

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 240 516 B1

⑫

EUROPEAN PATENT SPECIFICATION

- ⑮ Date of publication of patent specification: **29.12.93** ⑯ Int. Cl.⁵: **C10M 163/00, C10M 159/24,
//C10N30/04,C10N40/28,
(C10M163/00,133:52,133:56,
159:24)**
- ㉑ Application number: **86905651.5**
- ㉒ Date of filing: **12.09.86**
- ㉓ International application number:
PCT/US86/01890
- ㉔ International publication number:
WO 87/01722 (26.03.87 87/07)

⑤4 Use of certain additive packages in Diesel lubricants.

- ㉕ Priority: **19.09.85 US 777975**
- ㉖ Date of publication of application:
14.10.87 Bulletin 87/42
- ㉗ Publication of the grant of the patent:
29.12.93 Bulletin 93/52
- ㉘ Designated Contracting States:
AT BE CH DE FR GB IT LI NL SE
- ㉙ References cited:
**GB-A- 2 023 169
GB-A- 2 062 672
GB-A- 2 116 583**

- ㉚ Proprietor: **The Lubrizol Corporation
29400 Lakeland Boulevard
Wickliffe, Ohio 44092(US)**
- ㉛ Inventor: **RIPPLE, David, E.
7657 Markell Road
Kirtland, OH 44094(US)**
Inventor: **KARN, Jack, Lee
622 Dade Lane
Richmond Heights, OH 44143(US)**
Inventor: **VARGO, Daniel, M.
38992 Gardenside Drive
Willoughby, OH 44094(US)**
- ㉜ Representative: **Crisp, David Norman et al
D. YOUNG & CO.
21 New Fetter Lane
London EC4A 1DA (GB)**

EP 0 240 516 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The present invention relates to diesel lubricants, and more particularly to the use of additives which are effective to minimize undesirable viscosity increases of a lubricant when the lubricant is used in diesel engines.

It is well known that lubricating oils tend to deteriorate under conditions of use in present day internal combustion engines resulting in the formation of sludge, lacquer, carbonaceous materials and resinous materials which tend to adhere to the various engine parts, in particular, the engine rings, grooves and skirts. Furthermore, diesel engines operated at low-speed and high-torque such as under prolonged idle and stop-and-go conditions have experienced extensive and undesirable thickening of the lubricant. It has been suggested in the prior art that the undesirable thickening of the oil is caused by the high levels of insolubles (soot).

One class of compounds which has been suggested for use in lubricating oils, particularly diesel oils, are the normal and overbased sulfurized calcium alkyl phenolates such as described in U.S. Patents 3,474,035; 3,528,917; and 3,706,632. These materials function as detergents and dispersants, and also are reported to exhibit antioxidant and anti-thickening properties. Another multi-purpose additive for lubricating oils having antioxidant, anti-thickening, anti-corrosion and detergent properties is described in U.S. Patent 3,897,352. The additive described in this patent comprises a sulfurized, Group II metal nitrated alkyl phenolate.

As will be described more fully hereinafter, the present invention relates to a diesel lubricant containing certain specified types of carboxylic derivative compositions as dispersants and certain basic alkali metal salts. This combination of specific dispersant and detergent is effective to minimize undesirable viscosity increases of diesel lubricants when used in diesel engines.

Lubricating oil formulations containing oil-soluble carboxylic acid derivatives, and in particular, those obtained by the reaction of a carboxylic acid with an amino compound have been described previously such as in U.S. Patents 3,018,250; 3,024,195; 3,172,892; 3,216,936; 3,219,666; and 3,272,746. Many of the above-identified patents also describe the use of such carboxylic acid derivatives in lubricating oils in combination with ash-containing detergents including basic metal salts of acidic organic materials such as sulfonic acids, carboxylic acids, etc.

The particular type of carboxylic acid derivative composition utilized in the diesel lubricant in accordance with the present invention are described generally in U.S. Patent 4,234,435. This patent also describes lubricating compositions containing said carboxylic acid derivative compositions in combination with other additives such as fluidity modifiers, auxiliary detergents and dispersants of the ash-producing or ashless-type, oxidation inhibitors, etc. A lubricating composition containing the carboxylic acid derivative, a basic calcium sulfonate, and other traditional additives is described in the '435 patent in Col. 52, lines 1-8.

The second critical component used in the present invention is at least one basic alkali metal salt of at least one acidic sulphonic organic compound having a metal ratio of at least about 2. Such compositions generally are referred to in the art as metallic or ash-detergents, and the use of such detergents in the lubricating oil formulations has been suggested in many prior art patents. For example, Canadian Patent 1,055,700 describes the use of basic alkali sulfonate dispersions in crankcase lubricants for both spark-ignited and compression-ignited internal combustion engines. The Canadian patent suggests that the basic alkali sulfonate dispersions can be used alone or in combination with other lubricant additives known in the art such as ashless dispersants including esters or amides of hydrocarbon-substituted succinic acids.

Even though detergents and dispersants, both of the ash and the ashless-type have been utilized previously in diesel lubricants, many of these lubricants have continued to exhibit undesirable thickening, especially under low-speed, high-torque operation unless relatively large amounts of the detergents and dispersants are incorporated into the diesel lubricants. The use of large amounts of detergents and dispersants generally is undesirable because of the added cost.

In order to constitute an acceptable diesel lubricant, a lubricant must achieve two performance levels: Classification CC(Caterpillar 1-H) and Classification CD(Caterpillar 1-G), with the 1-G level representing more severe, highly super-charged engine operation. There continues to be a need in the industry for compositions which can be added to diesel lubricants which will minimize, if not prevent, undesirable viscosity increase of the lubricant when used in diesel engines, and when formulated into diesel lubricants, the lubricants are capable of achieving Caterpillar 1-H and Caterpillar 1-G level performance without significantly adding to the cost of the diesel lubricant.

In accordance with the present invention, there is provided a use of a composition comprising

(A) at least one carboxylic derivative produced by reacting at least one substituted succinic acylating agent with at least one amino compound containing at least one -NH- group, wherein said acylating

agent consists of substituent groups and succinic groups, wherein the substituent groups are derived from polyalkene characterized by an Mn value of at least about 1200 and an Mw/Mn ratio of at least about 1.5, and wherein said acylating agents are characterized by the presence within their structure of an average of at least about 1.3 succinic groups for each equivalent weight of substituent groups, and

5 (B) at least one basic alkali metal salt of at least one acidic organic sulfonic compound having a metal ratio of at least about 2, wherein the basic sulfonate salt (B) is an oil-soluble dispersion prepared by a method which comprises contacting at a temperature between the solidification temperature of the reaction mixture and its decomposition temperature,

(B-1) at least one acidic gaseous material selected from carbon dioxide, hydrogen sulfide, sulfur dioxide, and mixtures thereof, with

10 (B-2) a mixture comprising

(B-2-a) at least one oil-soluble sulfonic acid, or derivative thereof susceptible to overbasing;

(B-2-b) at least one alkali metal selected from sodium or potassium, or one or more basic compounds thereof selected from hydroxides, alkoxides, hydrides, or amides;

15 (B-2-c) at least one lower aliphatic alcohol selected from monohydric alcohols or dihydric alcohols, or at least one alkyl phenol or sulfurized alkyl phenol; and

(B-2-d) at least one oil soluble carboxylic acid or functional derivative thereof,

and wherein the viscosity slope of the lubricant as measured in the Mack T-7 test is 0.11 or smaller for minimizing undesirable viscosity increases in a diesel lubricant composition comprising a major amount of a lubricating oil.

20 The diesel lubricant also may contain (C) at least one oil-soluble neutral or basic alkaline earth metal salt of at least one acidic compound.

Preferably, the basic alkali metal salt (B) used in accordance with the invention in the diesel lubricants is at least one sodium salt.

25 Various preferred features and embodiments of the invention will now be described.

The diesel lubricants used in the present invention comprise a major amount of an oil of lubricating viscosity and a minor amount, sufficient to minimize undesirable viscosity increases of the lubricant when used in diesel engines, of a composition comprising a combination of (A) at least one carboxylic derivative composition as defined more fully below, and (B) at least one basic alkali metal salt of at least one acidic organic sulfonic compound.

30 The oil of lubricating viscosity which is utilized in the preparation of the diesel lubricants used in the invention may be based on natural oils, synthetic oils, or mixtures thereof.

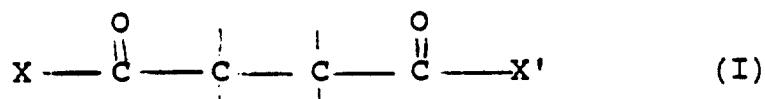
Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, 35 naphthenic or mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful. Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.); poly(1-hexenes), poly(1-octenes), poly(1-decenes), etc. and mixtures thereof; alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethyl-40 hexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls, etc.); alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.

45 Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils that can be used. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for 50 example, the acetic acid esters, mixed C₃-C₈ fatty acid esters, or the C₁₃Oxo acid diester of tetraethylene glycol.

Another suitable class of synthetic lubricating oils that can be used comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.) Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the

2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid and the like.

Esters useful as synthetic oils also include those made from C₅ to C₁₂ monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.

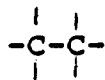

Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils and silicate oils comprise another useful class of synthetic lubricants (e.g., tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-hexyl)silicate, tetra-(p-tert-butylphenyl)silicate, hexyl-(4-methyl-2-pentoxy)disiloxane, poly(methyl)siloxanes, poly(methylphenyl)siloxanes, etc.). Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decane phosphonic acid, etc.), polymeric tetrahydrofurans and the like.

Unrefined, refined and rerefined oils, either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those skilled in the art such as solvent extraction, secondary distillation, acid or base extraction, filtration, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.

Component (A) which is utilized in accordance with the invention in the diesel lubricants is at least one carboxylic derivative composition produced by reacting at least one substituted succinic acylating agent with at least one amino compound containing at least one -N-H- group wherein said acylating agent consists of substituent groups and succinic groups wherein the substituent groups are derived from polyalkene characterized by an Mn value off at least about 1200 and an Mw/Mn ratio of at least about 1.5, and wherein said acylating agents are characterized by the presence within their structure of an average of at least about 1.3 succinic groups for each equivalent weight of substituent groups.

The substituted succinic acylating agent utilized the preparation of the carboxylic derivative can be characterized by the presence within its structure of two groups or moieties. The first group or moiety is referred to hereinafter, for convenience, as the "substituent group(s)" and is derived from a polyalkene. The polyalkene from which the substituted groups are derived is characterized by an M_n (number average molecular weight) value of at least 1200 and more generally from about 1500 to about 5000, and an M_w/M_n value of at least about 1.5 and more generally from about 1.5 to about 6. The abbreviation M_w represents the weight average molecular weight. The number average molecular weight and the weight average molecular weight of the polybutenes can be measured by well known techniques of vapor phase osmometry (VPO), membrane osmometry and gel permeation chromatography (GPC). These techniques are well known to those skilled in the art and need not be described herein.

The second group or moiety is referred to herein as the "succinic group(s)". The succinic groups are those groups characterized by the structure


wherein X and X' are the same or different provided at least one of X and X' is such that the substituted succinic acylating agent can function as carboxylic acylating agents. That is, at least one of X and X' must be such that the substituted acylating agent can form amides or amine salts with, and otherwise function as a conventional carboxylic acid acylating agents. Transesterification and transamidation reactions are considered, for purposes of this invention, as conventional acylating reactions.

Thus, X and/or X' is usually -OH, -O-hydrocarbyl, -O-M⁺ where M⁺ represents one equivalent of a metal, ammonium or amine cation, -NH₂, -Cl, -Br, and together, X and X' can be -O- so as to form the anhydride. The specific identity of any X or X' group which is not one of the above is not critical so long as its presence does not prevent the remaining group from entering into acylation reactions. Preferably,

however, X and X' are each such that both carboxyl functions of the succinic group (i.e., both $-C(O)X$ and $-C(O)X'$ can enter into acylation reactions.

One of the unsatisfied valences in the grouping

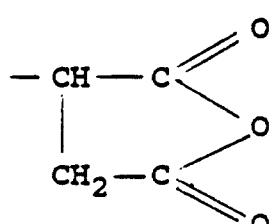
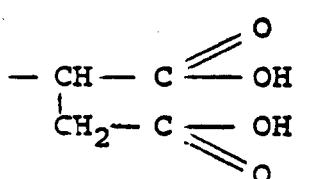
5

10 of Formula I forms a carbon-to-carbon bond with a carbon atom in the substituent group. While other such unsatisfied valence may be satisfied by a similar bond with the same or different substituent group, all but the said one such valence is usually satisfied by hydrogen; i.e., -H.

