the plane of the drawing, and it turnably supports the movable frame member 305 in each phase. An operating mechanism 4 for operating the movable contactor 3 so as to close or open the circuit
10 breaker, is constructed of a lower link 401 one end part of which is turnably mounted on the intermediate part of the movable rigid conductor 301 by the pivot pin 304, an upper link 403 one end part of which is turnably mounted on the other end part of the lower
15 link 401 by a pivot pin 402, an operating handle 404 which is turnably mounted on the other end part of the upper link 403 by a pivot pin (not shown), and a torsion spring 405 which is applied to the pivot pin 304 and has its respective end parts held in engagement
20 with the movable rigid conductor 301 and the movable frame member 305. Arc extinguishing plates 5 extinguish an electric arc struck when the movable contact 302 is separated from the stationary contact 202, and they are held by a pair of side plates 501
25 and 502. Arc shields 6 and 7 are made of the aforementioned high resistivity material, and are respectively mounted on the stationary rigid conductor 201 and the movable rigid conductor 301 in a manner to project the stationary contact 202 and the movable contact 302 and to oppose to the electric arc A.
30

When the operating handle 404 is turned clockwise, the movable contact 302 and the stationary contact 202 are engaged as illustrated in Figure 19. In this state, current flows from a power supply side to a load side
35

1 via the stationary rigid conductor 201, the stationary
2 contact 202, the movable contact 302 and the movable
3 rigid conductor 301. In this state, the directions of
4 currents flowing through the movable rigid conductor
5 301 and the stationary rigid conductor 201 are the
same. Therefore, even when a comparatively great
6 current flows, the repulsion between the movable rigid
7 conductor 301 and the stationary rigid conductor 201
8 as caused by the currents flowing therethrough does not
9 take place. That is, even when a comparatively great
10 instantaneous current flows, the repulsion between the
11 stationary-side contact 202 and the movable-side
12 contact 302 does not occur unnecessarily, so that the
13 stationary contact 202 and the movable contact 302
14 experience little wear and can be prevented from fusing
15 and depositing. Now, when a high current, such as short-
16 circuit current, flows through the circuit, the operating
17 mechanism 4 works to separate the movable contact 302
18 from the stationary contact 202. At this time, the
19 electric arc A develops across contacts 202 and 302.
20 This state is illustrated in Figure 20. In the arc A,
21 as illustrated in Figure 8, metal particles are
22 reflected by the arc shields 6 and 7 to render the
23 pressure of the arc space high, with the result that
24 the arc is effectively cooled and extinguished.
25

30 In the embodiment as described above, the movable
31 rigid conductor 201 is turnably held on the movable
32 frame member 305 by the pivot pin 304; further, the
33 arc shields 6 and 7 are provided. Accordingly, although
34 the operating mechanism 4 affords a low separating
35 speed of the movable rigid conductor 201 on account of
its inertia, the pressure of the space Q between the
arc shields 6 and 7 becomes very high and the movable
rigid conductor 201 is therefore separated at very high

1 speed without waiting for the drive of the operating
mechanism 4. In consequence, the rise of the arc
voltage immediately after the separation is rapid, and
this suppresses the peak value of the current to flow
5 through the circuit, conjointly with the effect of
narrowing the arc A by the arc shields 6 and 7, so that
a high current-limiting effect can be attained.

Figures 21(a) and 21(b) show a further embodiment,
10 wherein an enclosure 1 made of an insulator forms the
outer frame of a switching device and is provided
with an exhaust port 101. A first contactor 2 is
constructed of a first rigid conductor 201 which is
turnably supported by a pivot pin 2b on a holder 2a,
15 fixed to the enclosure 1, and a first contact 202
which is mounted on one end part of the first rigid
conductor 201. The first rigid conductor 201 is
connected to a connection terminal 204 through a
flexible conductor 203. A second contactor 3 being
20 movable relative to the first contactor 2 in order to
close or open the circuit breaker, is constructed of a
second rigid conductor 301 which is operated relative
to the first rigid conductor 201 so as to close or
open the circuit breaker, and a second contact 302
25 which is mounted on one end part of the second rigid
conductor 301 in a manner to confront the first
contact 202. The second rigid conductor 301 is
connected to an external conductor (not shown) through
a flexible conductor 303, and the intermediate part
30 thereof is turnably held on one end part of a movable
frame member 304 by a pivot pin 305. A cross bar 306
is mounted on the other end part of the movable frame
member 304 in a direction perpendicular to the plane
of the drawing, and acts to move the movable frame
35 member simultaneously in each phase. A torsion spring

1 307 is applied to the pivot pin 305 and has its
respective end parts held in engagement with the
second rigid conductor 301 and the movable frame
member 304. A spring 2A being interposed between the
5 first rigid conductor 201 and the enclosure 1 urges
the first contact 202 against the second contact 302.
An operating mechanism 4 operates the second contactor
3 in order to close or open the circuit breaker, and
is formed so that one end part of a lower link 401
10 constituting a linkage is turnably coupled to the
second rigid conductor 301 by the pivot pin 305, that
one end part of an upper link 402 is turnably coupled
to the other end part of the lower link 401 by a pivot
pin 403, and that an operating handle 414 is turnably
15 coupled to the other end part of the upper link 402 by
a pivot pin (not shown). Arc extinguishing plates 5
to extinguish an electric arc struck when the second
contact 302 is separated from the first contact 202
are supported by a pair of side plates 501 and 502.
20 Arc shields 6 and 7 made of the aforementioned high
resistivity material are respectively mounted on the
first and second rigid conductors 201 and 302 in a
manner to have the first and second contacts 202 and
302 passing therethrough and to oppose to the electric
25 arc. When the operating handle 404 is turned clockwise,
the first and second contacts 202 and 302 are engaged
as illustrated in Figure 22. When a high current, such
as a short-circuit current flows in this state, the
first and second rigid conductors 201 and 301 are not
30 repelled electromagnetically because parallel currents
flow in an identical sense through these rigid
conductors, and the first rigid conductor 201 is
separated as illustrated in Figure 23, so that the
electric arc A develops across the first and second
35 contacts 202 and 302. Subsequently, the operating

1 mechanism 4 works to completely separate the second
rigid conductor 301. In the arc A in this case, as
illustrated in Figure 8, metal particles are
reflected by the arc shields 6 and 7 to render the
5 pressure of the arc space high, with the result that
the arc is effectively cooled and extinguished.

In this embodiment, the first rigid conductor 201 is
turnably held on the movable frame member 304 by the
10 pivot pin 305; further the arc shields 6 and 7 are
provided. Accordingly, although the operating mechanism
4 affords a low separating speed of the movable rigid
conductor 201 on account of its inertia, the pressure
of the space Q between the arc shields 6 and 7 becomes
15 very high and the movable rigid conductor 201 is
therefore separated at very high speed without waiting
for the drive of the operating mechanism 4. In
consequence, the rise of the arc voltage immediately
after the separation is rapid, and this suppresses the
20 peak value of the current to flow through the circuit,
conjointly with the effect of narrowing the arc A by
the arc shields 6 and 7, so that a high current-
limiting effect can be attained. Further, even when a
25 comparatively great instantaneous current flows, the
repulsion between the first and second contacts 202
and 302 does not take place unnecessarily.

In a circuit breaker for alternating current, the
30 polarity of the current on a contact during arcing is
not decided, and moreover, the polarity on the same
contact changes even during arcing. In this regard,
the circuit breaker of the present embodiment can prevent
the polarity effect on the current-limiting performance
35 from becoming different depending upon whether the
polarity on the contact to be separated by the electro-

1 magnetic repellence is a cathode or an anode, and it
can stabilize the current-limiting performance. That
is, such beneficial result is achieved by the measure
that both the first rigid conductor 201 and the second
5 rigid conductor 301 on which the first contact 202
and the second contact 302 are respectively mounted
are formed of the turnable electromagnetic repulsion
type.

10

15

20

25

30

35

P a t e n t C l a i m s

1. Circuit breaker comprising an operating mechanism to close or open an electric circuit by engaging or disengaging a pair of contacts, said pair of contacts being disposed on current conducting contactor arms of which at least one of these contactor arms is pivotally supported in order to be able to move from and towards the opposite contact,

characterized in, that arc shields (6, 7), are disposed on said contactor arms (2, 3) in a way as to surround the respective contacts (202, 302), the first contactor arm (3) is pivotally mounted on the enclosure (1) and additionally pivotally connected with the operation mechanism (4), the second contactor arm (2) is also pivotally mounted on the enclosure (1), and provided with a spring (2 A) urging the contactor arm (2) in direction towards the first contactor arm (3),

and these contactor arms (2, 3) are arranged to each other in a parallel and symmetric way so that a current loop is formed in the closed state.

