

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 238 740
A1

⑫

EUROPEAN PATENT APPLICATION

㉑ Application number: 86302345.3

㉓ Int. Cl.4: C10G 53/06

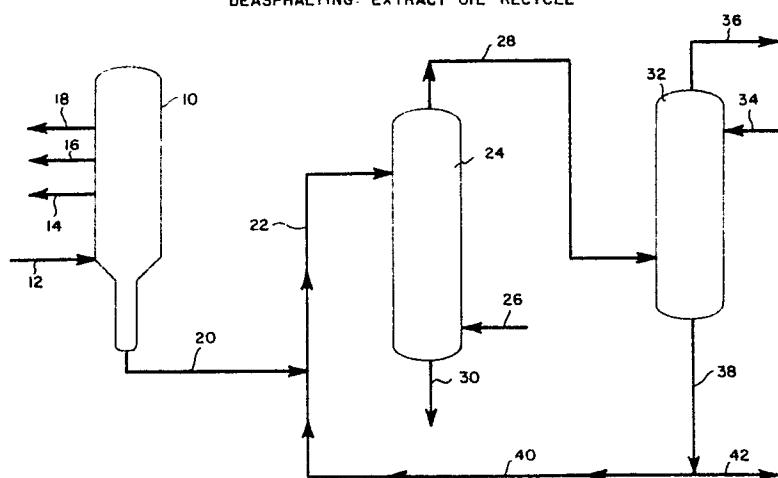
㉒ Date of filing: 27.03.86

㉔ Date of publication of application:
30.09.87 Bulletin 87/40

㉕ Designated Contracting States:
FR GB IT

㉗ Applicant: Exxon Research and Engineering
Company
P.O.Box 390 180 Park Avenue
Florham Park New Jersey 07932(US)

㉘ Inventor: Achia, Biddanda Umesh
1689 Trinity Crescent
Sarnia Ontario, N7S 5P8(CA)
Inventor: Bristow, Duncan John
1248 Arlington Avenue
Sarnia Ontario, N7S 3V4(CA)
Inventor: Evers, Lawrence Joseph
272 Maria Street
Sarnia Ontario, N7T 4T3(CA)


㉙ Representative: Somers, Harold Arnold et al
ESSO Engineering (Europe) Ltd. Patents &
Licences Apex Tower High Street
New Malden Surrey KT3 4DJ(GB)

㉚ Process for improving bright stock raffinate oil production.

㉛ A process of increasing the production of Bright Stock oil in a lube oil process scheme. Aromatic extract oil (38, Fig.1), after being separated from the extraction solvent, is recycled (40) back to the deasphalting unit (24) and combined with a vacuum residuum (from 20) in 10-20 LV%, based on the total deasphalting feed, prior to deasphalting. After deasphalting and aromatics extraction (32) the absolute yield of raffinate (36) is increased.

FIG. 1

DEASPHALTING: EXTRACT OIL RECYCLE

EP 0 238 740 A1

PROCESS FOR IMPROVING BRIGHT STOCK RAFFINATE OIL PRODUCTION

BACKGROUND OF THE INVENTION

5 The present invention relates to lube oil manufacture and more specifically, is directed to increased production of Bright Stock raffinate oil.

Bright Stock raffinate oil is a high-boiling hydrocarbon fraction produced during lube oil manufacture and is well-known in the art. Generally, in the art, after a vacuum residuum, suitable for lube oil production, has been deasphalting by contacting and extracting with a propane solvent, the propane solvent is stripped off and the resulting extract oil is extracted with an aromatic solvent, such as N-methylpyrrolidone (NMP), to 10 remove aromatic hydrocarbons. The resulting extracted, deasphalting oil phase, containing mainly saturated hydrocarbons, is known in the trade as "Bright Stock raffinate oil". This raffinate is subsequently contacted with extracting agents like ketones or alkane hydrocarbon solvents to remove waxy hydrocarbons which are detrimental to lube oil viscosity properties and then subjected to HYDROFINING™ to improve the appearance of the oil and remove sulfur. The resulting oil is termed "Bright Stock Oil" and is a lube base 15 stock component from which many lubricating oils, e.g., gear oil, machine oil, automobile engine oil, are made by blending with other lube stock components.