The substituted succinic acylating agents are characterized by the presence within their structure of 1.3 succinic groups (that is, groups corresponding to Formula I) for each equivalent weight of substituent groups. For purposes of this invention, the number of equivalent weight of substituent groups is deemed to be the number corresponding to the quotient obtained by dividing the Mn value of the polyalkene from which the substituent is derived into the total weight of the substituent groups present in the substituted succinic acylating agents. Thus, if a substituted succinic acylating agent is characterized by a total weight of substituent group of 40,000 and the Mn value for the polyalkene from which the substituent groups are derived is 2000, then that substituted succinic acylating agent is characterized by a total of 20 (40,000/2000 = 20) equivalent weights of substituent groups. Therefore, that particular succinic acylating agent must also be characterized by the presence within its structure of at least 26 succinic groups to meet one of the requirements of the succinic acylating agents used in this invention.

Another requirement for the substituted succinic acylating agents used in this invention is that the substituent groups must have been derived from a polyalkene characterized by an M_w/M_n value of at least about 1.5.

Polyalkenes having the Mn and M_w values discussed above are known in the art and can be prepared according to conventional procedures. Several such polyalkenes, especially polybutenes, are commercially available.



30 In one preferred embodiment, the succinic groups will normally correspond to the formula

35

wherein R and R' are each independently selected from the group consisting of -OH, -Cl, -O-lower alkyl, and when taken together, R and R' are -O-. In the latter case, the succinic group is a succinic anhydride group. All the succinic groups in a particular succinic acylating agent need not be the same, but they can be the same. Preferably, the succinic groups will correspond to

45

(III)

50

(A)

(B)

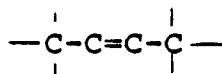
and mixtures of (III(A)) and (III(B)). Providing substituted succinic acylating agents wherein the succinic groups are the same or different is within the ordinary skill of the art and can be accomplished through conventional procedures such as treating the substituted succinic acylating agents themselves (for example, hydrolyzing the anhydride to the free acid or converting the free acid to an acid chloride with thionyl chloride) and/or selecting the appropriate maleic or fumaric reactants.

As previously mentioned, the minimum number of succinic groups for each equivalent weight of substituent group is 1.3. The maximum number generally will not exceed 6. Preferably the minimum will be 1.4; usually 1.4 to about 6 succinic groups for each equivalent weight of substituent group. A range based on this minimum is at least 1.5 to about 3.5, and more generally about 1.5 to about 2.5 succinic groups per equivalent weight of substituent groups.

From the foregoing, it is clear that the substituted succinic acylating agents used in this invention can be represented by the symbol $R_1(R_2)_y$ wherein R_1 represents one equivalent weight of substituent group, R_2 represents one succinic group corresponding to Formula (I), Formula (II), or Formula (III), as discussed above, and y is a number equal to or greater than 1.3. The more preferred embodiments could be similarly represented by, for example, letting R_1 and R_2 represent more preferred substituent groups and succinic groups, respectively, as discussed elsewhere herein and by letting the value of y vary as discussed above.

In addition to preferred substituted succinic groups where the preference depends on the number and identity of succinic groups for each equivalent weight of substituent groups, still further preferences are based on the identity and characterization of the polyalkenes from which the substituent groups are derived.

With respect to the value of M_n for example, a minimum of about 1200 and a maximum of about 5000 are preferred with an M_n value in the range of from about 1300 or 1500 to about 5000 also being preferred. A more preferred M_n value is one in the range of from about 1500 to about 2800. A most preferred range of M_n values is from about 1500 to about 2400. With polybutenes, an especially preferred minimum value for M_n is about 1700 and an especially preferred range of M_n values is from about 1700 to about 2400.


As to the values of the ratio M_w/M_n , there are also several preferred values. A minimum M_w/M_n value of about 1.8 is preferred with a range of values of about 1.8 up to about 3.6 also being preferred. A still more preferred minimum value of M_w/M_n is about 2.0 with a preferred range of values of from about 2.0 to about 3.4 also being a preferred range. An especially preferred minimum value of M_w/M_n is about 2.5 with a range of values of about 2.5 to about 3.2 also being especially preferred.

Before proceeding to a further discussion of the polyalkenes from which the substituent groups are derived, it should be pointed out that these preferred characteristics of the succinic acylating agents are intended to be understood as being both independent and dependent. They are intended to be independent in the sense that, for example, a preference for a minimum of 1.4 or 1.5 succinic groups per equivalent weight of substituent groups is not tied to a more preferred value of M_n or M_w/M_n . They are intended to be dependent in the sense that, for example, when a preference for a minimum of 1.4 or 1.5 succinic groups is combined with more preferred values of M_n and/or M_w/M_n , the combination of preferences does in fact describe still further more preferred embodiments of the invention. Thus, the various parameters are intended to stand alone with respect to the particular parameter being discussed but can also be combined with other parameters to identify further preferences. This same concept is intended to apply throughout the specification with respect to the description of preferred values, ranges, ratios, reactants, and the like unless a contrary intent is clearly demonstrated or apparent.

The polyalkenes from which the substituent groups are derived are homopolymers and interpolymers of polymerizable olefin monomers of 2 to about 16 carbon atoms; usually 2 to about 6 carbon atoms. The interpolymers are those in which two or more olefin monomers are interpolymerized according to well-known conventional procedures to form polyalkenes having units within their structure derived from each of said two or more olefin monomers. Thus, "interpolymer(s)" as used herein is inclusive of copolymers, terpolymers, tetrapolymers, and the like. As will be apparent to those of ordinary skill in the art, the polyalkenes from which the substituent groups are derived are often conventionally referred to as "polyolefin(s)".

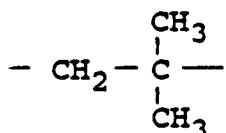
The olefin monomers from which the polyalkenes are derived are polymerizable olefin monomers characterized by the presence of one or more ethylenically unsaturated groups (i.e., $>C=CH_2<$); that is, they are monoolefinic monomers such as ethylene, propylene, butene-1, isobutene, and octene-1 or polyolefinic monomers (usually diolefinic monomers) such as butadiene-1,3 and isoprene.

These olefin monomers are usually polymerizable terminal olefins; that is, olefins characterized by the presence in their structure of the group $>C=CH_2$. However, polymerizable internal olefin monomers (sometimes referred to in the literature as medial olefins) characterized by the presence within their structure of the group

can also be used to form the polyalkenes. When internal olefin monomers are employed, they normally will be employed with terminal olefins to produce polyalkenes which are interpolymers. For purposes of this invention, when a particular polymerized olefin monomer can be classified as both a terminal olefin and an internal olefin, it will be deemed to be a terminal olefin. Thus, pentadiene-1,3 (i.e., piperylene) is deemed to 5 be a terminal olefin for purposes of this invention.

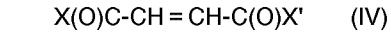
While the polyalkenes from which the substituent groups of the succinic acylating agents are derived generally are hydrocarbon groups such as lower alkoxy, lower alkyl mercapto, hydroxy, mercapto, oxo, as keto and aldehydo groups, nitro, halo, cyano, carboalkoxy, (where alkoxy is usually lower alkoxy), alkanoyloxy, and the like provided the non-hydrocarbon substituents do not substantially interfere with 10 formation of the substituted succinic acid acylating agents of this invention. When present, such non-hydrocarbon groups normally will not contribute more than about 10% by weight of the total weight of the polyalkenes. Since the polyalkene can contain such non-hydrocarbon substituent, it is apparent that the olefin monomers from which the polyalkenes are made can also contain such substituents. Normally, however, as a matter of practicality and expense, the olefin monomers and the polyalkenes will be free from 15 non-hydrocarbon groups, except chloro groups which usually facilitate the formation of the substituted succinic acylating agents of this invention. (As used herein, the term "lower" when used with a chemical group such as in "lower alkyl" or "lower alkoxy" is intended to describe groups having up to 7 carbon atoms).

Although the polyalkenes may include aromatic groups (especially phenyl groups and lower alkyl- 20 and/or lower alkoxy-substituted phenyl groups such as para-(tert-butyl)phenyl) and cycloaliphatic groups such as would be obtained from polymerizable cyclic olefins or cycloaliphatic substituted-polymerizable acyclic olefins, the polyalkenes usually will be free from such groups. Nevertheless, polyalkenes derived from interpolymers of both 1,3-dienes and styrenes such as butadiene-1,3 and styrene or para-(tert-butyl)-styrene are exceptions to this generalization. Again, because aromatic and cycloaliphatic groups can be 25 present, the olefin monomers from which the polyalkenes are prepared can contain aromatic and cycloaliphatic groups.

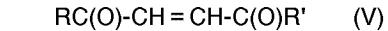

From what has been described hereinabove in regard to the polyalkene, it is clear that there is a general preference for aliphatic, hydrocarbon polyalkenes free from aromatic and cycloaliphatic groups (other than the diene-styrene interpolymer exception already noted). Within this general preference, there is 30 a further preference for polyalkenes which are derived from the group consisting of homopolymers and interpolymers of terminal hydrocarbon olefins of 2 to about 16 carbon atoms. This further preference is qualified by the proviso that, while interpolymers of terminal olefins are usually preferred, interpolymers optionally containing up to about 40% of polymer units derived from internal olefins of up to about 16 carbon atoms are also within a preferred group. A more preferred class of polyalkenes are those selected 35 from the group consisting of homopolymers and interpolymers of terminal olefins of 2 to about 6 carbon atoms, more preferably 2 to 4 carbon atoms. However, another preferred class of polyalkenes are the latter more preferred polyalkenes optionally containing up to about 25% of polymer units derived from internal olefins of up to about 6 carbon atoms.

Specific examples of terminal and internal olefin monomers which can be used to prepare the 40 polyalkenes according to conventional, well-known polymerization techniques include ethylene; propylene; butene-1; butene-2; isobutene; pentene-1; hexene-1; heptene-1; octene-1; nonene-1; decene-1; pentene-2; propylene-tetramer; diisobutylene; isobutylene trimer; butadiene-1,2; butadiene-1,3; pentadiene-1,2; pentadiene-1,3; pentadiene-1,4; isoprene; hexadiene-1,5; 2-chloro-butadiene-1,3; 2-methyl-heptene-1; 3-cyclohexylbutene-1; 2-methyl-pentene-1; styrene; 2,4-dichloro styrene; divinylbenzene; vinyl acetate; allyl 45 alcohol; 1-methyl-vinyl acetate; acrylonitrile; ethyl acrylate; methyl methacrylate; ethyl vinyl ether; and methyl vinyl ketone. Of these, the hydrocarbon polymerizable monomers are preferred and of these hydrocarbon monomers, the terminal olefin monomers are particularly preferred.

Specific examples of polyalkenes include polypropylenes, polybutenes, ethylene-propylene copolymers, 50 styrene-isobutene copolymers, isobutene-butadiene-1,3 copolymers, propene-isoprene copolymers, isobutene-chloroprene copolymers, isobutene-(para-methyl)styrene copolymers, copolymers of hexene-1 with hexadiene-1,3, copolymers of octene-1 with hexene-1, copolymers of heptene-1 with pentene-1, copolymers of 3-methyl-butene-1 with octene-1, copolymers of 3,3-dimethyl-pentene-1 with hexene-1, and terpolymers of isobutene, styrene and piperylene. More specific examples of such interpolymers include copolymer of 95% (by weight) of isobutene with 5% (by weight) of styrene; terpolymer of 98% of isobutene 55 with 1% of piperylene and 1% of chloroprene; terpolymer of 95% of isobutene with 2% of butene-1 and 3% of hexene-1; terpolymer of 60% of isobutene with 20% of pentene-1 and 20% of octene-1; copolymer of 80% of hexene-1 and 20% of heptene-1; terpolymer of 90% of isobutene with 2% of cyclohexene and 8% of propylene; and copolymer of 80% of ethylene and 20% of propylene. A preferred source of polyalkenes


are the poly(isobutene)s obtained by polymerization of C₄ refinery stream having a butene content of about 35 to about 75% by weight and an isobutene content of about 30 to about 60% by weight in the presence of a Lewis acid catalyst such as aluminum trichloride or boron trifluoride. These polybutenes contain predominantly (greater than about 80% of the total repeating units) of isobutene repeating units of the 5 configuration

10



Obviously, preparing polyalkenes as described above which meet the various criteria for Mn and Mw/Mn is within the skill of the art and does not comprise part of the present invention. Techniques readily 15 apparent to those in the art include controlling polymerization temperatures, regulating the amount and type of polymerization initiator and/or catalyst, employing chain terminating groups in the polymerization procedure, and the like. Other conventional techniques such as stripping (including vacuum stripping) a very light end and/or oxidatively or mechanically degrading high molecular weight polyalkene to produce lower molecular weight polyalkenes can also be used.