- 2 -

2. Circuit breaker according to claim 1,
characterized in, that
the arc shields (6, 7) are made of a high resistivity
material and are disposed in a manner to fully surround
the peripheries of said first and second contacts (202,
302) and to conceal parts of that first and second
contactor arms (2, 3) adjacent to that contacts (202,
302), respectively, whereby magnetic fluxes based on
currents respectively flowing through that first and
second contactor arm (2, 3) repel each other.

3. Circuit breaker according to claim 2
characterized in, that
the resistivity material of the arc shields is an
organic or inorganic isolator.

4. Circuit breaker according to claim 2 and 3,
characterized in, that
the resistivity material of the arc shields is a high
resistivity metal such as copper-nickel, copper-
manganese, manganin, iron-carbon, iron-nickel, iron-
chromium and iron.

5. Circuit breaker according to anyone of the preceding
claims,
characterized in, that
at least one of said arc shields (6, 7) is provided with
a groove (601, 701) extending from the respective
contact (202, 302) towards the arc extinguishing plates

- 3 -

(5) and exposing the respective conducting contactor arms (2, 3).

6. Circuit breaker according to claim 1, characterized in, that the first and second contactor arms (2, 3) are connected to external connection terminals (e.g. 204) through flexible conductors (203, 303).

FIG. 1(a)

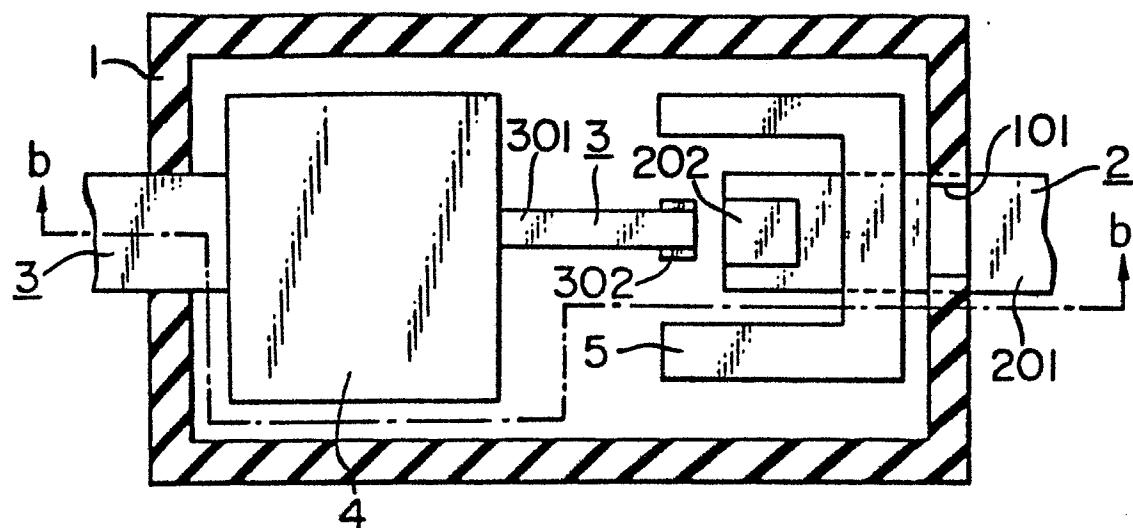


FIG. 1(b)

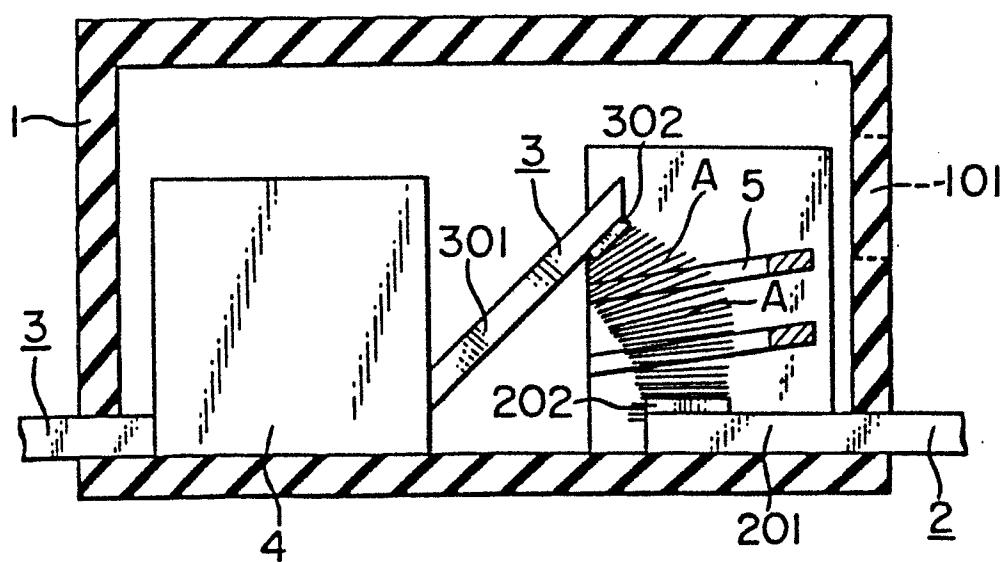


FIG. 2

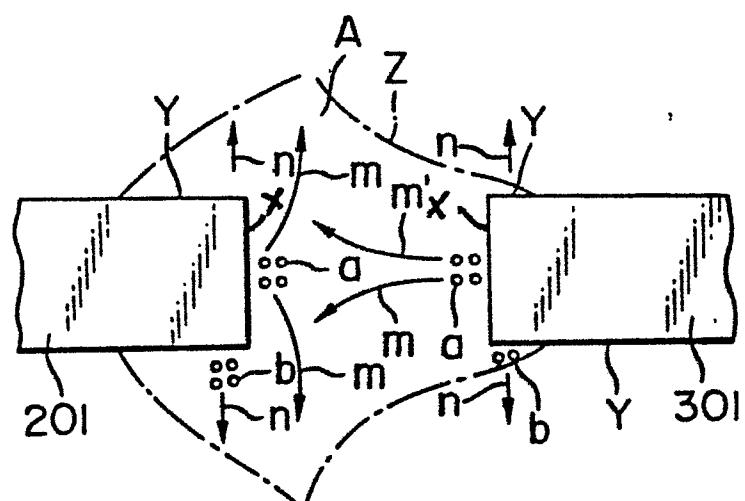


FIG. 3(a)

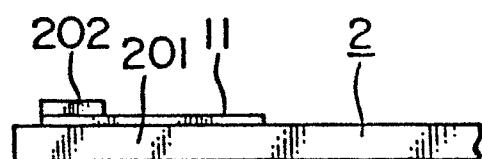


FIG. 3(c)

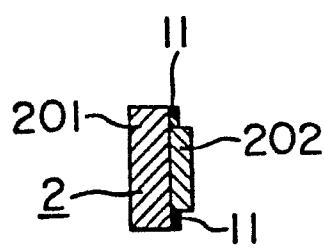


FIG. 3(b)

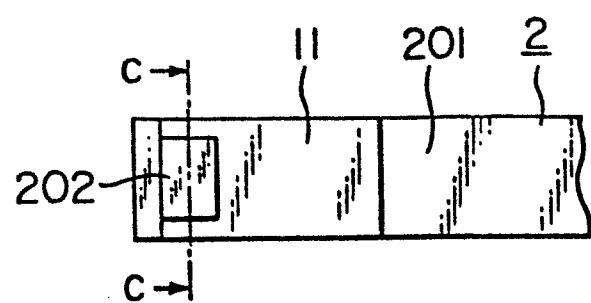


FIG. 4(a)

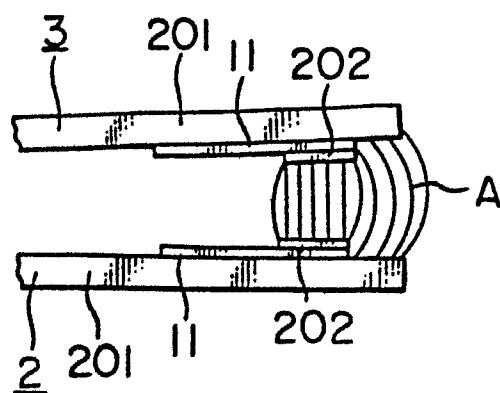


FIG. 4(b)