A current practice in the industry, following NMP extraction of deasphalting oil in a lube process, is to strip off the NMP from the extracted phase and send the residual extract oil, containing mostly aromatics and some dissolved recoverable Bright Stock raffinate oil, to a different process involving a catalytic cracker 20 unit for processing to produce fuel oils. Such practice results in a yield debit for Bright Stock raffinate oil in the lube oil process and ultimately the Bright Stock base oil yield. This step is performed primarily because it is believed that recycling said extract oil again through the extraction step would result in a very low recovery of recoverable raffinate which may not be justified in light of the attendant recycling cost and process time required.

25 An example of the prior art in the area is U.S. Patent No. 2,570,044 which discloses recycling of an aromatic extract oil stream derived from a deasphalting oil to a deasphalting feed during lube production. This is disclosed as being carried out in order to eliminate the formation of a third phase which tends to foul the deasphalting internals.

In addition, the patent claims that the overall yield of high Viscosity Index (VI) components is increased 30 relative to a conventional scheme without extract oil recycle. The aforementioned patent also teaches that the quantity of extract oil recycled to prevent asphaltic deposition is from 3 to 25 percent by volume (LV%) based on the reduced crude oil charged to the deasphalting treater tower. Furthermore, it is stated that recycling larger amounts (greater than 25 LV%) of extract oil is not disadvantageous but actually increases the yields of high Viscosity Index (VI) oil.

35

SUMMARY OF THE INVENTION

It has been found, in direct contrast to the teaching of the above-identified patent, that for the 40 production of lube Bright Stock raffinate oil within specifications, there is a distinct range for extract oil recycle being from 10 to 20 LV% based on the total reduced crude feed to the deasphalting. Adding extract oil in excess of 20 LV%, results in a dewaxed raffinate oil Conradson Carbon Residue (CCR) exceeding the equivalent of 1.0 weight percent. This leads to unacceptable Bright Stock Conradson Carbon Residue values exceeding the required specification of <0.7 wt.% with conventional downstream processing. Values 45 of CCR exceeding specification arise due to the high CCR content of Bright Stock extract oil. In addition, it has been found that a substantial deasphalting yield credit results with extract oil recycle accompanied by an extraction yield debit. As a result of the operation of these two features, the maximum yield of high VI oil occurs between 10 and 20 LV% extract oil recycle and adding in excess of 20 LV% actually causes the overall yield to begin to decrease. The subject process is particularly useful in refinery operations being 50 conducted under crude-limited conditions.

In accordance with this invention there is provided in a process for increasing the amount of Bright Stock raffinate oil derived from the solvent extraction of deasphalting lube oil involving the steps of:

- (a) extracting a vacuum residuum with a low molecular weight alkane hydrocarbon solvent resulting in a deasphalting lube oil and asphaltic residue;
- (b) separating said deasphalting lube oil and said residue;

- (c) separating said hydrocarbon solvent from said deasphaltered lube oil;
- (d) extracting said deasphaltered lube oil obtained from step (c) with an aromatic solvent resulting in a Bright Stock raffinate oil solution and an extract oil solution, said extract oil solution comprised of dissolved aromatics and recoverable raffinate;
- 5 (e) separating said raffinate oil solution from said extract oil solution obtained from step (d); and
- (f) separating said aromatics solvent from said extract oil solution obtained from step (e); in which said improvement comprises the steps of:
- (g) recycling said extract oil, from which the aromatics solvent has been removed, obtained from step (f), to step (a) and combining said extract oil with said vacuum residuum, in a 10-20 LV%, based on said
- 10 residuum, prior to said deasphalting;
- (h) repeating step (a);
- (i) repeating step (b);
- (j) repeating step (c);
- (k) extracting said deasphaltered oil obtained from step (1) with said aromatics solvent resulting in said
- 15 Bright Stock raffinate oil and said extract oil, wherein said obtained raffinate is present in a substantially greater amount, based on said vacuum residuum, as compared to said raffinate obtained in step (d).

DESCRIPTION OF THE DRAWINGS

20 Figure 1 is a simplified flow diagram illustrating apparatus and connections of one embodiment for practicing the subject invention.