20 In preparing the substituted succinic acylating agents used in this invention, one or more of the above-described polyalkenes is reacted with one or more acidic reactants selected from maleic or fumaric reactants of the general formula

wherein X and X' are as defined hereinbefore. Preferably the maleic and fumaric reactants will be one or 30 more compounds corresponding to the formula

wherein R and R' are as previously defined herein. Ordinarily, the maleic or fumaric reactants will be maleic acid, fumaric acid, maleic anhydride, or a mixture of two or more of these. The maleic reactants are usually preferred over the fumaric reactants because the former are more readily available and are, in general, more readily reacted with the polyalkenes (or derivatives thereof) to prepare the substituted succinic 40 acylating agents used in the present invention. The especially preferred reactants are maleic acid, maleic anhydride, and mixtures of these. Due to availability and ease of reaction, maleic anhydride will usually be employed.

The one or more polyalkenes and one or more maleic or fumaric reactants can be reacted according to any of several known procedures in order to produce the substituted succinic acylating agents used in the 45 present invention. Basically, the procedures are analogous to procedures used to prepare the high molecular weight succinic anhydrides and other equivalent succinic acylating analogs thereof except that the polyalkenes (or polyolefins) of the prior art are replaced with the particular polyalkenes described above and the amount of maleic or fumaric reactant used must be such that there is at least 1.3 succinic groups for each equivalent weight of the substituent group in the final substituted succinic acylating agent produced.

For convenience and brevity, the term "maleic reactant" is often used hereafter. When used, it should be understood that the term is generic to acidic reactants selected from maleic and fumaric reactants corresponding to Formulae (IV) and (V) above including a mixture of such reactants.

One procedure for preparing the substituted succinic acylating agents is illustrated, in part, in U.S. 50 Patent 3,219,666. This procedure is conveniently designated as the "two-step procedure". It involves first chlorinating the polyalkene until there is an average of at least about one chloro group for each molecular weight of polyalkene. (For purposes of this invention, the molecular weight of the polyalkene is the weight corresponding to the Mn value.) Chlorination involves merely contacting the polyalkene with chlorine gas until the desired amount of chlorine is incorporated into the chlorinated polyalkene. Chlorination is generally 55 carried out at a temperature of about 75°C to about 125°C. If a diluent is used in the chlorination procedure, it should be one which is not itself readily subject to further chlorination. Poly- and perchlorinated and/or fluorinated alkanes and benzenes are examples of suitable diluents.

The second step in the two-step chlorination procedure, for purposes of this invention, is to react the chlorinated polyalkene with the maleic reactant at a temperature usually within the range of about 100 °C to about 200 °C. The mole ratio of chlorinated polyalkene to maleic reactant is usually about 1:1. (For purposes of this invention, a mole of chlorinated polyalkene is that weight of chlorinated polyalkene 5 corresponding to the Mn value of the unchlorinated polyalkene.) However, a stoichiometric excess of maleic reactant can be used, for example, a mole ratio of 1:2. If an average of more than about one chloro group per molecule of polyalkene is introduced during the chlorination step, then more than one mole of maleic reactant can react per molecule of chlorinated polyalkene. Because of such situations, it is better to describe the ratio of chlorinated polyalkene to maleic reactant in terms of equivalents. (An equivalent weight 10 of chlorinated polyalkene, for purposes of this invention, is the weight corresponding to the Mn value divided by the average number of chloro groups per molecule of chlorinated polyalkene while the equivalent weight of a maleic reactant is its molecular weight.) Thus, the ratio of chlorinated polyalkene to maleic reactant will normally be such as to provide about one equivalent of maleic reactant for each mole of chlorinated polyalkene up to about one equivalent of maleic reactant for each equivalent of chlorinated 15 polyalkene with the understanding that it is normally desirable to provide an excess of maleic reactant; for example, an excess of about 5% to about 25% by weight. Unreacted excess maleic reactant may be stripped from the reaction product, usually under vacuum, or reacted during a further stage of the process as explained below.

The resulting polyalkenyl-substituted succinic acylating agent is, optionally, again chlorinated if the 20 desired number of succinic groups are not present in the product. If there is present, at the time of this subsequent chlorination, any excess maleic reactant from the second step, the excess will react as additional chlorine is introduced during the subsequent chlorination. Otherwise, additional maleic reactant is introduced during and/or subsequent to the additional chlorination step. This technique can be repeated until the total number of succinic groups per equivalent weight of substituent groups reaches the desired 25 level.

Another procedure for preparing substituted succinic acid acylating agents utilizes a process described in U.S. Patent 3,912,764 and U.K. Patent 4,440,219. According to that process, the polyalkene and the maleic reactant are first reacted by heating them together in a "direct alkylation" procedure. When the direct alkylation step is completed, chlorine is introduced into the reaction mixture to promote reaction of 30 the remaining unreacted maleic reactants. According to the patents, 0.3 to 2 or more moles of maleic anhydride are used in the reaction for each mole of olefin polymer; i.e., polyalkene. The direct alkylation step is conducted at temperatures of 180 °C to 250 °C. During the chlorine-introducing stage, a temperature of 160 °C to 225 °C is employed. In utilizing this process to prepare the substituted succinic acylating 35 agents used in this invention, it would be necessary to use sufficient maleic reactant and chlorine to incorporate at least 1.3 succinic groups into the final product for each equivalent weight of polyalkene.

The process presently deemed to be best for preparing the substituted succinic acylating agents utilized in this invention from the standpoint of efficiency, overall economy, and the performance of the acylating agents thus produced, as well as the performance of the derivatives thereof, is the so-called "one-step" process. This process is described in U.S. Patents 3,215,707 and 3,231,587.

40 Basically, the one-step process involves preparing a mixture of the polyalkene and the maleic reactant containing the necessary amounts of both to provide the desired substituted succinic acylating agents. This means that there must be at least 1.3 moles of maleic reactant for each mole of polyalkene in order that there can be at least 1.3 succinic groups for each equivalent weight of substituent groups. Chlorine is then introduced into the mixture, usually by passing chlorine gas through the mixture with agitation, while 45 maintaining a temperature of at least about 140 °C.

A variation on this process involves adding additional maleic reactant during or subsequent to the chlorine introduction but, for reasons explained in U.S. Patents 3,215,707 and 3,231,587, this variation is presently not as preferred as the situation where all the polyalkene and all the maleic reactant are first mixed before the introduction of chlorine.

50 Usually, where the polyalkene is sufficiently fluid at 140 °C and above, there is no need to utilize an additional substantially inert, normally liquid solvent/diluent in the one-step process. However, as explained hereinbefore, if a solvent/diluent is employed, it is preferably one that resists chlorination. Again, the poly- and per-chlorinated and/or -fluorinated alkanes, cycloalkanes, and benzenes can be used for this purpose.

Chlorine may be introduced continuously or intermittently during the one-step process. The rate of 55 introduction of the chlorine is not critical although, for maximum utilization of the chlorine, the rate should be about the same as the rate of consumption of chlorine in the course of the reaction. When the introduction rate of chlorine exceeds the rate of consumption, chlorine is evolved from the reaction mixture. It is often advantageous to use a closed system, including superatmospheric pressure, in order to prevent loss of

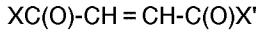
chlorine so as to maximize chlorine utilization.

The minimum temperature at which the reaction in the one-step process takes place at a reasonable rate is about 140 °C. Thus, the minimum temperature at which the process is normally carried out is in the neighborhood of 140 °C. The preferred temperature range is usually between about 160 °C and about 220 °C. Higher temperatures such as 250 °C or even higher may be used but usually with little advantage. In fact, temperatures in excess of 220 °C are often disadvantageous with respect to preparing the particular acylated succinic compositions of this invention because they tend to "crack" the polyalkenes (that is, reduce their molecular weight by thermal degradation) and/or decompose the maleic reactant. For this reason, maximum temperatures of about 200 °C to about 210 °C are normally not exceeded. The upper limit of the useful temperature in the one-step process is determined primarily by the decomposition point of the components in the reaction mixture including the reactants and the desired products. The decomposition point is that temperature at which there is sufficient decomposition of any reactant or product such as to interfere with the production of the desired products.

In the one-step process, the molar ratio of maleic reactant to chlorine is such that there is at least about

one mole of chlorine for each mole of maleic reactant to be incorporated into the product. Moreover, for practical reasons, a slight excess, usually in the neighborhood of about 5% to about 30% by weight of chlorine, is utilized in order to offset any loss of chlorine from the reaction mixture. Larger amounts of excess chlorine may be used but do not appear to produce any beneficial results.

As mentioned previously, the molar ratio of polyalkene to maleic reactant is such that there is at least


about 1.3 moles of maleic reactant for each mole of polyalkene. This is necessary in order that there can be at least 1.3 succinic groups per equivalent weight of substituent group in the product. Preferably, however, an excess of maleic reactant is used. Thus, ordinarily about a 5% to about 25% excess of maleic reactant will be used relative to that amount necessary to provide the desired number of succinic groups in the product.

A preferred process for preparing the substituted acylating compositions comprises heating and contacting at a temperature of at least about 140 °C up to the decomposition temperature

(A) Polyalkene characterized by Mn value of about 1200 to about 5000 and an Mw/Mn value of about 1.5 to about 4,

(B) One or more acidic reactants of the formula

30

wherein X and X' are as defined hereinbefore, and

(C) Chlorine

35 wherein the mole ratio of (A):(B) is such that there is at least about 1.3 moles of (B) for each mole of (A) wherein the number of moles of (A) is the quotient of the total weight of (A) divided by the value of Mn and the amount of chlorine employed is such as to provide at least about 0.2 mole (preferably at least about 0.5 mole) of chlorine for each mole of (B) to be reacted with (A), said substituted acylating compositions being characterized by the presence within their structure of an average of at least 1.3 groups derived from (B) for each equivalent weight of the substituent groups derived from (A).

40 As will be apparent, it is intended that the immediately preceding description of a preferred process be generic to both the process involving direct alkylation with subsequent chlorination as described in U.S. Patent 3,912,764 and U.K. Patent 1,440,29 and to the completely one-step process described in U.S. Patents 3,215,707 and 3,231,587. Thus, said description does not require that the initial mixture of

45 polyalkene and acidic reactant contain all of the acidic reactant ultimately to be incorporated into the substituted acylating composition to be prepared. In other words, all of the acidic reactant can be present initially or only part thereof with subsequent addition of acidic reactant during the course of the reaction. Likewise, a direct alkylation reaction can precede the introduction of chlorine. Normally, however, the original reaction mixture will contain the total amount of polyalkene and acidic reactant to be utilized.

50 Furthermore, the amount of chlorine used will normally be such as to provide about one mole of chlorine for each unreacted mole of (B) present at the time chlorine introduction is commenced. Thus, if the mole ratio of (A):(B) is such that there is about 1.5 moles of (B) for each mole of (A) and if direct alkylation results in half of (B) being incorporated into the product, then the amount of chlorine introduced to complete reaction will be based on the unreacted 0.75 mole of (B); that is, at least about 0.75 mole of chlorine (or an excess 55 as explained above) will then be introduced.

In a more preferred process for preparing the substituted acylating compositions used in this invention, there is heated at a temperature of at least about 140 °C a mixture comprising:

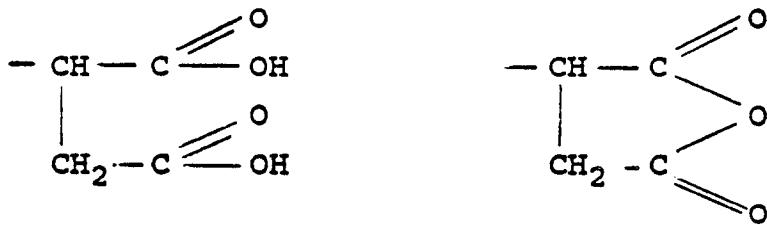
(A) Polyalkene characterized by an Mn value of about 1200 to about 5000 and an Mw/Mn value of about 1.3 to about 4,
 (B) One or more acidic reactants of the formula

5 $\text{RC(O)-CH}=\text{CH-C(O)R}'$

wherein R and R' are as defined above, and

(C) Chlorine

wherein the mole ratio of (A):(B) is such that there is at least about 1.3 moles of (B) for each mole of (A)
 10 where the number of moles of (A) is a quotient of the total weight of (A) divided by the value of Mn, and the amount of chlorine employed is such as to provide at least about one mole of chlorine for each mole of (B) reacted with (A), the substituted acylating compositions being further characterized by the presence within their structure of at least 1.3 groups derived from (B) for each equivalent weight of the substituent groups derived from (A). This process, as described, includes only the one-step process; that is, a process where
 15 all of both (A) and (B) are present in the initial reaction mixture.