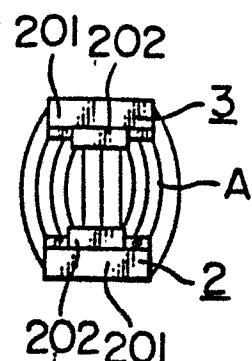


FIG. 5

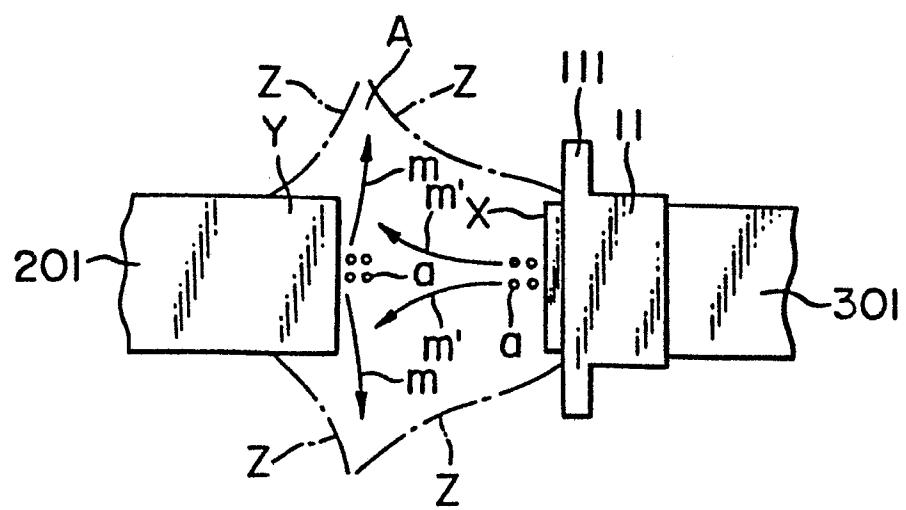


FIG. 6(a)

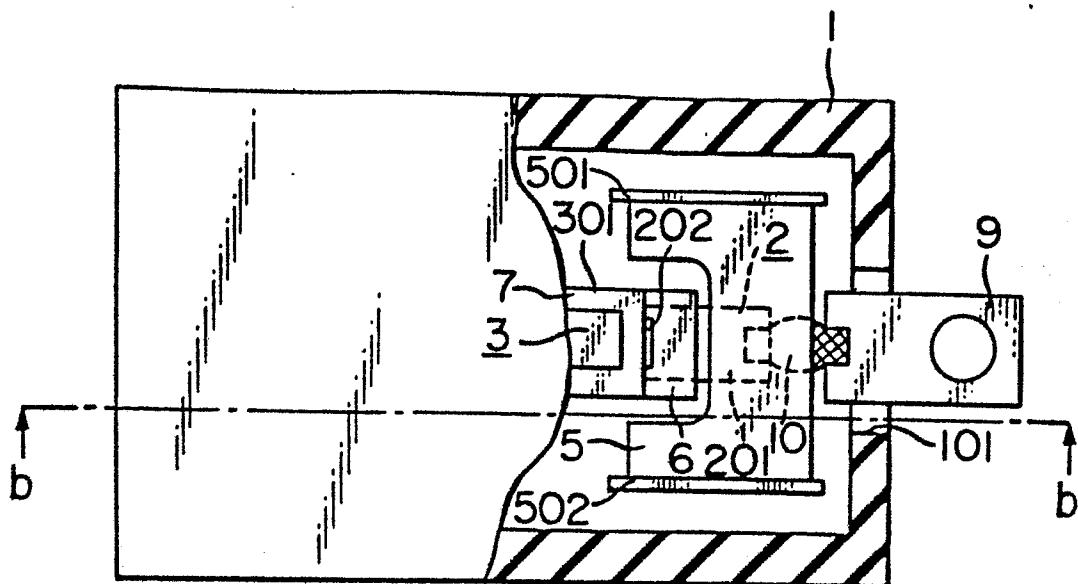


FIG. 6(b)