Figure 2 illustrates three different plots obtained by practice of the subject invention showing the variation, as a function of extract oil recycle in LV%; of:

25 (a) the deasphaltered oil (DAO) yield based on total deasphalting feed;

(b) raffinate yield based on total extraction unit feed; and

(c) raffinate yield based on total deasphalting unit feed.

Figure 3 is a process schematic diagram showing the increased raffinate yield in using extract oil recycle vs. the base case (no recycle).

30

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

An understanding of the improved process of the subject invention and details for carrying it out can 35 readily be obtained by referring to Figure 1.

In Figure 1, a hydrocarbon feedstock such as a reduced crude, suitable for lube oil production, enters the vacuum distillation zone 10 through line 12. Distillate is shown being withdrawn from zone 10 through lines 14, 16 and 18. Vacuum residuum from zone 10 suitable for lube oil production passes through line 20 and is mixed with an aromatic extract oil (line 40) in line 22 and passed into (a first extraction zone) being 40 deasphalting zone 24. The feed to zone 24 countercurrently contacts a low molecular weight hydrocarbon solvent such as propane, which enters through a line 26, producing a deasphaltered lube oil (DAO) solution exiting through line 28 and an asphaltic residue exiting through line 30. The deasphaltered oil after propane stripoff enters a second extraction zone 32, through line 28, where it is countercurrently contacted with an aromatics solvent (for extracting aromatics including benzene, toluene and xylene) such as N-methylpyrrolidone (NMP) or phenol, which enters through upper line 34. A saturates-rich Bright Stock oil raffinate solution passes out of zone 32 through upper line 36 and the extract oil solution, comprised of dissolved extracted aromatics and recoverable raffinate passes out through lower line 38. After separation of the 45 extraction solvent NMP from a portion of the extract oil solution, this portion of the extract oil is then passed through line 40 and admixed with the vacuum residuum feed entering from line 20 in the amount of 10-20% of deasphalting feed to the deasphalting zone. The remainder of the extract oil in line 38 is passed to a cat cracker unit or other suitable disposition through line 42. The obtained Bright Stock raffinate oil via recycle in line 36 is present in a substantially greater amount based on the same amount of starting vacuum residuum, as 50 deasphalting feed, as compared to that obtained from vacuum residuum not admixed with recycled extract oil in the base case.

The yield of Bright Stock raffinate oil obtained from vacuum residuum is generally in the range of about 3.3 LV%, based on the residuum. Use of extract oil recycle according to the present invention, significantly increases the amount of recoverable Bright Stock raffinate oil to values above 3.5 LV%.

Distillation zone 10 typically comprises a vacuum distillation zone, or vacuum pipestill. Distillation zone 10 commonly is a packed or a trayed column. The bottoms temperature of zone 10 typically is maintained within the range of about 350° to about 450°C, while the bottoms pressure is maintained within the range of 5 to about 15 cm Hg. The specific conditions employed will be a function of several variables, including the feed utilized, the distillate specifications, and the relative amounts of distillate and bottoms desired. Typically, the resulting vacuum residuum obtained comprises between about 10 and about 50 weight percent of the total residuum feed in line 12, and has a boiling point (1 atm.) above about 370°C.

The operation of deasphalting zones is well known by those skilled in the art. Deasphalting zone 24 typically will comprise a contacting zone, preferably a countercurrent contacting zone, in which the hydrocarbon feed entering through line 22 is contacted with a solvent, such as a liquid light alkane hydrocarbon. Deasphalting zone 24 preferably includes internals adapted to promote intimate liquid-liquid contacting, such as sieve trays or shed row contactors. The extract stream, comprising deasphalted oil and a major portion of the solvent, exits the deasphalting zone 24 for further separation of the deasphalted oil from the solvent, with the solvent fraction recirculated via line 40 to deasphalting zone 24 for reuse. The preferred solvents generally used for deasphalting include C₂-C₈ alkanes, i.e., ethane, propane, butane, pentane, hexane, heptane and octane, with the most preferred being propane for lube oil processing. The operating conditions for deasphalting zone 24 are dependent, in part, upon the solvent utilized, the characteristics of the hydrocarbon feedstock, and the physical properties of the deasphalted oil or asphalt desired. The solvent treat typically will range between about 200 liquid-volume percent (LV%) and about 1000 LV% of the residuum feed added to deasphalting zone 24. A discussion of deasphalting operation is presented in *Advances in Petroleum Chemistry and Refining*, Volume 5, pages 284-291, John Wiley and Sons, New York, New York (1962), the disclosure of which is incorporated by reference.