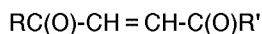

The terminology "substituted succinic acylating agent(s)" is used in describing the substituted succinic acylating agents regardless of the process by which they are produced. Obviously, as discussed in more detail hereinbefore, several processes are available for producing the substituted succinic acylating agents. On the other hand, the terminology "substituted acylating composition(s)", is used to describe the reaction
 20 mixtures produced by the specific preferred processes described in detail herein. Thus, the identity of particular substituted acylating compositions is dependent upon a particular process of manufacture. It is believed that the acylating agents used in this invention can best be described and claimed in the alternative manner inherent in the use of this terminology as thus explained. This is particularly true because, while the products used in this invention are clearly substituted succinic acylating agents as
 25 defined and discussed above, their structure cannot be represented by a single specific chemical formula. In fact, mixtures of products are inherently present.

With respect to the preferred processes described above, preferences indicated hereinbefore with respect to (a) the substituted succinic acylating agents and (b) the values of Mn, the values of the ratio Mw/Mn, the identity and composition of the polyalkenes, the identity of the acidic reactant (that is, the
 30 maleic and/or fumaric reactants), the ratios of reactants, and the reaction temperatures also apply. In like manner, the same preferences apply to the substituted acylated compositions produced by these preferred processes.

For example, such processes wherein the reaction temperature is from about 160 °C to about 220 °C are preferred. Likewise, the use of polyalkenes wherein the polyalkene is a homopolymer or interpolymer of
 35 terminal olefins of 2 to about 16 carbon atoms, with the proviso that said interpolymers can optionally contain up to about 40% of the polymer units derived from internal olefins of up to about 16 carbon atoms, constitutes the preferred aspect of the process and compositions prepared by the process. In a more preferred aspect, polyalkenes for use in the process and in preparing the compositions of the process are the homopolymers and interpolymers of terminal olefins of 2 to 6 carbon atoms with the proviso that said
 40 interpolymers can optionally contain up to about 25% of polymer units derived from internal olefins of up to about 6 carbon atoms. Especially preferred polyalkenes are polybutenes, ethylene-propylene copolymers, polypropylenes with the polybutenes being particularly preferred.

In the same manner, the succinic group content of the substituted acylating compositions thus produced are preferably the same as that described in regard to the substituted succinic acylating agents.
 45 Thus, the substituted acylating compositions characterized by the presence within their structure of an average of at least 1.4 succinic groups derived from (B) for each equivalent weight of the substituent groups derived from (A) are preferred with those containing at least 1.4 up to about 3.5 succinic groups derived from (B) for each equivalent weight of substituent groups derived from (A) being still more preferred. In the same way, those substituted acylating compositions characterized by the presence within their structure of
 50 at least 1.5 succinic groups derived from (B) for each equivalent weight of substituent group derived from (A) are still further preferred, while those containing at least 1.5 succinic groups derived from (B) for each equivalent weight of substituent group derived from (A) being especially preferred.

Finally, as with the description of the substituted succinic acylating agents, the substituted acylating compositions produced by the preferred processes wherein the succinic groups derived from (B) correspond to the formula
 55



10

and mixtures of these constitute a preferred class.

An especially preferred process for preparing the substituted acylating compositions comprises heating at a temperature of about 160 °C to about 220 °C a mixture comprising:

- 15 (A) Polybutene characterized by an Mn value of about 1700 to about 2400 and an Mw/Mn value of about 2.5 to about 3.2, in which at least 50% of the total units derived from butenes is derived from isobutene,
(B) One or more acidic reactants of the formula

20 wherein R and R' are each -OH or when taken together, R and R' are -O-, and

(C) Chlorine

25 wherein the mole ratio of (A):(B) is such that there is at least 1.5 moles of (B) for each mole of (A) and the number of moles of (A) is the quotient of the total weight of (A) divided by the value of Mn, and the amount of chlorine employed is such as to provide at least about one mole of chlorine for each mole of (B) to be reacted with (A), said acylating compositions being characterized by the presence within their structure of an average off at least 1.5 groups derived from (B) for each equivalent weight of the substituent groups derived from (A). In the same manner, substituted acylating compositions produced by such a process constitute a preferred class of such compositions.

30 For purposes of brevity, the terminology "acylating reagent(s)" is often used hereafter to refer, collectively, to both the substituted succinic acylating agent and to the substituted acylating compositions used in this invention.

The acylating reagents used in this invention are intermediates in processes for preparing the carboxylic derivatives (A) comprising reacting one or more acylating reagents with an amino compound characterized by the presence within its structure of at least one -NH- group.

35 The amino compound characterized by the presence within its structure of at least one -NH- group can be a monoamine or polyamine compound. For purposes of this invention, hydrazine and substituted hydrazines containing up to three substituents are included as amino compounds suitable for preparing carboxylic derivatives. Mixtures of two or more amino compounds can be used in the reaction with one or more acylating reagents. Preferably, the amino compound contains at least one primary amino group (i.e., 40 -NH₂) and more preferably the amine is a polyamine, especially a polyamine containing at least two -NH- groups, either or both of which are primary or secondary amines. The polyamines not only result in carboxylic acid derivatives derived from monoamines, but these preferred polyamines result in carboxylic derivatives which exhibit more pronounced V.I. improving properties.

45 The monoamines and polyamines must be characterized by the presence within their structure of at least one -NH- group. Therefore, they have at least one primary (i.e., H₂N-) or secondary amino (i.e., H-N=) group. The amines can be aliphatic, cycloaliphatic, aromatic, or heterocyclic, including aliphatic-substituted cycloaliphatic, aliphatic-substituted aromatic, aliphatic-substituted heterocyclic, cycloaliphatic-substituted aliphatic, cycloaliphatic-substituted heterocyclic, aromatic-substituted aliphatic, aromatic-substituted cycloaliphatic, aromatic-substituted heterocyclic, heterocyclic-substituted aliphatic, heterocyclic-substituted alicyclic, and heterocyclic-substituted aromatic amines and may be saturated or unsaturated. If unsaturated, the amine will be free from acetylenic unsaturation. The amines may also contain non-hydrocarbon substituents or groups as long as these groups do not significantly interfere with the reaction of the amines with the acylating reagents of this invention. Such non-hydrocarbon substituents or groups include lower alkoxy, lower alkyl mercapto, nitro, interrupting groups such as -O- and -S- (e.g., as in such groups as 50 -CH₂CH₂-X-CH₂CH₂- where X is -O- or -S-).

55 With the exception of the branched polyalkylene polyamine, the polyoxyalkylene polyamines, and the high molecular weight hydrocarbyl-substituted amines described more fully hereafter, the amines ordinarily contain less than about 40 carbon atoms in total and usually not more than about 20 carbon atoms in total.

Aliphatic monoamines include mono-aliphatic and di-aliphatic substituted amines wherein the aliphatic groups can be saturated or unsaturated and straight or branched chain. Thus, they are primary or secondary aliphatic amines. Such amines include, for example, mono- and di-alkyl-substituted amines, mono- and di-alkenyl-substituted amines, and amines having one N-alkenyl substituent and one N-alkyl substituent and the like. The total number of carbon atoms in these aliphatic monoamines will, as mentioned before, normally will not exceed about 40 and usually not exceed about 20 carbon atoms. Specific examples of such monoamines include ethylamine, diethylamine, n-butylamine, di-n-butylamine, allylamine, isobutylamine, cocoamine, stearylamine, laurylamine, methylaurylamine, oleylamine, N-methyl-octylamine, dodecylamine, octadecylamine, and the like. Examples of cycloaliphatic-substituted aliphatic amines, aromatic-substituted aliphatic amines, and heterocyclic-substituted aliphatic amines, include 2-(cyclohexyl)-ethylamine, benzylamine, phenethylamine, and 3-(furylpropyl) amine.

Cycloaliphatic monoamines are those monoamines wherein there is one cycloaliphatic substituent attached directly to the amino nitrogen through a carbon atom in the cyclic ring structure. Examples of cycloaliphatic monoamines include cyclohexylamines, cyclopentylamines, cyclohexenylamines, cyclopentylamines, N-ethyl-cyclohexylamine, dicyclohexylamines, and the like. Examples of aliphatic-substituted, aromatic-substituted, and heterocyclic-substituted cycloaliphatic monoamines include propyl-substituted cyclohexylamines, phenyl-substituted cyclopentylamines, and pyranyl-substituted cyclohexylamine.

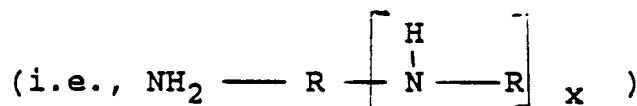
Aromatic amines include those monoamines wherein a carbon atom of the aromatic ring structure is attached directly to the amino nitrogen. The aromatic ring will usually be a mononuclear aromatic ring (i.e., one derived from benzene) but can include fused aromatic rings, especially those derived from naphthalene. Examples of aromatic monoamines include aniline, di(para-methylphenyl) amine, naphthylamine, N-(n-butyl)aniline, and the like. Examples of aliphatic-substituted, cycloaliphatic-substituted, and heterocyclic-substituted aromatic monoamines are para-ethoxyaniline, para-dodecylaniline, cyclohexyl-substituted naphthylamine, and thienyl-substituted aniline.

Polyamines are aliphatic, cycloaliphatic and aromatic polyamines analogous to the above-described monoamines except for the presence within their structure of another amino nitrogen. The other amino nitrogen can be a primary, secondary or tertiary amino nitrogen. Examples of such polyamines include N-aminopropyl-cyclohexylamines, N,N'-di-n-butyl-para-phenylene diamine, bis-(para-aminophenyl)methane, 1,4-diaminocyclohexane, and the like.

Heterocyclic mono- and polyamines can also be used in making the carboxylic derivative compositions of this invention. As used herein, the terminology "heterocyclic mono- and polyamine(s)" is intended to describe those heterocyclic amines containing at least one primary or secondary amino group and at least one nitrogen as a heteroatom in the heterocyclic ring. However, as long as there is present in the heterocyclic mono- and polyamines at least one primary or secondary amino group, the hetero-N atom in the ring can be a tertiary amino nitrogen; that is, one that does not have hydrogen attached directly to the ring nitrogen. Heterocyclic amines can be saturated or unsaturated and can contain various substituents such as nitro, alkoxy, alkyl mercapto, alkyl, alkenyl, aryl, alkaryl, or aralkyl substituents. Generally, the total number of carbon atoms in the substituents will not exceed about 20. Heterocyclic amines can contain hetero atoms other than nitrogen, especially oxygen and sulfur. Obviously they can contain more than one nitrogen hetero atom. The five- and six-membered heterocyclic rings are preferred.

Among the suitable heterocyclics are aziridines, azetidines, azolidines, tetra- and di-hydro pyridines, pyrroles, indoles, piperidines, imidazoles, di- and tetrahydroimidazoles, piperazines, isoindoles, purines, morpholines, thiomorpholines, N-aminoalkylmorpholines, N-aminoalkylthiomorpholines, N-aminoalkyl-piperazines, N,N'-di-aminoalkylpiperazines, azepines, azocines, azonines, azecines and tetra-, di- and perhydro derivatives of each of the above and mixtures of two or more of these heterocyclic amines. Preferred heterocyclic amines are the saturated 5- and 6-membered heterocyclic amines containing only nitrogen, oxygen and/or sulfur in the hetero ring, especially the piperidines, piperazines, thiomorpholines, morpholines, pyrrolidines, and the like. Piperidine, aminoalkyl-substituted piperidines, piperazine, aminoalkyl-substituted morpholines, pyrrolidine, and aminoalkyl-substituted pyrrolidines, are especially preferred. Usually the aminoalkyl substituents are substituted on a nitrogen atom forming part of the hetero ring. Specific examples of such heterocyclic amines include N-aminopropylmorpholine, N-aminoethyl-piperazine, and N,N'-di-aminoethylpiperazine.

Hydroxyamines both mono- and polyamines, analogous to those described above are also useful as (a) provided they contain at least one primary or secondary amino group. Hydroxy-substituted amines having only tertiary amino nitrogen such as in tri-hydroxyethyl amine, are thus excluded as (a) (but can be used as (b) as disclosed hereafter). The hydroxy-substituted amines contemplated are those having hydroxy substituents bonded directly to a carbon atom other than a carbonyl carbon atom; that is, they have hydroxy groups capable of functioning as alcohols. Examples of such hydroxy-substituted amines include


ethanolamine, di-(3-hydroxypropyl)-amine, 3-hydroxybutyl-amine, 4-hydroxybutyl-amine, diethanol-amine, di-(2-hydroxypropyl)-amine, N-(hydroxypropyl)-propylamine, N-(2-hydroxyethyl)-cyclohexylamine, 3-hydroxycyclopentylamine, para-hydroxyaniline, N-hydroxyethyl piperazine, and the like.