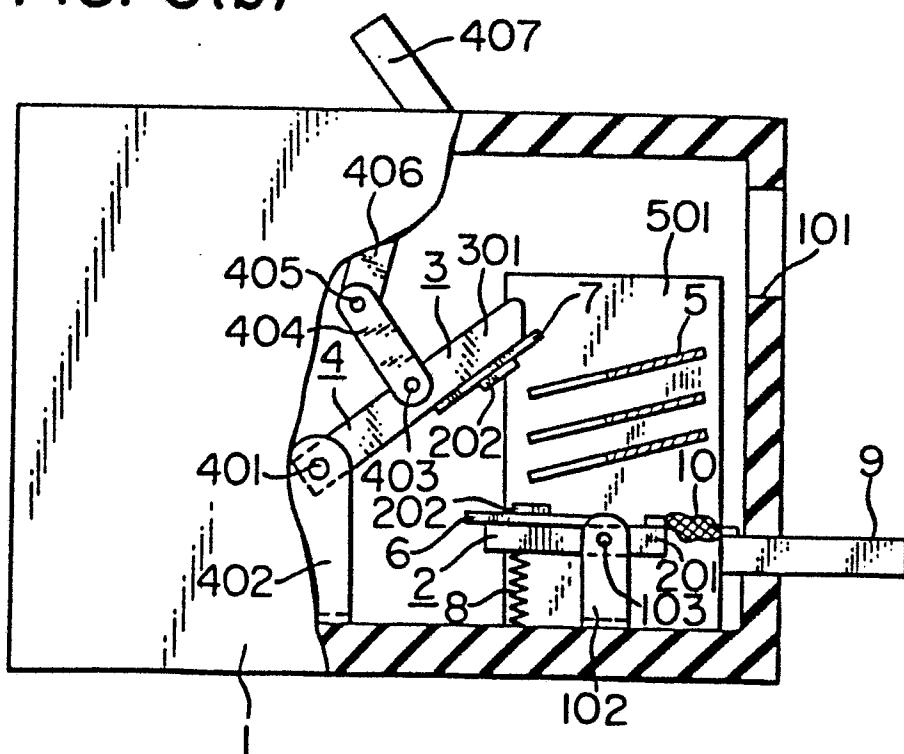


FIG. 7

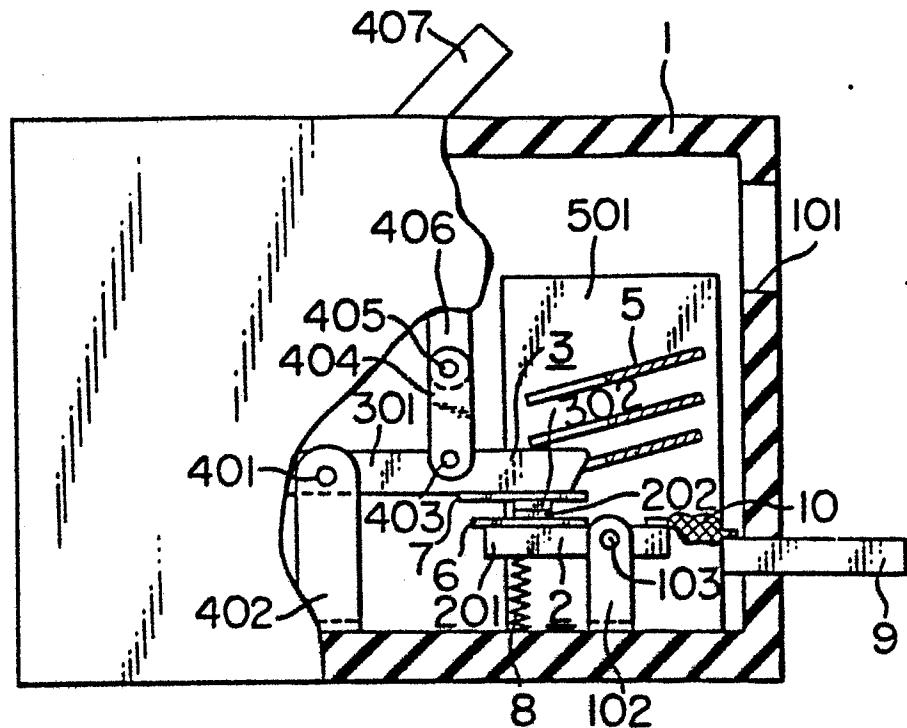


FIG. 9

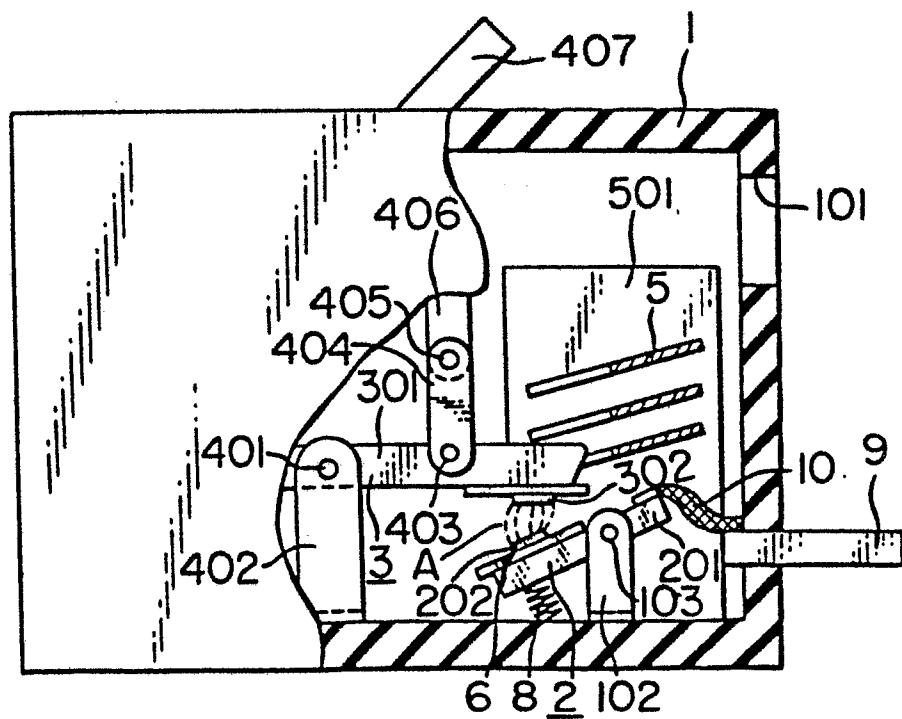


FIG. 8

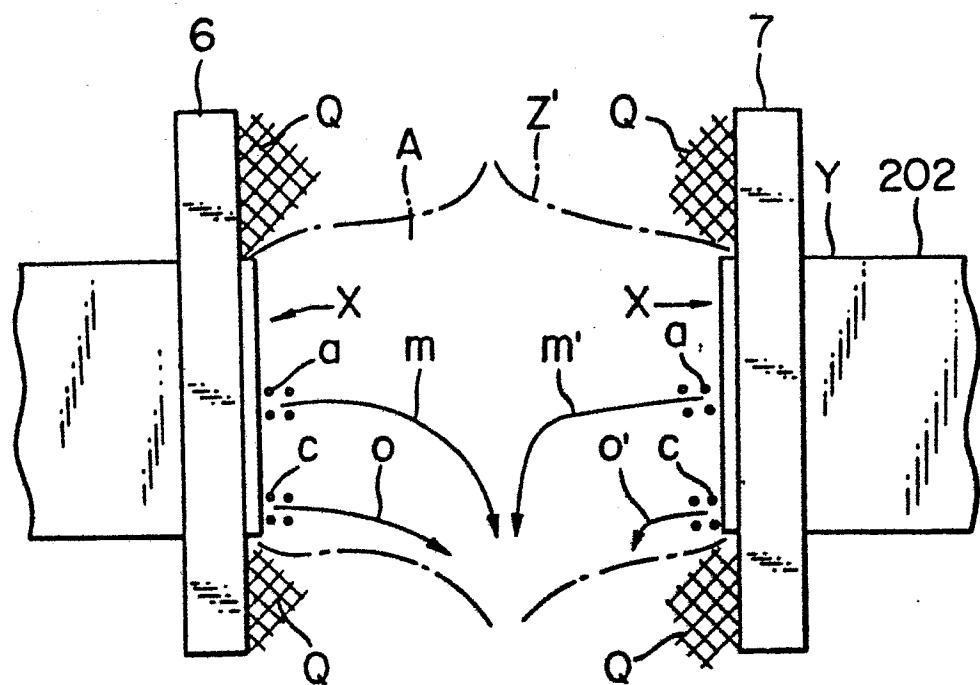


FIG. 11

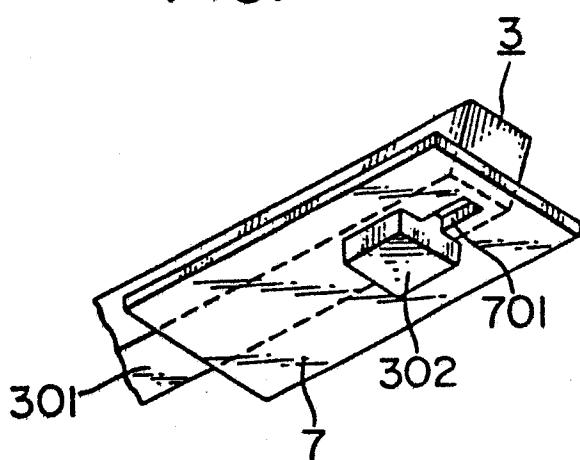


FIG. 10

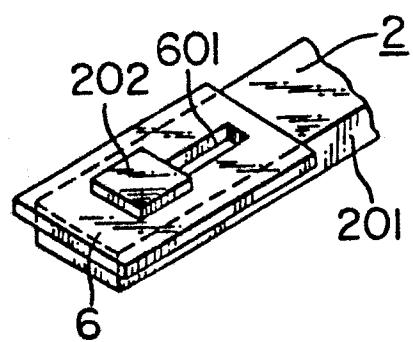


FIG. 12(a)

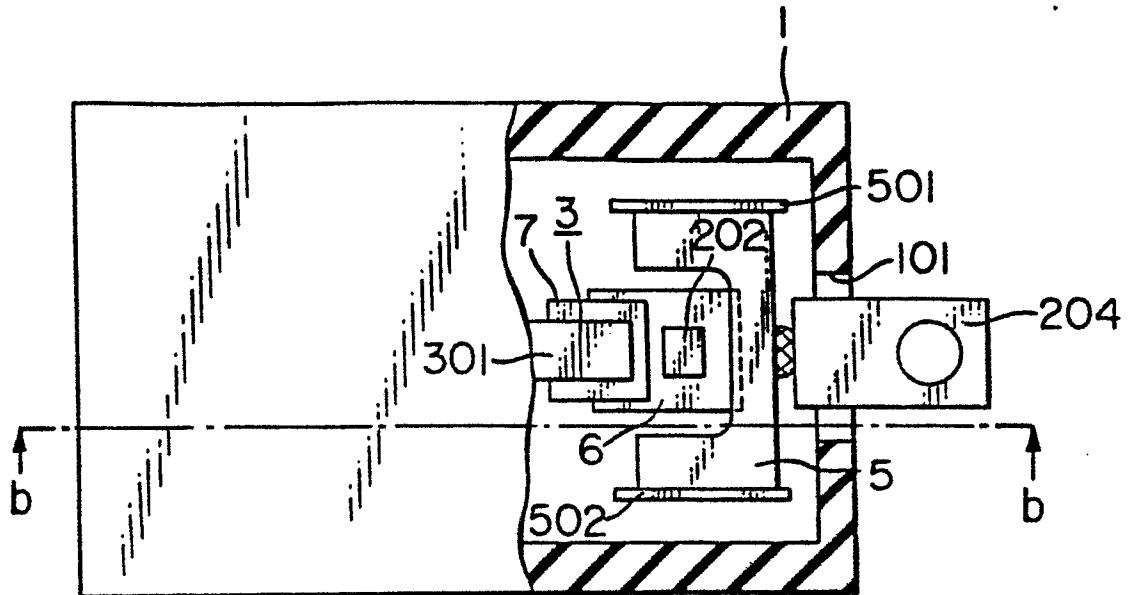
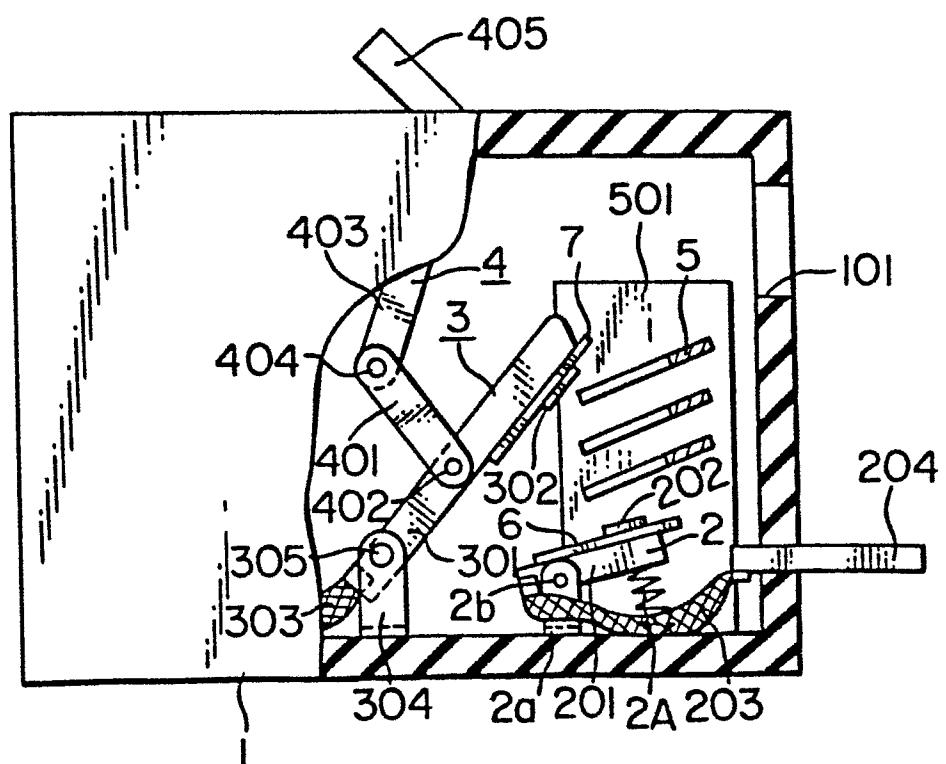