The operation of lube oil extraction zones is well known to those skilled in the art. Extraction zone 32 typically comprises a contacting zone, preferably a countercurrent contact zone, in which the hydrocarbon feed entering through line 28 is contacted with an aromatic solvent, such as N-methylpyrrolidone (NMP) furfural or phenol. Extraction zone 32 preferably has internals designed to promote intimate liquid-liquid contact. The raffinate stream comprising a major portion of the saturates and a small portion of the extraction solvent, exits the extraction zone through line 36 for further separation of the raffinate from the solvent fraction, with the solvent fraction recirculated to extraction zone 32 for reuse. The extract stream, comprising a major proportion of the aromatics and a major portion of the extraction solvent, exits the extraction zone through line 38 for further separation of the aromatics from the solvent fraction, with the solvent fraction recirculated to extraction zone 32 for reuse. The operating conditions for extraction zone 32 are dependent in part, upon the solvent utilized, the characteristics of the hydrocarbon feedstock, and the physical properties of the raffinate oil desired. The solvent treat will typically range from 100 to 400 LV% of the DAO feed to the extraction zone 32 and contain from 0.5 to 6.0 LV% water.

The following examples are illustrative of the best mode of carrying out the subject invention process as contemplated by the inventors and should not be construed as being a limitation on the scope and spirit of the instant invention.

40

EXAMPLE 1

To illustrate the instant invention, Arabian Light Vacuum Resid (residuum) from a vacuum distillation zone and an extract oil derived from an Arabian Light DAO (deasphalted oil) were the deasphalter feed materials utilized during a deasphalting process with propane solvent. Typical properties of the two materials are summarized below in Table 1.

50

55

TABLE 1

Typical Component Feed Properties

	<u>Arabian Light Vacuum Resid</u>	<u>Arabian Light Bright Stock Extract Oil</u>
10 Viscosity, cSt @ 100°C	740	72
Density, kg/dm ³ @ 15°C	1.0162	0.9882
CCR, wt.%	20.0	6.0
15 Refractive Index @ 75°C	--	1.5372

20 The increase in Arabian Light Bright Stock oil production was demonstrated by admixing in the Figure 2 listed LV% proportions, the above-described Arabian Light extract oil stream (40), being the extract from the solvent extraction of an Arabian Light deasphalting oil, with the above-described Arabian Light Vacuum Residuum as a deasphalting feed.

25 The extract oil was mixed with the vacuum residuum in a 10-20 LV% based on the residuum, which was in addition to the amount of residuum normally used resulting in a greater LV% of total feed mixture. In Figure 2, the values in (a) for DAO yield are based on the total vacuum residuum/extract oil deasphalting feed; the values in (b) for raffinate yield are based on the DAO to the extraction unit and the values in (c) for increased raffinate yield, being Bright Stock basestock oil, as a result of the recycle, are based on the total vacuum residuum/extract oil deasphalting feed.

30 The deasphalting feedstock mixture was contacted with propane solvent in the deasphalting per standard procedure. The DAO was then extracted with NMP to Bright Stock quality specifications and the appropriate LV% extract oil, after NMP strip off, recycled to the deasphalting and the process repeated. The yields for the deasphalting, extraction and overall Bright Stock base oil (raffinate) have been presented graphically in Figures 2(a-c) as a function of added LV% Extract Oil recycle. As seen in Figure 2(a), the DAO yield increases with increasing Extract Oil recycle while the LV% Raffinate yield in (b) based on total extraction yield decreases. The combination of these effects results in a maximum increase in Raffinate yield, i.e., Bright Stock production as seen in Figure 2(e) in the 10-20 LV% range, and particularly at 15 LV% Extract Oil recycle. Recycle at levels below 10 LV% results in sharply reduced Bright Stock yields, and recycle levels above 20 LV%, renders it difficult to maintain the Bright Stock Conradson Carbon Residue (CCR) quality specification.