Hydrazine and substituted-hydrazine can also be used. At least one of the nitrogens in the hydrazine

- 5 must contain a hydrogen directly bonded thereto. Preferably there are at least two hydrogens bonded directly to hydrazine nitrogen and, more preferably, both hydrogens are on the same nitrogen. The substituents which may be present on the hydrazine include alkyl, alkenyl, aryl, aralkyl, alkaryl, and the like. Usually, the substituents are alkyl, especially lower alkyl, phenyl, and substituted phenyl such as lower alkoxy substituted phenyl or lower alkyl substituted phenyl. Specific examples of substituted hydrazines are
10 methylhydrazine, N,N-dimethyl-hydrazine, N,N'-dimethylhydrazine, phenylhydrazine, N-phenyl-N'-ethyl-hydrazine, N-(para-tolyl)-N'-(n-butyl)-hydrazine, N-(para-nitrophenyl)-hydrazine, N-(para-nitrophenyl)-N-methyl-hydrazine, N,N'-di(para-chlorophenol)-hydrazine, N-phenyl-N'-cyclohexylhydrazine, and the like.

The high molecular weight hydrocarbyl amines, both mono-amines and polyamines, which can be used as (a) are generally prepared by reacting a chlorinated polyolefin having a molecular weight of at least
15 about 400 with ammonia or amine. Such amines are known in the art and described, for example, in U.S. Patents 3,275,554 and 3,438,757. All that is required for use of these amines is that they possess at least one primary or secondary amino group.

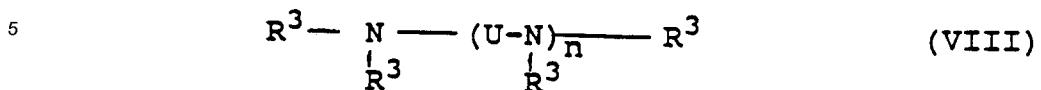
Another group of amines suitable for use are branched polyalkylene polyamines. The branched polyalkylene polyamines are polyalkylene polyamines wherein the branched group is a side chain containing
20 on the average at least one nitrogen-bonded aminoalkylene



group per nine amino units present on the main chain, for example, 1-4 of such branched chains per nine units on the main chain units. Thus, these polyamines contain at least three primary amino groups and at
30 least one tertiary amino group.

Suitable amines also include polyoxyalkylene polyamines, e.g., polyoxyalkylene diamines and polyoxyalkylene triamines, having average molecular weights ranging from about 200 to 4000 and preferably from about 400 to 2000. Illustrative examples of these polyoxyalkylene polyamines may be characterized by the
35 formulae

- 40 wherein m has a value of about 3 to 70 and preferably about 10 to 35.


45 wherein n is such that the total value is from about 1 to 40 with the proviso that the sum of all of the n's is from about 3 to about 70 and generally from about 6 to about 35 and R is a polyvalent saturated hydrocarbon radical of up to 10 carbon atoms having a valence of 3 to 6. The alkylene groups may be straight or branched chains and contain from 1 to 7 carbon atoms and usually from 1 to 4 carbon atoms.

- 50 The various alkylene groups present within Formulae (VI) and (VII) may be the same or different.

The preferred polyoxyalkylene polyamines include the polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to 2000. The polyoxyalkylene polyamines are commercially available and may be obtained, for example, from the Jefferson Chemical Company, Inc. under the trade name "Jeffamines D-230, D-400, D-1000, D-2000, T-403,
55 etc."

U.S. Patents 3,804,763 and 3,948,800 disclose such polyoxyalkylene polyamines and process for acylating them with carboxylic acid acylating agents which processes can be applied to their reaction with the acylating reagents of this invention.

The most preferred amines are the alkylene polyamines, including the polyalkylene polyamines, as described in more detail hereafter. The alkylene polyamines include those conforming to the formula

wherein n is from 1 to about 10; each R³ is independently a hydrogen atom, a hydrocarbyl group or a hydroxy-substituted hydrocarbyl group having up to about 30 atoms, with the proviso that at least one R³ group is a hydrogen atom and u is an alkylene group of about 2 to about 10 carbon atoms. Preferably u is ethylene or propylene. Especially preferred are the alkylene polyamines where each R³ is hydrogen with the ethylene polyamines and mixtures of ethylene polyamines being the most preferred. Usually n will have an average value of from about 2 to about 7. Such alkylene polyamines include methylene polyamine, ethylene polyamines, butylene polyamines, propylene polyamines, pentylene polyamines, hexylene polyamines, heptylene polyamines, etc. The higher homologs of such amines and related amino alkyl-substituted piperazines are also included.

Alkylene polyamines useful in preparing the carboxylic derivatives include ethylene diamine, triethylene tetramine, propylene diamine, trimethylene diamine, hexamethylene diamine, decamethylene diamine, hexamethylene diamine, decamethylene diamine, octamethylene diamine, di(heptamethylene) triamine, tripropylene tetramine, tetraethylene pentamine, trimethylene diamine, pentaethylene hexamine, di(trimethylene)triamine, N-(2-aminoethyl)piperazine, 1,4-bis(2,aminoethyl)piperazine, and the like. Higher homologs as are obtained by condensing two or more of the above-illustrated alkylene amines are useful as (a) as mixtures of two or more of any of the afore-described polyamines.

25 Ethylene polyamines, such as those mentioned above, are especially useful for reasons of cost and effectiveness. Such polyamines are described in detail under the heading "Diamines and Higher Amines" in The Encyclopedia of Chemical Technology, Second Edition, Kirk and Othmer, Volume 7, pages 27-39, Interscience Publishers, Division of John Wiley and Sons, 1965. Such compounds are prepared most conveniently by the reaction of an alkylene chloride with ammonia or by reaction of an ethylene imine with a 30 ring-opening reagent such as ammonia, etc. These reactions result in the production of the somewhat complex mixtures of alkylene polyamines, including cyclic condensation products such as piperazines. The mixtures are particularly useful in preparing sulfur-containing compounds used in this invention. On the other hand, quite satisfactory products can also be obtained by the use of pure alkylene polyamines.

Other useful types of polyamine mixtures are those resulting from stripping of the above-described polyamine mixtures. In this instance, lower molecular weight polyamines and volatile contaminants are removed from an alkylene polyamine mixture to leave as residue what is often termed "polyamine bottoms". In general, alkylene polyamine bottoms can be characterized as having less than two, usually less than one percent (by weight) material boiling below about 200 °C. In the instance of ethylene polyamine bottoms, which are readily available and found to be quite useful, the bottoms contain less than about two percent (by weight) total diethylene triamine (DETA) or triethylene tetramine (TETA). A typical sample of such ethylene polyamine bottoms obtained from the Dow Chemical Company of Freeport, Texas designated "E-100" showed a specific gravity at 15.6 °C of 1.0168, a percent nitrogen by weight of 33.15 and a viscosity at 40 °C of 121 centistokes. Gas chromatography analysis of such a sample showed it to contain about 0.93% "Light Ends" (DETA?), 0.72% TETA, 21.74% tetraethylene pentamine and 76.61% pentaethylene hexamine and higher (by weight). These alkylene polyamine bottoms include cyclic condensation products such as piperazine and higher analogs of diethylene triamine, triethylene tetramine and the like.

These alkylene polyamine bottoms can be reacted solely with the acylating agent, in which case the amino reactant consists essentially of alkylene polyamine bottoms, or they can be used with other amines and polyamines, or alcohols or mixtures thereof. In these latter cases at least one amino reactant comprises alkylene polyamine bottoms.

Hydroxylalkyl alkylene polyamines having one or more hydroxyalkyl substituents on the nitrogen atoms, are also useful in preparing derivatives of the afore-described olefinic carboxylic acids. Preferred hydroxylalkyl-substituted alkylene polyamines are those in which the hydroxyalkyl group is a lower hydroxyalkyl group, i.e., having less than eight carbon atoms. Examples of such hydroxyalkyl-substituted polyamines include N-(2-hydroxyethyl)ethylene diamine, N,N-bis(2-hydroxyethyl)ethylene diamine, 1-(2-hydroxyethyl) piperazine, monohydroxypropyl-substituted diethylene triamine, dihydroxypropyl-substituted tetraethylene pentamine, N-(2-hydroxybutyl)tetramethylene diamine, etc. Higher homologs as are obtained by condensation of the above-illustrated hydroxy alkylene polyamines through amino radicals or through

hydroxy radicals are likewise useful as (a). Condensation through amino radicals results in a higher amine accompanied by removal of ammonia and condensation through the hydroxy radicals results in products containing ether linkages accompanied by removal of water.

The carboxylic derivatives (A) produced from the acylating reagents and the amino compounds

5 described hereinbefore produce acylated amines which include amine salts, amides, imides and imidazolines as well as mixtures thereof. To prepare carboxylic acid derivatives from the acylating reagents and the amino compounds, one or more acylating reagents and one or more amino compounds are heated, optionally in the presence of a normally liquid, substantially inert organic liquid solvent/diluent, at temperatures in the range of about 80°C up to the decomposition point (where the decomposition point is as 10 previously defined) but normally at temperatures in the range of about 100°C up to about 300°C provided 300°C does not exceed the decomposition point. Temperatures of about 125°C to about 250°C are normally used. The acylating reagent and the amino compound are reacted in amounts sufficient to provide 15 from about one-half equivalent to about 2 moles of amino compound per equivalent of acylating reagent. For purposes of this invention an equivalent of amino compound is that amount of the amino compound corresponding to the total weight of amino compound divided by the total number of nitrogens present. Thus, octylamine has an equivalent weight equal to its molecular weight; ethylene diamine has an equivalent weight equal to one-half its molecular weight; and aminoethylpiperazine has an equivalent weight equal to one-third its molecular weight.

The numbers of equivalents of acylating reagent depends on the number of carboxylic functions (e.g.,

20 -C(O)X, -C(O)X', -C(O)R, and -C(O)R', wherein X, X', R and R' are as defined above) present in the acylating reagent. Thus, the number of equivalents of acylating reagents will vary with the number of succinic groups present therein. In determining the number of equivalents of acylating reagents, those 25 carboxyl functions which are not capable of reacting as a carboxylic acid acylating agent are excluded. In general, however, there are two equivalents of acylating reagent for each succinic group in the acylating reagents or, from another viewpoint, two equivalents for each group in the acylating reagents derived from (B); i.e., the maleic reactant from which the acylating reagent is prepared. Conventional techniques are readily available for determining the number of carboxyl functions (e.g., acid number, saponification number) and, thus, the number of equivalents of acylating reagent available to react with amine.

Because the acylating reagents can be used in the same manner as the high molecular weight acylating

30 agents of the prior art in preparing acylated amines suitable for use as component (A) in the diesel lubricants of this invention, U.S. Patents 3,172,892; 3,219,666; 3,272,746; and 4,234,435 disclose procedures applicable to reacting the acylating reagents with the amino compounds as described above. In applying the disclosures of these patents to the acylating reagents, the latter can be substituted for the high 35 molecular weight carboxylic acid acylating agents disclosed in these patents on an equivalent basis. That is, where one equivalent of the high molecular weight carboxylic acylating agent disclosed in these incorporated patents is utilized, one equivalent of the acylating reagent used in this invention can be used.

In order to produce carboxylic derivatives exhibiting viscosity index improving capabilities, it has been found generally necessary to react the acylating reagents with polyfunctional reactants. For example, polyamines having two or more primary and/or secondary amino groups are preferred. It is believed that the 40 polyfunctional reactants serve to provide "bridges" or cross-linking in the carboxylic derivatives and this, in turn, is somehow responsible for the viscosity index-improving properties. However, the mechanism by which viscosity index improving properties is obtained is not understood and there is no intention to be bound by this theory.

Obviously, however, it is not necessary that all of the amino compound reacted with the acylating

45 reagents be polyfunctional. Thus, combinations of mono- and polyfunctional amino compounds be used.

While the parameters have not been fully determined as yet, it is believed that acylating reagents should be reacted with amino compounds which contain sufficient polyfunctional reactant, (e.g., polyamine) so that at least about 25% of the total number of carboxyl groups (from the succinic groups or from the groups derived from the maleic reactant) are reacted with a polyfunctional reactant. Better results, insofar as 50 the viscosity index improving facilities of the carboxylic derivative compositions is concerned, appear to be obtained when at least 50% of the carboxyl groups are involved in reaction with such polyfunctional reactants. In most instances, the best viscosity index improving properties seem to be achieved when the acylating reagents are reacted with a sufficient amount of polyamine to react with at least about 75% of the carboxyl group. It should be understood that the foregoing percentages are "theoretical" in the sense that it 55 is not required that the stated percentage of carboxyl functions actually react with polyfunctional reactant. Rather these percentages are used to characterize the amounts of polyfunctional reactants desirably "available" to react with the acylating reagents in order to achieve the desired viscosity index improving properties.