FIG. 12(b)

8/14

0237623

FIG. 13

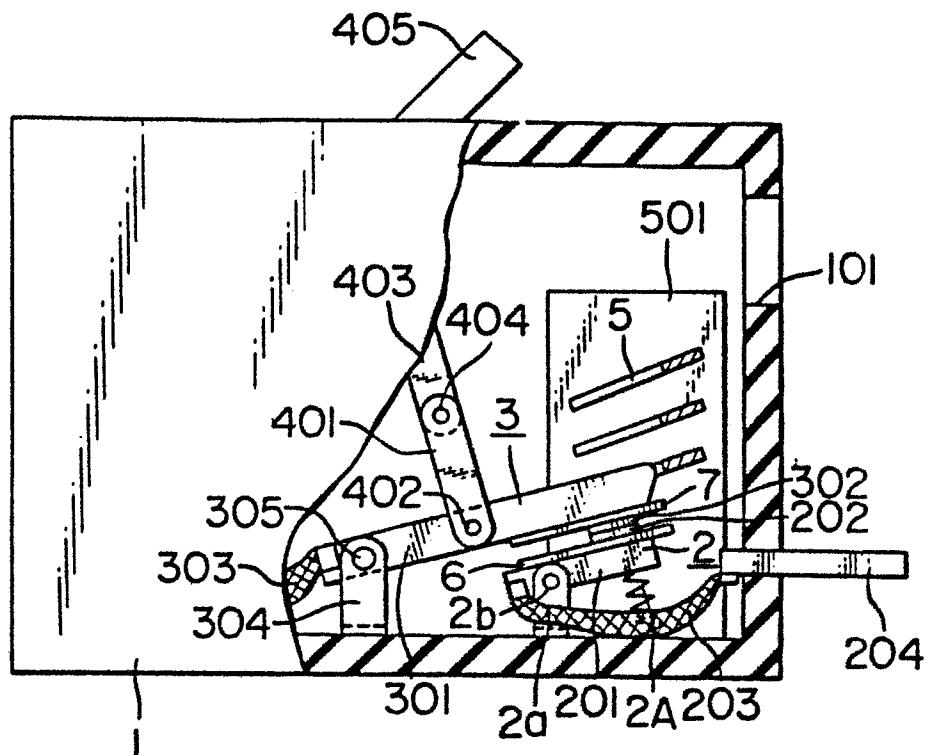


FIG. 14

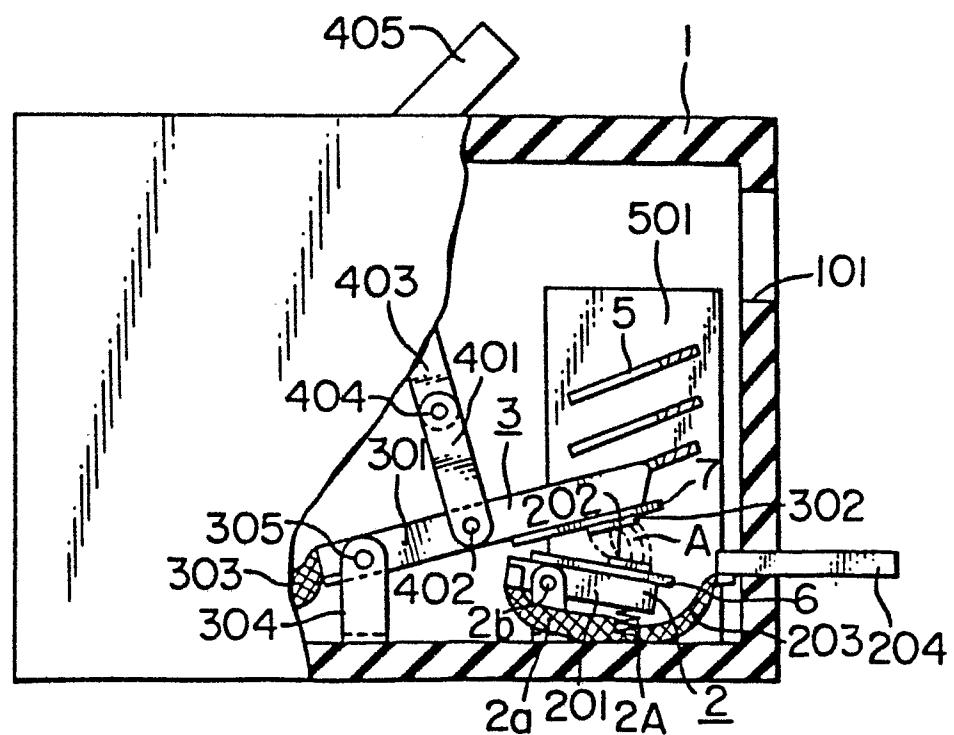


FIG. 15(a)

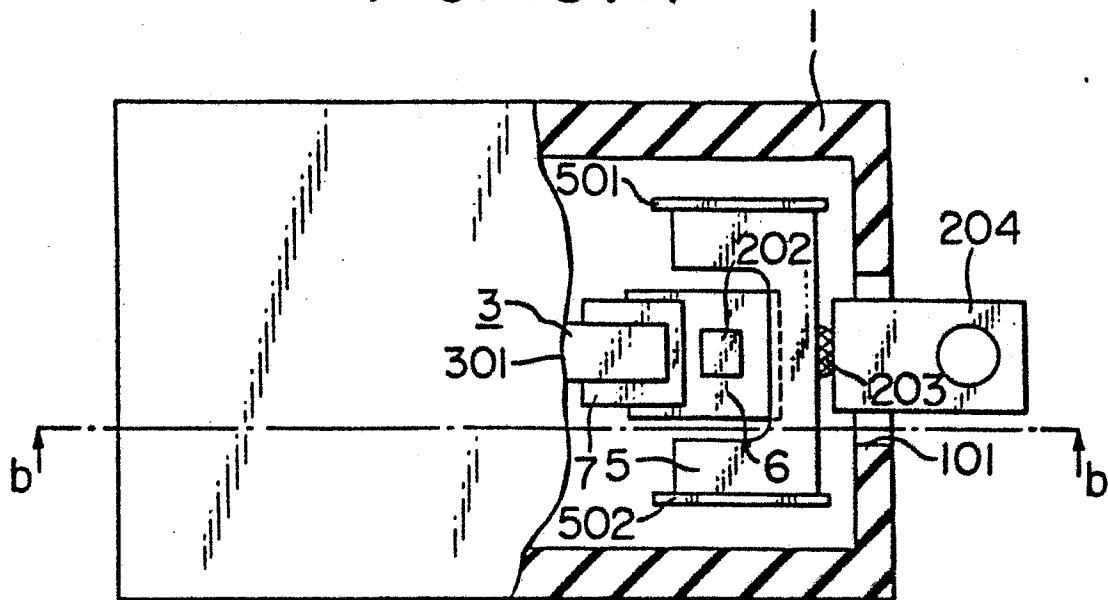


FIG. 15(b)