35 40 This latter effect is clearly seen in Table 2 wherein the dewaxed raffinate oil qualities are compared with 0 and 20 LV% extract oil recycle.

45

50

55

TABLE 2

5 Variation in Dewaxed Raffinate Oil
Properties with Extract Oil Recycle

10	Dewaxed Raffinate Oil Properties	Extract Oil Recycle LV%	
		0	20
15	Viscosity, cSt. @ 100°C	37	37
20	Viscosity Index	95	95
25	Pour Point, °C	-9	-9
30	Sulphur, wt.%	1.35	1.53
35	Conradson Carbon Residue, wt.%	0.70	1.0

25 Conventional downstream processing (HYDROfining) reduces the dewaxed raffinate oil CCR by 0.3 wt.% which brings the 20 LV% recycle case down to 0.7 wt.% which is equivalent to the Bright Stock CCR specification. Recycling more than 20 LV% extract oil makes it very difficult to meet the Bright Stock CCR specification and is unacceptable in a conventional refinery operation.

30

EXAMPLE 2

35 Utilizing the apparatus and general procedure described above in Example 1, a comparative run was made using no recycle versus one using 15 LV% extract oil in the deasphalter/extraction steps. The base case run is indicated by numeral 1) and the recycle case as 2).

40 As seen from the results depicted in the flow diagram of Figure 3, starting with 1.0 liquid volume (LV) of vacuum residuum in the base case led to a 34% production of deasphalting oil (DAO), after propane extraction. Subsequent NMP solvent extraction produced 72% yield of raffinate based on the DAO resulting in 0.245 LV raffinate based on starting vacuum residuum as deasphalting feed.

45 By contrast, starting with 1.0 LV of vacuum resid, together with 0.175 LV of extract oil, representing a 15 LV% recycle, led to a 41% yield of DAO after deasphalting. Subsequent NMP extraction produced 55% yield of raffinate based on the DAO resulting in 0.265 LV raffinate. This represents an 8.2% increase in production of raffinate based on starting vacuum resid as compared to the base case involving no recycle.

50

Claims

1. A process for increasing the amount of Bright Stock raffinate oil derived from the solvent extraction of deasphalting lube oil comprising the steps of:
 - (a) extracting a vacuum residuum with a low molecular weight alkane hydrocarbon solvent resulting in a deasphalting lube oil solution and asphaltic residue;
 - (b) separating said deasphalting lube oil and said residue;
 - (c) separating said hydrocarbon solvent from said deasphalting lube oil;
 - (d) extracting said deasphalting lube oil obtained from step (c) with an aromatic solvent resulting in a Bright Stock raffinate oil solution and an extract oil solution, said extract oil solution being comprised of dissolved aromatics and recoverable raffinate;
 - (e) separating said raffinate solution from said extract oil solution obtained from step (d); and

(f) separating said aromatics solvent from said extract oil solution obtained from step (e); and comprising the further steps of:

(g) recycling said extract oil from which the aromatics solvent has been removed, obtained from step (f), to step (a) and combining said extract oil with said vacuum residuum in a 10-20 LV%, based on said residuum, prior to said deasphalting;

5 (h) repeating step (a);

(i) repeating step (b);

(j) repeating step (c);

(k) extracting said deasphalting oil obtained from step (j) with said aromatics solvent resulting in said

10 Bright Stock raffinate oil and said extract oil, wherein said obtained raffinate is present in a substantially greater amount, based on said vacuum residuum, as compared to said raffinate obtained in step (d).

2. The process of claim 1 wherein said extract oil is combined with said vacuum residuum in step (g) in about 15 LV% prior to said deasphalting.

3. The process of claim 1 or claim 2 wherein said hydrocarbon solvent in step (a) is propane.

15 4. The process of any one of claims 1 to 3 wherein said aromatics solvent in step (d) is N-methylpyrrolidone.

5. The process of any one of claims 1 to 4 comprising the step of recovering a Bright Stock raffinate oil exhibiting a Conradson Carbon Residue value of about 1.0 weight percent or less.