Another optional aspect of this invention involves the post-treatment of the carboxylic derivatives (A). The process for post-treating the carboxylic acid derivatives is again analogous to the post-treating processes used with respect to similar derivatives of the high molecular weight carboxylic acid acylating agents of the prior art. Accordingly, the same reaction conditions, ratio of reactants and the like can be used.

Acylated nitrogen compositions prepared by reacting the acylating reagents with an amino compound as described above are post-treated by contacting the acylated nitrogen compositions thus formed (e.g., the carboxylic derivatives) with one or more post-treating reagents selected from boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, carbon disulfide, sulfur, sulfur chlorides, alkenyl cyanides, carboxylic acid acylating agents, aldehydes, ketones, urea, thiourea, guanidine, dicyanodiamide, hydrocarbyl phosphates, hydrocarbyl phosphites, hydrocarbyl thiophosphates, hydrocarbyl thiophosphites, phosphorus sulfides, phosphorus oxides, phosphoric acid, hydrocarbyl thiocyanates, hydrocarbyl isocyanates, hydrocarbyl isothiocyanates, epoxides, episulfides, formaldehyde or formaldehyde-producing compounds plus phenols, and sulfur plus phenols.

Since post-treating processes involving the use of these post-treating reagents are known insofar as application to reaction products of high molecular weight carboxylic acid acylating agents of the prior art and amines and/or alcohols, detailed descriptions of these processes herein are unnecessary. In order to apply the prior art processes to the carboxylic derivatives used in this invention, all that is necessary is that reaction conditions, ratio of reactants, and the like as described in the prior art, be applied to the carboxylic derivative compositions (A). In particular, U.S. Patent 4,234,435 discloses post-treating processes and post-treating reagents applicable to the carboxylic derivatives (A). The following U.S. patents also describe post-treating processes and post-treating reagents applicable to the carboxylic derivatives (A): U.S. Patents 3,200,107; 3,254,025; 3,256,185; 3,282,955; 3,284,410; 3,366,569; 3,403,102; 3,428,561; 3,502,677; 3,639,242; 3,708,522; 3,865,813; 3,865,740; 3,954,639.

The preparation of the acylating agents and the carboxylic acid derivatives (A), as well as the post-treated carboxylic acid derivatives is illustrated by the following examples. These examples illustrate presently preferred embodiments. In the following examples, and elsewhere in the specification and claims, all percentages and parts are by weight unless otherwise clearly indicated.

30 Example A-1

A mixture of 510 parts (0.28 mole) of polyisobutene ($M_n = 1845$; $M_w = 5325$) and 59 parts (0.59 mole) of maleic anhydride is heated to $110^\circ C$. This mixture is heated to $190^\circ C$ in 7 hours during which 43 parts (0.6 mole) of gaseous chlorine is added beneath the surface. At $190-192^\circ C$ an additional 11 parts (0.16 mole) of chlorine is added over 3.5 hours. The reaction mixture is stripped by heating at $190-193^\circ C$ with nitrogen blowing for 10 hours. The residue is the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 87 as determined by ASTM procedure D-94.

Example A-2

40 A mixture of 1000 parts (0.495 mole) of polyisobutene ($M_n = 2020$; $M_w = 6049$) and 115 parts (1.17 moles) of maleic anhydride is heated to $110^\circ C$. This mixture is heated to $184^\circ C$ in 6 hours during which 85 parts (1.2 moles) of gaseous chlorine is added beneath the surface. At $184-189^\circ C$ an additional 59 parts (0.83 mole) of chlorine is added over 4 hours. The reaction mixture is stripped by heating at $186-190^\circ C$ with nitrogen blowing for 26 hours. The residue is the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 87 as determined by ASTM procedure D-94.

Example A-3

50 A mixture of 3251 parts of polyisobutene chloride, prepared by the addition of 251 parts of gaseous chlorine to 3000 parts of polyisobutene ($M_n = 1696$; $M_w = 6594$) at $80^\circ C$ in 4.66 hours, and 345 parts of maleic anhydride is heated to $200^\circ C$ in 0.5 hour. The reaction mixture is held at $200-224^\circ C$ for 6.33 hours, stripped at $210^\circ C$ under vacuum and filtered. The filtrate is the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 94 as determined by ASTM procedure D-94.

Example A-4

A mixture of 3000 parts (1.63 moles) of polyisobutene ($M_n = 1845$; $M_w = 5325$) and 344 parts (3.51 moles) of maleic anhydride is heated to $140^\circ C$. This mixture is heated to $201^\circ C$ in 5.5 hours during which

- 5 312 parts (4.39 moles) of gaseous chlorine is added beneath the surface. The reaction mixture is heated at $201-236^\circ C$ with nitrogen blowing for 2 hours and stripped under vacuum at $203^\circ C$. The reaction mixture is filtered to yield the filtrate as the desired polyisobutene-substituted succinic acylating agent having a saponification equivalent number of 92 as determined by ASTM procedure D-94.

10 Example A-5

A mixture of 3000 parts (1.49 moles) of polyisobutene ($M_n = 2020$; $M_w = 6049$) and 364 parts (3.71 moles) of maleic anhydride is heated at $220^\circ C$ for 8 hours. The reaction mixture is cooled to $170^\circ C$. At

- 15 170-190 $^\circ C$, 105 parts (1.48 moles) of gaseous chlorine is added beneath the surface in 8 hours. The reaction mixture is heated at $190^\circ C$ with nitrogen blowing for 2 hours and then stripped under vacuum at $190^\circ C$. The reaction mixture is filtered to yield the filtrate as the desired polyisobutene-substituted succinic acylating agent.

Example A-6

- 20 A mixture of 800 parts of a polyisobutene falling within the scope of the claims of the present invention and having an M_n of about 2000, 646 parts of mineral oil and 87 parts of maleic anhydride is heated to $179^\circ C$ in 2.3 hours. At $176-180^\circ C$, 100 parts of gaseous chlorine is added beneath the surface over a 19-hour period. The reaction mixture is stripped by blowing with nitrogen for 0.5 hour at $180^\circ C$. The residue is 25 an oil-containing solution of the desired polyisobutene-substituted succinic acylating agent.

Example A-7

- 30 The procedure for Example A-1 is repeated except the polyisobutene ($M_n = 1845$; $M_w = 5325$) is replaced on an equimolar basis by polyisobutene ($M_n = 1457$; $M_w = 5808$).

Example A-8

- 35 The procedure for Example A-1 is repeated except the polyisobutene ($M_n = 1845$; $M_w = 5325$) is replaced on an equimolar basis by polyisobutene ($M_n = 2510$; $M_w = 5793$).

Example A-9

- 40 The procedure for Example A-1 is repeated except the polyisobutene ($M_n = 1845$; $M_w = 5325$) is replaced on an equimolar basis by polyisobutene ($M_n = 3220$; $M_w = 5660$).

Example A-10

- 45 A mixture is prepared by the addition of 10.2 parts (0.25 equivalent) of a commercial mixture of ethylene polyamines having from about 3 to about 10 nitrogen atoms per molecule to 113 parts of mineral oil and 161 parts (0.25 equivalent) of the substituted succinic acylating agent prepared in Example A-1 at $138^\circ C$. The reaction mixture is heated to $150^\circ C$ in 2 hours and stripped by blowing with nitrogen. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.

50 Example A-11

- A mixture is prepared by the addition of 57 parts (1.38 equivalents) of a commercial mixture of ethylene polyamines having from about 3 to 10 nitrogen atoms per molecule to 1067 parts of mineral oil and 893 parts (1.38 equivalents) of the substituted succinic acylating agent prepared in Example A-2 at $140-145^\circ C$. 55 The reaction mixture is heated to $155^\circ C$ in 3 hours and stripped by blowing with nitrogen. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.

Example A-12

A mixture is prepared by the addition of 18.2 parts (0.433 equivalent) of a commercial mixture of ethylene polyamines having from about 3 to 10 nitrogen atoms per molecule to 392 parts of mineral oil and 5 348 parts (0.52 equivalent) of the substituted succinic acylating agent prepared in Example A-2 at 140 °C. The reaction mixture is heated to 150 °C in 1.8 hours and stripped by blowing with nitrogen. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.

Example A-13

10 A mixture is prepared by the addition of 5500 parts of the oil solution of the substituted succinic acylating agent prepared in Example A-7 to 3000 parts of mineral oil and 236 parts of a commercial mixture of ethylene polyamines having an average of about 3-10 nitrogen atoms per molecule at 150 °C over a one-hour period. The reaction mixture is heated at 155-165 °C for two hours, then stripped by blowing with 15 nitrogen at 165 °C for one hour. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired nitrogen-containing product.

Examples A-14 through A-27 are prepared by following the general procedure set forth in Example A-10.

20	Example Number	Reactant(s)	Ratio of Substituted Succinic Acylating Agent To Reactants	Percent Diluent
25	A-14	Pentaethylene hexamine ^a	1:2 equivalents	40%
	A-15	Tris(2-aminoethyl) amine	2:1 moles	50%
	A-16	Imino-bis-propylamine	2:1 moles	40%
	A-17	Hexamethylene diamine	1:2 moles	40%
	A-18	1-(2-Aminoethyl)-2-methyl-2-imidazoline	1:1 equivalents	40%
30	A-19	N-aminopropylpyrrolidone	1:1 moles	40%

30 a A commercial mixture of ethylene polyamines corresponding in empirical formula to pentaethylene hexamine.

b A commercial mixture of ethylene polyamines corresponding in empirical formula to diethylene triamine.

35 c A commercial mixture of ethylene polyamines corresponding in empirical formula to triethylene tetramine.

40	Example Number	Reactant(s)	Ratio of Substituted Succinic Acylating Agent To Reactants	Percent Diluent
45	A-20	N,N-dimethyl-1,3-Propane diamine	1:1 equivalents	40%
	A-21	Ethylene diamine	1:4 equivalents	40%
	A-22	1,3-Propane diamine	1:1 moles	40%
	A-23	2-Pyrrolidinone	1:1.1 moles	20%
	A-24	Urea	1:0.625 moles	50%
	A-25	Diethylenetriamine ^b	1:1 moles	50%
	A-26	Triethyleneamine ^c	1:0.5 moles	50%
50	A-27	Ethanolamine	1:1 moles	45%

50 a A commercial mixture of ethylene polyamines corresponding in empirical formula to pentaethylene hexamine.

b A commercial mixture of ethylene polyamines corresponding in empirical formula to diethylene triamine.

55 c A commercial mixture of ethylene polyamines corresponding in empirical formula to triethylene tetramine.

Example A-28

5 A mixture is prepared by the addition of 31 parts of carbon disulfide over a period of 1.66 hours to 853 parts of the oil solution of the product prepared in Example A-14 at 113-145 °C. The reaction mixture is held at 145-152 °C for 3.5 hours, then filtered to yield an oil solution of the desired product.

Example A-29

10 A mixture of 62 parts of boric acid and 2720 parts of the oil solution of the product prepared in Example A-10 is heated at 150 °C under nitrogen for 6 hours. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired boron-containing product.

Example A-30

15 An oleyl ester of boric acid is prepared by heating an equimolar mixture of oleyl alcohol and boric acid in toluene at the reflux temperature while water is removed azeotropically. The reaction mixture is then heated to 150 °C under vacuum and the residue is the ester having a boron content of 3.2% and a saponification number of 62. A mixture of 344 parts of the heater and 2720 parts of the oil solution of the product prepared in Example A-10 is heated at 150 °C for 6 hours and then filtered. The filtrate is an oil 20 solution of the desired boron-containing product.

Example A-31

25 Boron trifluoride (34 parts) is bubbled into 2190 parts of the oil solution of the product prepared in Example A-11 at 80 °C within a period of 3 hours. The resulting mixture is blown with nitrogen at 70-80 °C for 2 hours to yield the residue as an oil solution of the desired product.

Example A-32

30 A mixture of 3420 parts of the oil-containing solution of the product prepared in Example A-12 and 53 parts of acrylonitrile is heated at reflux temperature from 125-145 °C for 1.25 hours, at 145 °C for 3 hours and then stripped at 125 °C under vacuum. The residue is an oil solution of the desired product.

Example A-33

35 A mixture is prepared by the addition of 44 parts of ethylene oxide over a period of one hour to 1460 parts of the oil solution of the product prepared in Example A-11 at 150 °C. The reaction mixture is held at 150 °C for one hour, then filtered to yield the filtrate as an oil solution of the desired product.

40 Example A-34

A mixture of 1160 parts of the oil solution of the product of Example A-10 and 73 parts of terephthalic acid is heated at 150-160 °C and filtered. The filtrate is an oil solution of the desired product.