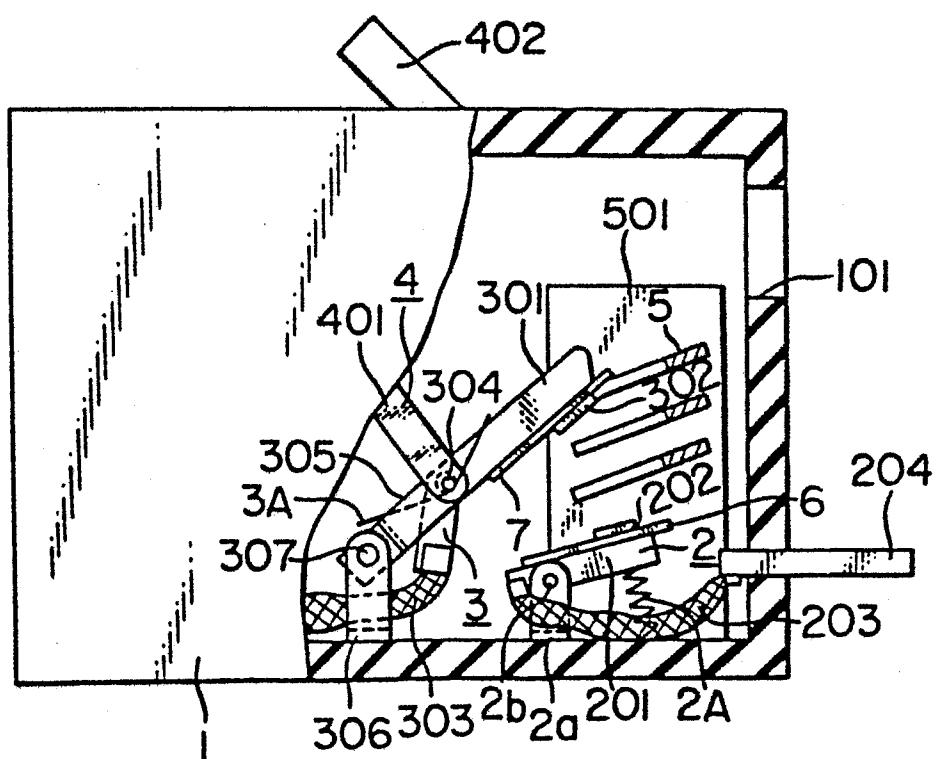


FIG. 16

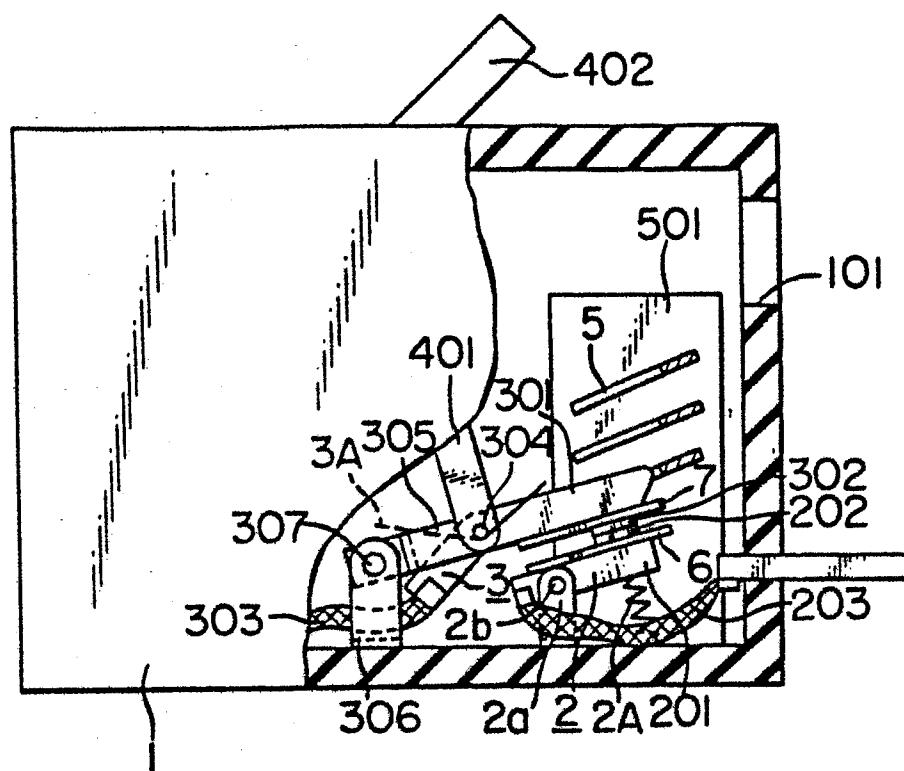


FIG. 17

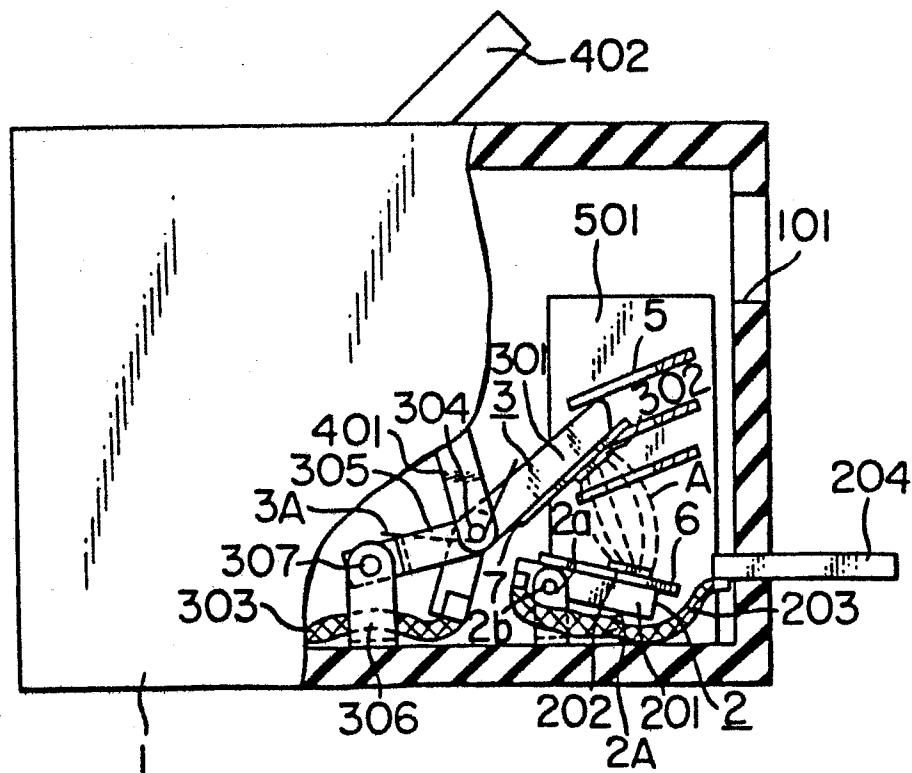


FIG. 18(a)

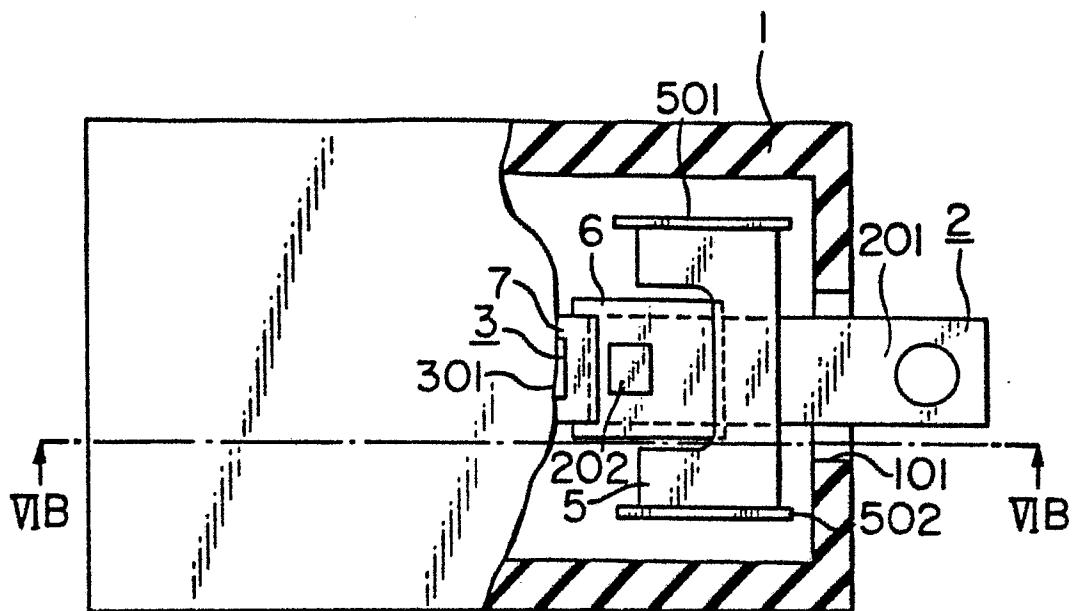


FIG. 18(b)