20

25

30

35

40

45

50

55

FIG. I
DEASPHALTING: EXTRACT OIL RECYCLE

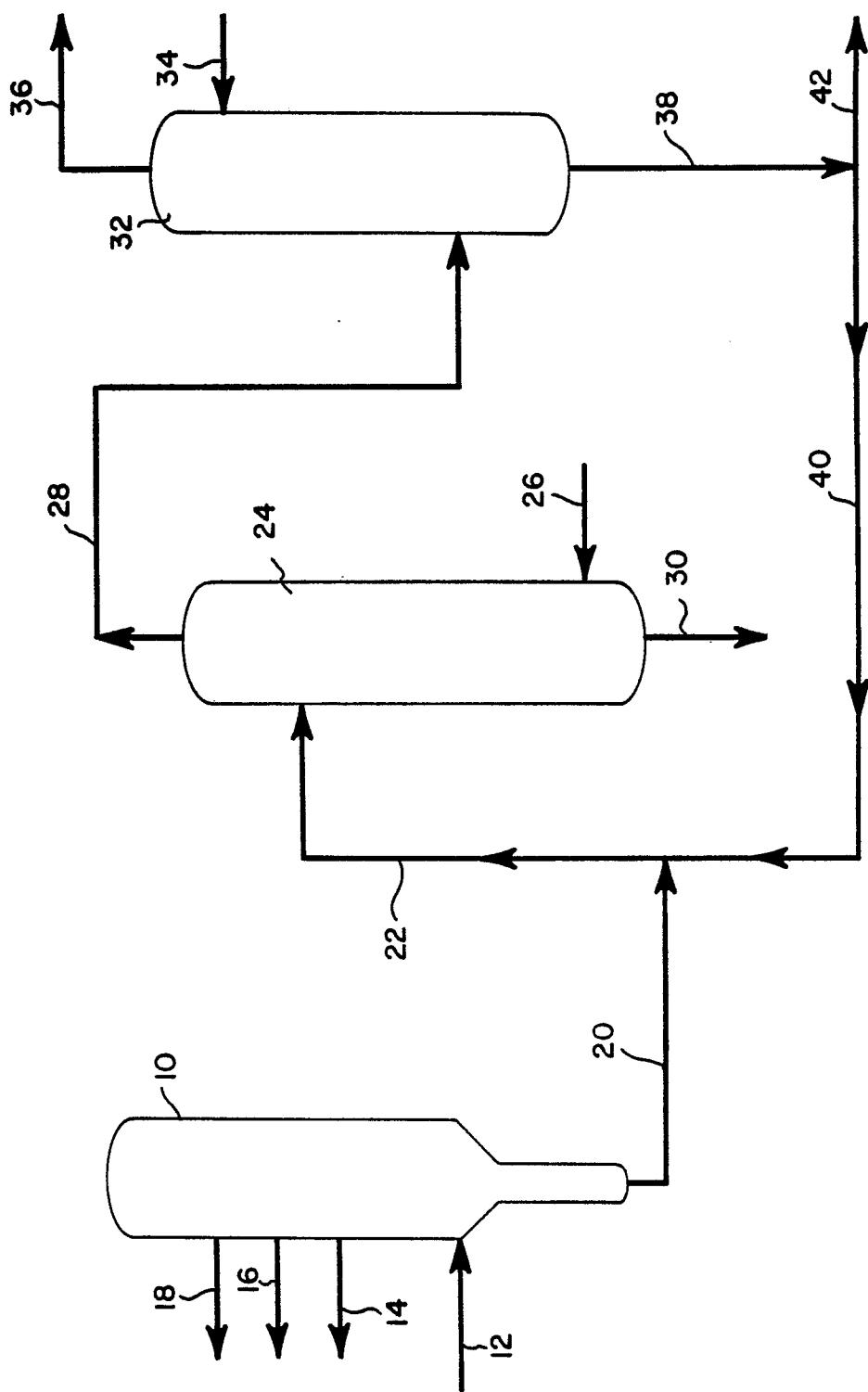
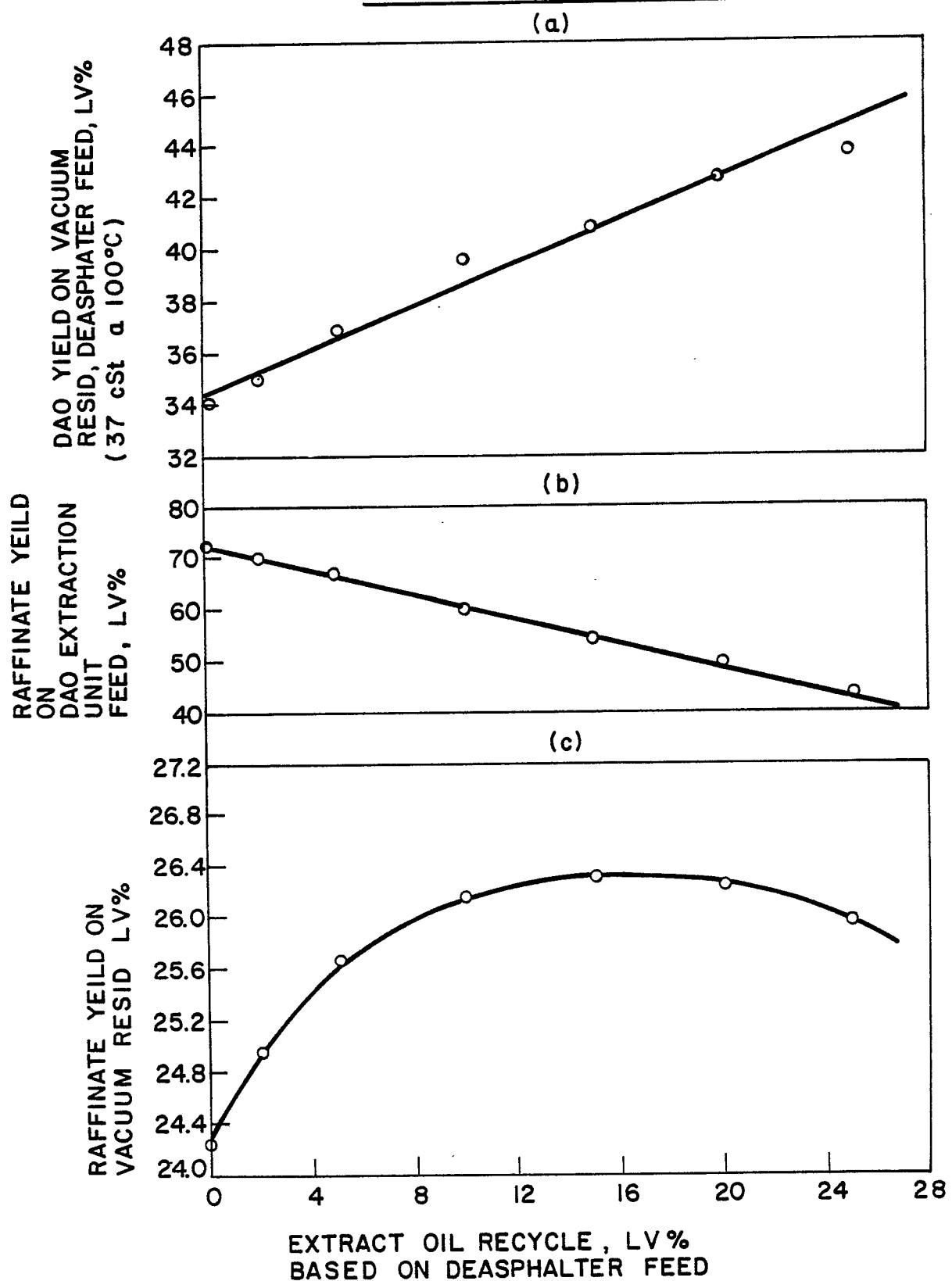