45 Example A-35

50 A decyl ester of phosphoric acid is prepared by adding one mole of phosphorus pentaoxide to three moles of decyl alcohol at a temperature within the range of 32-55 °C and then heating the mixture at 60-63 °C until the reaction is complete. The product is a mixture of the decyl esters of phosphoric acid having a phosphorus content of 9.9% and an acid number of 250 (phenolphthalein indicator). A mixture of 1750 parts of the oil solution of the product prepared in Example A-10 and 112 parts of the above decyl ester is heated at 145-150 °C for one hour. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.

55 Example A-36

A mixture of 2920 parts of the oil solution of the product prepared in Example A-11 and 69 parts of thiourea is heated to 80 °C and held at 80 °C for 2 hours. The reaction mixture is then heated at 150-155 °C

for 4 hours, the last of which the mixture is blown with nitrogen. The reaction mixture is filtered to yield the filtrate as an oil solution of the desired product.

Example A-37

5

A mixture of 1460 parts of the oil solution of the product prepared in Example A-11 and 81 parts of a 37% aqueous formaldehyde solution is heated at reflux for 3 hours. The reaction mixture is stripped under vacuum at 150 °C. The residue is an oil solution of the desired product.

10 Example A-38

A mixture of 1160 parts of the oil solution of the product prepared in Example A-10 and 67 parts of sulfur monochloride is heated for one hour at 150°C under nitrogen. The mixture is filtered to yield an oil solution of the desired sulfur-containing product.

15

Example A-39

A mixture is prepared by the addition of 11.5 parts of formic acid to 1000 parts of the oil solution of the product prepared in Example A-11 at 60°C. The reaction mixture is heated at 60-100°C for 2 hours, 92-100°C for 1.75 hours and then filtered to yield an oil solution of the desired product.

Example A-40

An appropriate size flask fitted with a stirrer, nitrogen inlet tube, addition funnel and Dean-Stark trap/condenser is charged with a mixture of 2483 parts acylating agent (4.2 equivalents) as described in Example A-3, and 1104 parts oil. This mixture is heated to 210°C while nitrogen was slowly bubbled through it. Ethylene polyamine bottoms (134 parts, 3.14 equivalents) is slowly added over about one hour at this temperature. The temperature is maintained at about 210°C for 3 hours and then 3688 parts oil is added to decrease the temperature to 125°C. After storage at 138°C for 17.5 hours, the mixture is filtered through diatomaceous earth to provide a 65% oil solution of the desired acylated amine bottoms.

Component (B) used in accordance with the invention in the diesel lubricants is at least one basic alkali metal salt of at least one acidic organic sulphonate compound. This component is among those art-recognized metal-containing compositions variously referred to by such names as "basic", "superbased" and "overbased" salts or complexes. The method for their preparation is commonly referred to as "overbasing". The term "metal ratio" is often used to define the quantity of metal in these salts or complexes relative to the quantity of organic anion, and is defined as the ratio of the number of equivalents thereof which would be present in a normal salt based upon the usual stoichiometry of the compounds involved.

The alkali metals present in the basic alkali metal salts include principally sodium and potassium.

55 R² is generally a hydrocarbon or essentially hydrocarbon radical free from acetylenic unsaturation and containing from about 4 to about 60 aliphatic carbon atoms, preferably an aliphatic hydrocarbon radical such as alkyl or alkenyl. It may also, however, contain substituents or interrupting groups such as those enumerated above provided the essentially hydrocarbon character thereof is retained. In general, any non-

carbon atoms present in R¹ or R² do not account for more than 10% of the total weight thereof.

T is a cyclic nucleus which may be derived from an aromatic hydrocarbon such as benzene, naphthalene, anthracene or biphenyl, or from a heterocyclic compound such as pyridine, indole or isoindole. Ordinarily, T is an aromatic hydrocarbon nucleus, especially a benzene or naphthalene nucleus.

5 The subscript x is at least 1 and is generally 1-3. The subscripts r and y have an average value of about 1-4 per molecule and are generally also 1.

The following are specific examples of sulfonic acids useful in preparing the salts (B). It is to be understood that such examples serve also to illustrate the salts of such sulfonic acids useful as component (B). In other words, for every sulfonic acid enumerated, it is intended that the corresponding basic alkali

10 metal salts thereof are also understood to be illustrated. Such sulfonic acids include mahogany sulfonic acids, bright stock sulfonic acids, petrolatum sulfonic acids, mono- and polywax-substituted naphthalene sulfonic acids, cetylchlorobenzene sulfonic acids, cetylphenol sulfonic acids, cetylphenol disulfide sulfonic acids, cetoxyacetyl benzene sulfonic acids, dicetyl thianthrene sulfonic acids, dilauryl beta-naphthol sulfonic acids, dicapryl nitronaphthalene sulfonic acids, saturated paraffin wax sulfonic acids, unsaturated paraffin 15 wax sulfonic acids, hydroxy-substituted paraffin wax sulfonic acids, tetraisobutylene sulfonic acids, tetra-amylenes sulfonic acids, chloro-substituted paraffin wax sulfonic acids, nitroso-substituted paraffin wax sulfonic acids, petroleum naphthene sulfonic acids, cetylcylopentyl sulfonic acids, lauryl cyclohexyl sulfonic acids, mono- and polywax-substituted cyclohexyl sulfonic acids, postdodecylbenzene sulfonic acids, "dimer alkylate" sulfonic acids, and the like.

20 Alkyl-substituted benzene sulfonic acids wherein the alkyl group contains at least 8 carbon atoms including dodecyl benzene "bottoms" sulfonic acids are particularly useful. The latter are acids derived from benzene which has been alkylated with propylene tetramers or isobutene trimers to introduce 1, 2, 3, or more branched-chain C₁₂ substituents on the benzene ring. Dodecyl benzene bottoms, principally mixtures of mono- and di-dodecyl benzenes, are available as by-products from the manufacture of household 25 detergents. Similar products obtained from alkylation bottoms formed during manufacture of linear alkyl sulfonates (LAS) are also useful in making the sulfonates used in this invention.

The production of sulfonates from detergent manufacture by-products by reaction with, e.g., SO₃, is well known to those skilled in the art. See, for example, the article "Sulfonates" in Kirk-Othmer "Encyclopedia of Chemical Technology", Second Edition, Vol. 19, pp. 291 et seq. published by John Wiley & Sons, N.Y. 30 (1969).

Other descriptions of basic sulfonate salts and techniques for making them can be found in the following U.S. Patents: 2,174,110; 2,202,781; 2,239,974; 2,319,121; 2,337,552; 3,488,284; 3,595,790; and 3,798,012.

The equivalent weight of the acidic organic compound is its molecular weight divided by the number of 35 acidic groups (i.e., sulfonic acid) present per molecule.

The alkali metal salts (B) are basic alkali metal salts having metal ratios of at least about 2 and more generally from about 4 to about 40, preferably from about 6 to about 30 and especially from about 8 to about 25.

The basic salts (B) are oil-soluble dispersions prepared by contacting for a period of time sufficient to 40 form a stable dispersion, at a temperature between the solidification temperature of the reaction mixture and its decomposition temperature:

(B-1) at least one acidic gaseous material selected from the group consisting of carbon dioxide, hydrogen sulfide and sulfur dioxide, with

(B-2) a reaction mixture comprising

45 (B-2-a) at least one oil-soluble sulfonic acid, or derivative thereof susceptible to overbasing;

(B-2-b) at least one alkali metal selected from sodium or potassium, or one or more basic compounds thereof selected from hydroxides, alkoxides, hydrides, or amides;

(B-2-c) at least one lower aliphatic alcohol selected from monohydric alcohols or dihydric alcohols, or at least one alkyl phenol, or sulfurized alkyl phenol; and

50 (B-2-d) at least one oil-soluble carboxylic acid or functional derivative thereof.

Reagent (B-1) is at least one acidic gaseous material which may be carbon dioxide, hydrogen sulfide or sulfur dioxide; mixtures of these gases are also useful. Carbon dioxide is preferred.

As mentioned above, reagent (B-2) is a mixture containing at least four components of which component (B-2-a) is at least one oil-soluble sulfonic acid as previously defined, or a derivative thereof

55 susceptible to overbasing. Mixtures of sulfonic acids and/or their derivatives may also be used. Sulfonic acid derivatives susceptible to overbasing include their metal salts, especially the alkaline earth, zinc and lead salts; ammonium salts and amine salts (e.g., the ethylamine, butylamine and ethylene polyamine salts); and esters such as the ethyl, butyl and glycerol esters.

Component (B-2-b) is at least one alkali metal or a basic compound thereof. Illustrative of basic alkali metal compounds are the hydroxides, alkoxides (typically those in which the alkoxy group contains up to 10 and preferably up to 7 carbon atoms), hydrides and amides. Thus, useful basic alkali metal compounds include sodium hydroxide, potassium hydroxide, sodium propoxide, potassium ethoxide, sodium butoxide, 5 sodium hydride, potassium hydride, sodium amide and potassium amide. Especially preferred are sodium hydroxide and the sodium lower alkoxides (i.e., those containing up to 7 carbon atoms). The equivalent weight of Component (B-2-b) for the purpose of this invention is equal to its molecular weight, since the alkali metals are monovalent.

Component (B-2-c) may be at least one lower monohydric or dihydric aliphatic alcohol. alcohol.

10 Illustrative alcohols are methanol, ethanol, 1-propanol, 1-hexanol, isopropanol, isobutanol, 2-pentanol, 2,2-dimethyl-1-propanol, ethylene glycol, 1,3-propanediol and 1,5-pentanediol. The alcohol also may be a glycol ether such as Methyl Cellosolve. Of these, the preferred alcohols are methanol, ethanol and propanol, with methanol being especially preferred.

15 Component (B-2-c) also may be at least one alkyl phenol or sulfurized alkyl phenol. The sulfurized alkyl phenols are preferred, especially when (B-2-b) is potassium or one of its basic compounds such as potassium hydroxide. As used herein, the term "phenol" includes compounds having more than one hydroxy group bound to an aromatic ring, and the aromatic ring may be a benzyl or naphthyl ring. The term "alkyl phenol" includes mono- and di-alkylated phenols in which each alkyl substituent contains from about 6 to about 100 carbon atoms, preferably about 6 to about 50 carbon atoms.

20 Illustrative alkyl phenols include heptylphenols, octylphenols, decylphenols, dodecylphenols, polypropylene (M.W. of about 150)-substituted phenols, polyisobutene (M.W. of about 1200)-substituted phenols, cyclohexyl phenols.

Also useful are condensation products of the above-described phenols with at least one lower aldehyde or ketone, the term "lower" denoting aldehydes and ketones containing not more than 7 carbon atoms.

25 Suitable aldehydes include formaldehyde, acetaldehyde, propionaldehyde, the butyraldehydes, the valeraldehydes and benzaldehyde. Also suitable are aldehyde-yielding reagents such as paraformaldehyde, trioxane, methylol, Methyl Formcel and paraldehyde. Formaldehyde and the formaldehyde-yielding reagents are especially preferred.

30 The sulfurized alkylphenols include phenol sulfides, disulfides or polysulfides. The sulfurized phenols can be derived from any suitable alkylphenol by technique known to those skilled in the art, and many sulfurized phenols are commercially available. The sulfurized alkylphenols may be prepared by reacting an alkylphenol with elemental sulfur and/or a sulfur monohalide (e.g., sulfur monochloride). This reaction may be conducted in the presence of excess base to result in the salts of the mixture of sulfides, disulfides or polysulfides that may be produced depending upon the reaction conditions. It is the resulting product of this 35 reaction which is used in the preparation of component (B-2) in the present invention. U.S. Patents 2,971,940 and 4,309,293 disclose various sulfurized phenols which are illustrative of component (B-2-c).

The following non-limiting examples illustrate the preparation of alkylphenols and sulfurized alkylphenols useful as component (B-2-c).

40 Example 1

While maintaining a temperature of 55 °C, 100 parts phenol and 68 parts sulfonated polystyrene catalyst (marketed as Amberlyst-15 by Rohm and Haas Company) are charged to a reactor equipped with a stirrer, condenser, thermometer and subsurface gas inlet tube. The reactor contents are then heated to 45 120 ° while nitrogen blowing for 2 hours. Propylene tetramer (1232 parts) is charged, and the reaction mixture is stirred at 120 °C for 4 hours. Agitation is stopped, and the batch is allowed to settle for 0.5 hour. The crude supernatant reaction mixture is filtered and vacuum stripped until a maximum of 0.5% residual propylene tetramer remains.