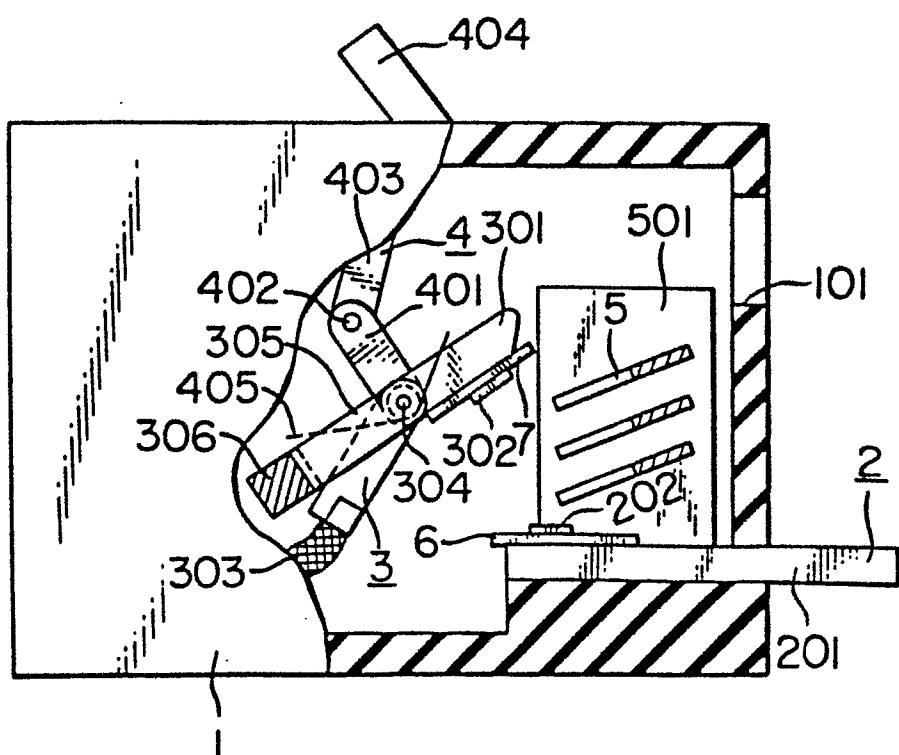


FIG. 19

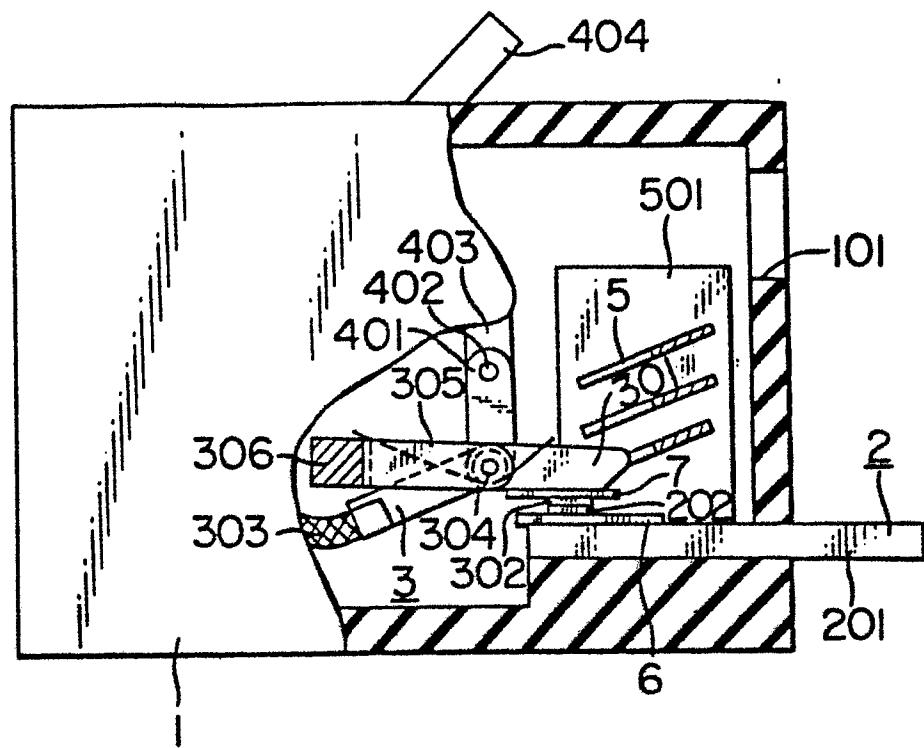


FIG. 20

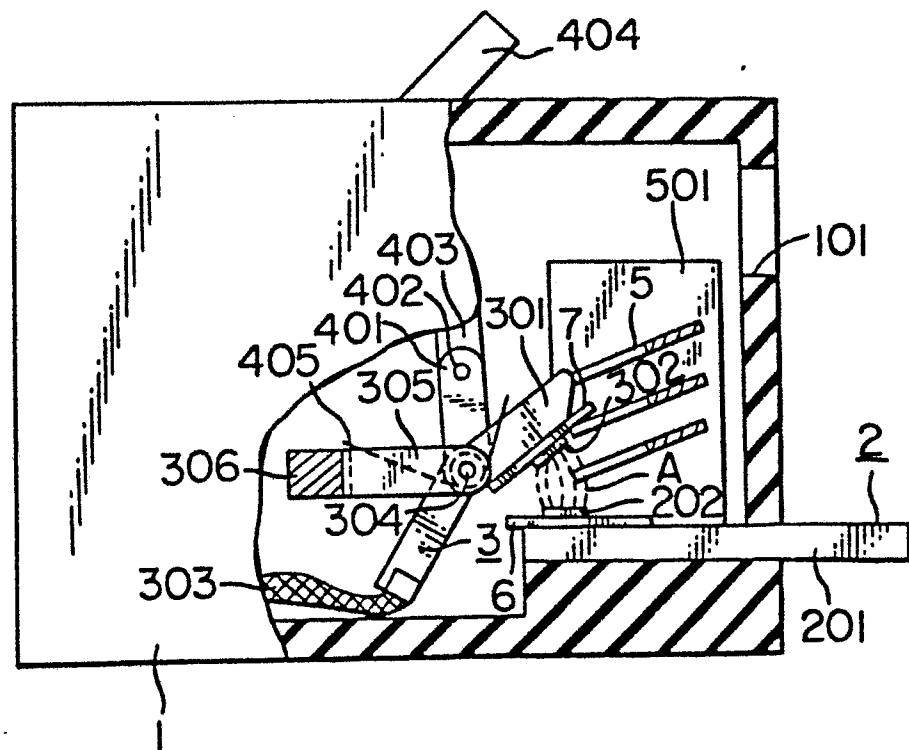


FIG. 21(a)

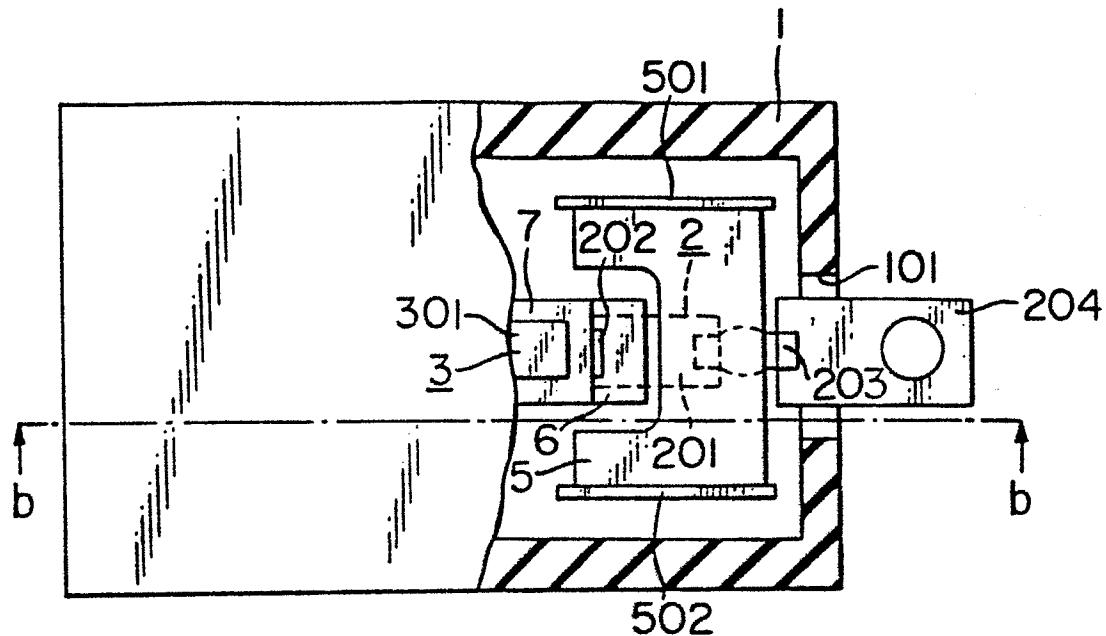


FIG. 21(b)