FIG. 2

EXTRACT OIL RECYCLE FOR ENHANCED
BRIGHT STOCK PRODUCTION

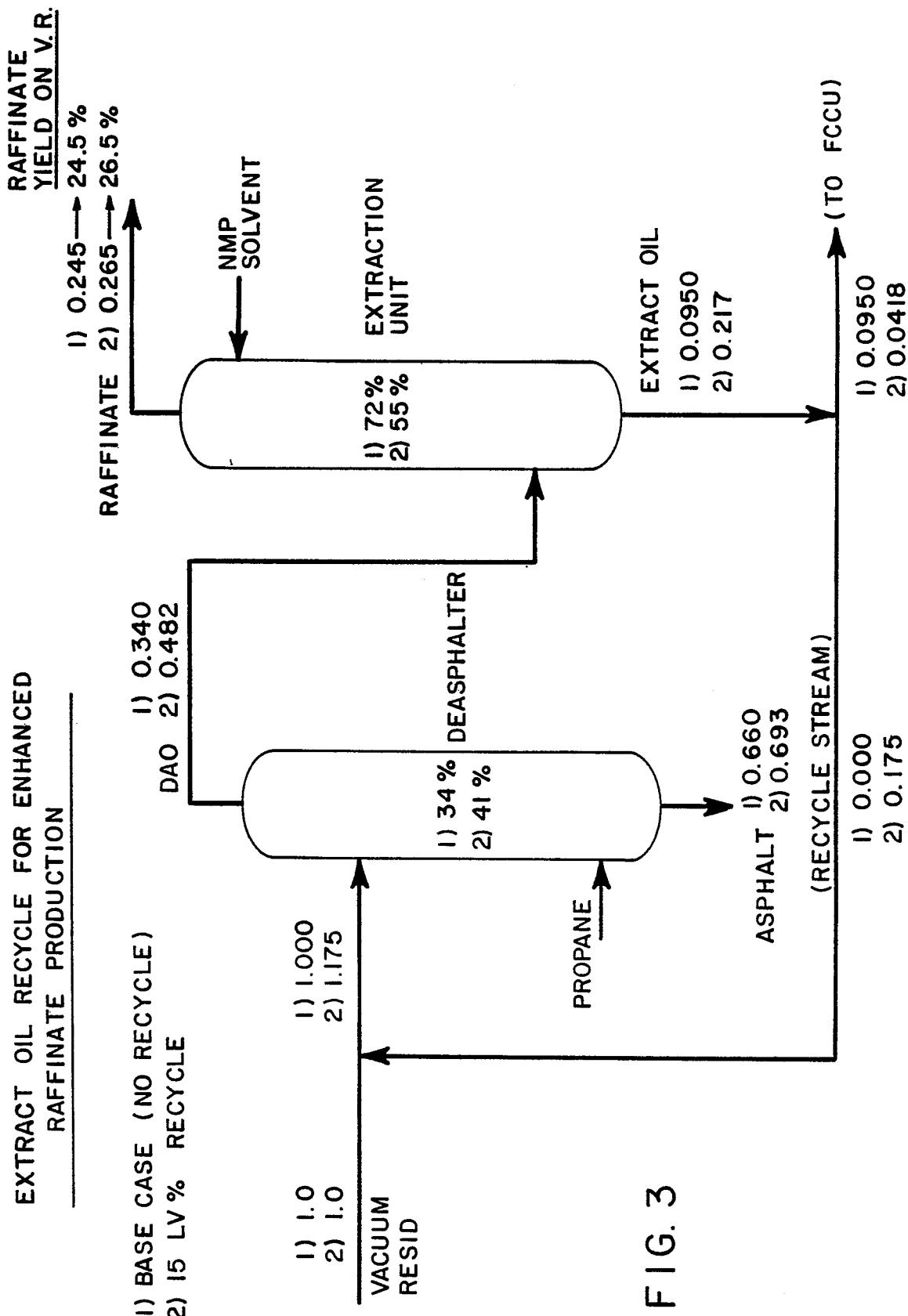


FIG. 3

EUROPEAN SEARCH REPORT

EP 86 30 2345

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
A	FR-A-1 060 165 (EDELEANU GESELLSCHAFT) * Abstract; page 1, right-hand column, paragraph 1; page 2, table *	1,3,5	C 10 G 53/06
A	DE-B-1 099 681 (ESSO) * Claims 1,2,4; column 1, lines 47-51 *	1	
D,A	US-A-2 570 044 (BENEDICT et al.) * Whole document *	1	
			TECHNICAL FIELDS SEARCHED (Int. Cl.4)
			C 10 G
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	27-11-1986	DE HERDT O.C.E.	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone	T : theory or principle underlying the invention		
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after the filing date		
A : technological background	D : document cited in the application		
O : non-written disclosure	L : document cited for other reasons		
P : intermediate document	& : member of the same patent family, corresponding document		