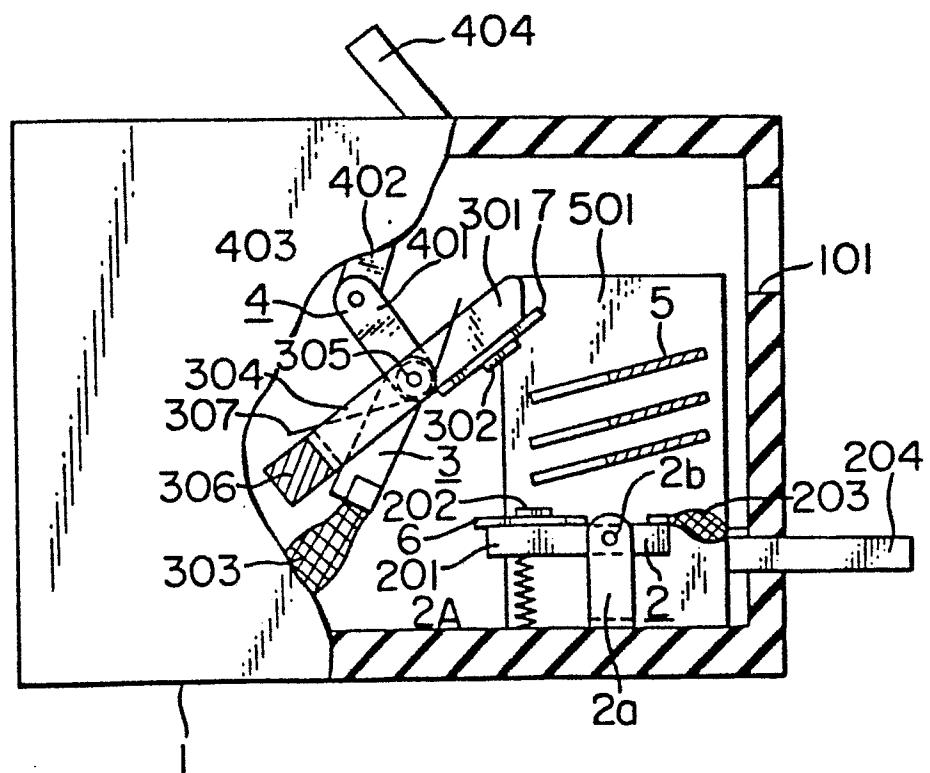


FIG. 22

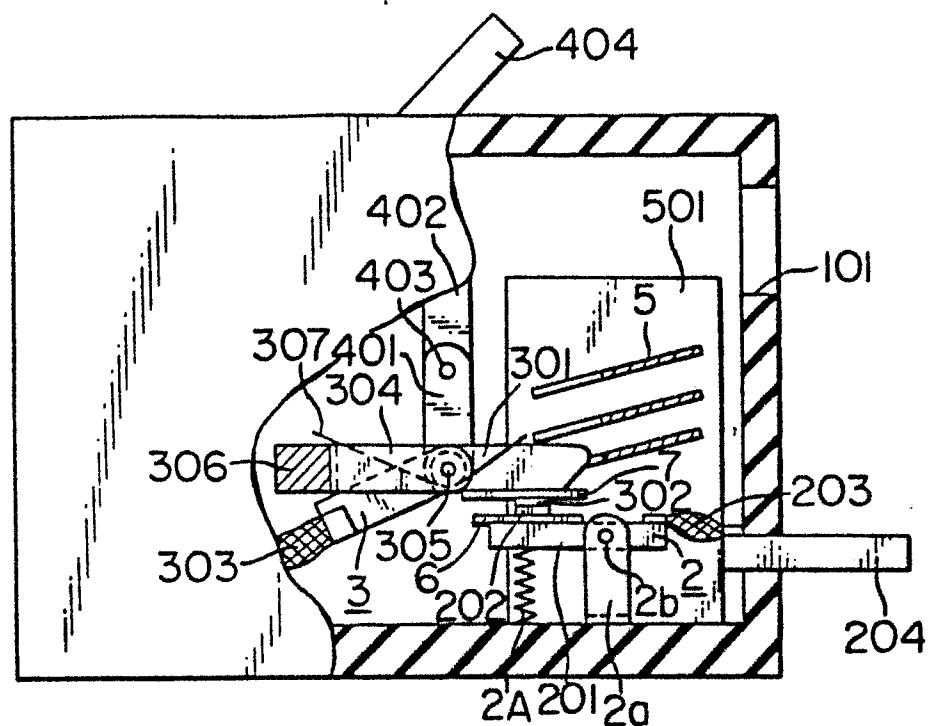
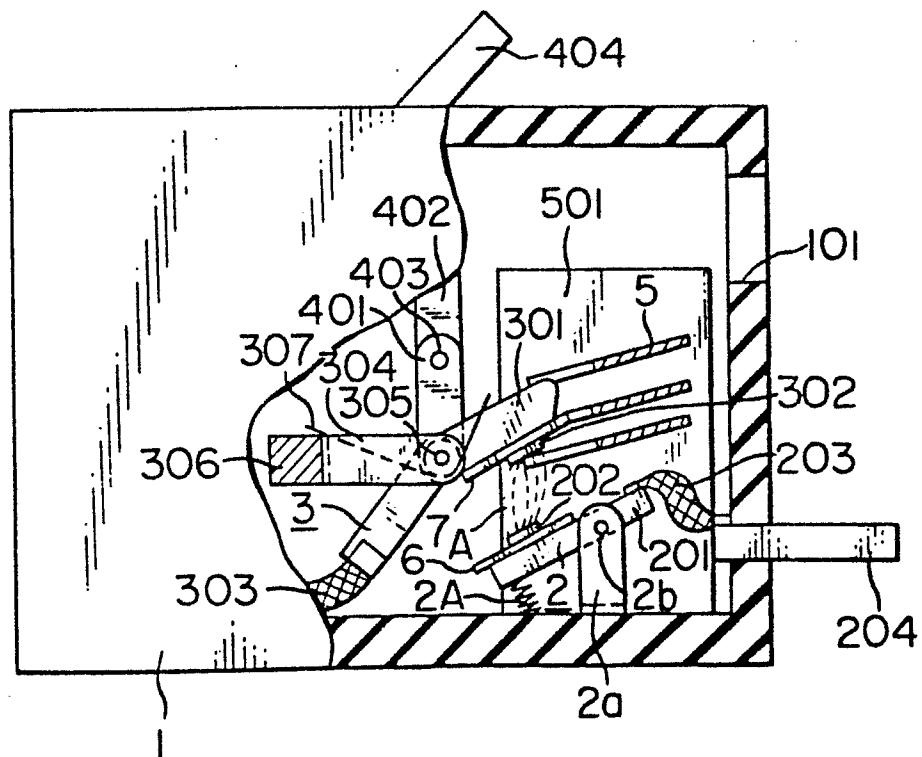



FIG. 23

EP 86 11 5278

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 4)
E	EP-A-0 054 833 (MITSUBISHI DENKI K.K.) * claims 1-3; page 15, line 1 - page 19, line 7; figures 3-6 *	1-3,5	H 01 H 73/04 H 01 H 77/10
A	US-A-3 402 273 (R.S. DAVIS) * claim 1, column 4, lines 60-71, figures 2-4 *	1-3	
A	US-A-3 997 746 (G.S. HARPER et al.) * column 6, lines 47-62; figures 10, 11 *	1	
A	DE-B-1 765 050 (DEUTSCHE GOLD-UND SILBER-SCHEIDEANSTALT) * column 3, line 27 - column 4, line 53 *	1,4	TECHNICAL FIELDS SEARCHED (Int. Cl. 4)
A	DE-A-2 928 823 (FUJI ELECTRIC CO. LTD.) * abstract; figures 1-4 *	1,3	H 01 H 9/00 H 01 H 73/00 H 01 H 77/00
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
BERLIN	12-06-1987	RUPPERT W	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone	Y : particularly relevant if combined with another document of the same category		
A : technological background	O : non-written disclosure		
P : intermediate document			