50 Example 2

Benzene (217 parts) is added to phenol (324 parts, 3.45 moles) at 38 °C and the mixture is heated to 47 °C. Boron trifluoride (8.8 parts, 0.13 mole) is blown into the mixture over a one-half hour period at 38-52 °C. Polyisobutene (1000 parts, 1.0 mole) derived from the polymerization of C₄ monomers predominating 55 in isobutylene is added to the mixture at 52-58 °C over a 3.5 hour period. The mixture is held at 52 °C for 1 additional hour. A 26% solution of aqueous ammonia (15 parts) is added and the mixture is heated to 70 °C over a 2-hour period. The mixture is then filtered and the filtrate is the desired crude polyisobutene-substituted phenol. This intermediate is stripped by heating 1465 parts to 167 °C and the pressure is

reduced to 10 mm. as the material is heated to 218°C in a 6-hour period. A 64% yield of stripped polyisobutene-substituted phenol ($M_n = 885$) is obtained as the residue.

Example 3

5 A reactor equipped with a stirrer, condenser, thermometer and subsurface addition tube is charged with 1000 parts of the reaction product of Example 1. The temperature is adjusted to 48-49° and 319 parts sulfur dichloride is added while the temperature is kept below 60°. The batch is then heated to 88-93° while nitrogen blowing until the acid number (using bromophenol blue indicator) is less than 4.0. 400 parts
10 diluent oil is then added, and the mixture is mixed thoroughly.

Example 4

Following the procedure of Example 3, 1000 parts of the reaction product of Example 1 is reacted with
15 175 parts of sulfur dichloride. The reaction product is diluted with 400 parts diluent oil.

Example 5

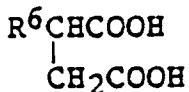
Following the procedure of Example 3, 1000 parts of the reaction product of Example 1 is reacted with
20 319 parts of sulfur dichloride. Diluent oil (788 parts) is added to the reaction product, and the materials are mixed thoroughly.

Example 6

25 Following the procedure of Example 4, 1000 parts of the reaction product of Example 2 are reacted with 44 parts of sulfur dichloride to produce the sulfurized phenol.

Example 7

30 Following the procedure of Example 5, 1000 parts of the reaction product of Example 2 are reacted with 80 parts of sulfur dichloride.


The equivalent weight of component (B-2-c) is its molecular weight divided by the number of hydroxy groups per molecule.

35 Component (B-2-d) is at least one oil-soluble carboxylic acid as previously described, or functional derivative thereof. Especially suitable carboxylic acids are those of the formula $R^5(COOH)_n$, wherein n is an integer from 1 to 6 and is preferably 1 or 2 and R^5 is a saturated or substantially saturated aliphatic radical (preferably a hydrocarbon radical) having at least 8 aliphatic carbon atoms. Depending upon the value of n, R^5 will be a monovalent to hexavalent radical.

40 R^5 may contain non-hydrocarbon substituents provided they do not alter substantially its hydrocarbon character. Such substituents are preferably present in amounts of not more than about 20% by weight. Exemplary substituents include the non-hydrocarbon substituents enumerated hereinabove with reference to component (B-2-a). R^5 may also contain olefinic unsaturation up to a maximum of about 5% and preferably not more than 2% olefinic linkages based upon the total number of carbon-to-carbon covalent linkages present. The number of carbon atoms in R^5 is usually about 8-700 depending upon the source of R^5 . As
45 discussed below, a preferred series of carboxylic acids and derivatives is prepared by reacting an olefin polymer or halogenated olefin polymer with an alpha,beta-unsaturated acid or its anhydride such as acrylic, methacrylic, maleic or fumaric acid or maleic anhydride to form the corresponding substituted acid or derivative thereof. The R^5 groups in these products have a number average molecular weight from about 150 to about 10,000 and usually from about 700 to about 5000, as determined, for example, by gel
50 permeation chromatography.

The monocarboxylic acids useful as component (B-2-d) have the formula R^5COOH . Examples of such acids are caprylic, capric, palmitic, stearic, isostearic, linoleic and behenic acids. A particularly preferred group of monocarboxylic acids is prepared by the reaction of a halogenated olefin polymer, such as a chlorinated polybutene, with acrylic acid or methacrylic acid.

Suitable dicarboxylic acids include the substituted succinic acids having the formula

10 wherein R^6 is the same as R^5 as defined above. R^6 may be an olefin polymer-derived group formed by polymerization of such monomers as ethylene, propylene, 1-butene, isobutene, 1-pentene, 2-pentene, 1-hexene and 3-hexene. R^6 may also be derived from a high molecular weight substantially saturated petroleum fraction. The hydrocarbon-substituted succinic acids and their derivatives constitute the most preferred class of carboxylic acids for use as component (B-2-d).

15 The above-described classes of carboxylic acids derived from olefin polymers, and their derivatives, are well known in the art, and methods for their preparation as well as representative examples of the types useful in the present invention are described in detail in a number of U.S. Patents.

20 Functional derivatives of the above-discussed acids useful as component (B-2-d) include the anhydrides, esters, amides, imides, amidines and metal or ammonium salts. The reaction products of olefin polymer-substituted succinic acids and mono- or polyamines, particularly polyalkylene polyamines, having up to about 10 amino nitrogens are especially suitable. These reaction products generally comprise mixtures of one or more of amides, imides and amidines. The reaction products of polyethylene amines containing up to about 10 nitrogen atoms and polybutene-substituted succinic anhydride wherein the polybutene radical comprises principally isobutene units are particularly useful. Included in this group of 25 functional derivatives are the compositions prepared by post-treating the amine-anhydride reaction product with carbon disulfide, boron compounds, nitriles, urea, thiourea, guanidine, alkylene oxides or the like. The half-amide, half-metal salt and half-ester, half-metal salt derivatives of such substituted succinic acids are also useful.

30 Also useful are the esters prepared by the reaction of the substituted acids or anhydrides with a mono- or polyhydroxy compound, such as an aliphatic alcohol or a phenol. Preferred are the esters of olefin polymer-substituted succinic acids or anhydrides and polyhydric aliphatic alcohols containing 2-10 hydroxy groups and up to about 40 aliphatic carbon atoms. This class of alcohols includes ethylene glycol, glycerol, sorbitol, pentaerythritol, polyethylene glycol, diethanolamine, triethanolamine, N,N'-di(hydroxyethyl)ethylene diamine and the like. When the alcohol contains reactive amino groups, the reaction product may comprise 35 products resulting from the reaction of the acid group with both the hydroxy and amino functions. Thus, this reaction mixture can include half-esters, half-amides, esters, amides, and imides.

35 The ratios of equivalents of the constituents of reagent (B-2) may vary widely. In general, the ratio of component (B-2-b) to (B-2-a) is at least about 4:1 and usually not more than about 40:1, preferably between 6:1 and 30:1 and most preferably between 8:1 and 25:1. While this ratio may sometimes exceed 40:1, such an excess normally will serve no useful purpose.

40 The ratio of equivalents of component (B-2-c) to component (B-2-a) is between about 1:20 and 80:1, and preferably between about 2:1 and 50:1. The ratio of equivalents of component (B-2-d) to component (B-2-a) generally is from about 1:1 to about 1:20 and preferably from about 1:2 to about 1:10.

45 Reagents (B-1) and (B-2) are generally contacted until there is no further reaction between the two or until the reaction substantially ceases. While it is usually preferred that the reaction be continued until no further overbased product is formed, useful dispersions can be prepared when contact between reagents (B-1) and (B-2) is maintained for a period of time sufficient for about 70% of reagent (B-1), relative to the amount required if the reaction were permitted to proceed to its completion or "end point", to react.

50 The point at which the reaction is completed or substantially ceases may be ascertained by any of a number of conventional methods. One such method is measurement of the amount of gas (reagent (B-1)) entering and leaving the mixture; the reaction may be considered substantially complete when the amount leaving is about 90-100% of the amount entering. These amounts are readily determined by the use of metered inlet and outlet valves.

55 When (B-2-c) is an alcohol, the reaction temperature is not critical. Generally, it will be between the solidification temperature of the reaction mixture and its decomposition temperature (i.e., the lowest decomposition temperature of any component thereof). Usually, the temperature will be from about 25° to about 200° C and preferably from about 50° to about 150° C. Reagents (B-1) and (B-2) are conveniently contacted at the reflux temperature of the mixture. This temperature will obviously depend upon the boiling points of the various components; thus, when methanol is used as component (B-2-c), the contact

temperature will be at or below the reflux temperature of methanol.

When reagent (B-2-c) is an alkyl phenol or a sulfurized alkyl phenol, the temperature of the reaction must be at or above the water-diluent azeotrope temperature so that the water formed in the reaction can be removed. Thus the diluent in such cases generally will be a volatile organic liquid such as aliphatic and aromatic hydrocarbons. Examples of such diluents include heptane, decane, toluene, xylene, etc.

5 The reaction is ordinarily conducted at atmospheric pressure, although superatmospheric pressure often expedites the reaction and promotes optimum utilization of reagent (B-1). The process can also be carried out at reduced pressure but, for obvious practical reasons, this is rarely done.

10 The reaction is usually conducted in the presence of a substantially inert, normally liquid organic diluent, which functions as both the dispersing and reaction medium. This diluent will comprise at least about 10% of the total weight of the reaction mixture. Ordinarily it will not exceed about 80% by weight, and it is preferably about 30-70% thereof.

15 Although a wide variety of diluents are useful, it is preferred to use a diluent which is soluble in lubricating oil. The diluent usually itself comprises a low viscosity lubricating oil.

20 Other organic diluents can be employed either alone or in combination with lubricating oil. Preferred diluents for this purpose include the aromatic hydrocarbons such as benzene, toluene and xylene; halogenated derivatives thereof such as chlorobenzene; lower boiling petroleum distillates such as petroleum ether and various naphthas; normally liquid aliphatic and cycloaliphatic hydrocarbons such as hexane, heptane, hexene, cyclohexene, cyclopentane, cyclohexane and ethylcyclohexane, and their halogenated derivatives. Dialkyl ketones such as dipropyl ketone and ethyl butyl ketone, and the alkyl aryl ketones such as acetophenone, are likewise useful, as are ethers such as n-propyl ether, n-butyl ether, n-butyl methyl ether and isoamyl ether.

25 When a combination of oil and other diluent is used, the weight ratio of oil to the other diluent is generally from about 1:20 to about 20:1. It is usually desirable for a mineral lubricating oil to comprise at least about 50% by weight of the diluent, especially if the product is to be used as a lubricant additive. The total amount of diluent present is not particularly critical since it is inactive. However, the diluent will ordinarily comprise about 10-80% and preferably about 30-70% by weight of the reaction mixture.

30 Upon completion of the reaction, any solids in the mixture are preferably removed by filtration or other conventional means. Optionally, readily removable diluents, the alcoholic promoters, and water formed during the reaction can be removed by conventional techniques such as distillation. It is usually desirable to remove substantially all water from the reaction mixture since the presence of water may lead to difficulties in filtration and to the formation of undesirable emulsions in fuels and lubricants. Any such water present is readily removed by heating at atmospheric or reduced pressure or by azeotropic distillation. In one preferred embodiment, when basic potassium sulfonates are desired as component (B), the potassium salt 35 is prepared using carbon dioxide and the sulfurized alkylphenols as component (B-2-c). The use of the sulfurized phenols results in basic salts of higher metal ratios and the formation of more uniform and stable salts. Also, the reaction generally is conducted in an aromatic diluent such as xylene, and water is removed as a xylene-water azeotrope during the reaction.

35 The chemical structure of component (B) is not known with certainty. The basic salts or complexes may be solutions or, more likely, stable dispersions. Alternatively, they may be regarded as "polymeric salts" formed by the reaction of the acidic material, the oil-soluble acid being overbased, and the metal compound. In view of the above, these compositions are most conveniently defined by reference to the method by which they are formed.

40 The above-described procedure for preparing alkali metal salts of sulfonic acids having a metal ratio of at least about 2 and preferably a metal ratio between about 4 to 40 using alcohols as component (B-2-c) is described in more detail in Canadian Patent 1,055,700 which corresponds to British Patent 1,481,553. The sulfonates useful as component (B) in the diesel lubricants are illustrated in the following examples.

Example B-1

45 To a solution of 790 parts (1 equivalent) of an alkylated benzenesulfonic acid and 71 parts of polybutenyl succinic anhydride (equivalent weight about 560) containing predominantly isobutene units in 176 parts of mineral oil is added 320 parts (8 equivalents) of sodium hydroxide and 640 parts (20 equivalents) of methanol. The temperature of the mixture increases to 89 °C (reflux) over 10 minutes due to 50 exotherming. During this period, the mixture is blown with carbon dioxide at 4 cfh. (cubic feet/hr.) (3.12 x 10⁻⁵ m³/s). Carbonation is continued for about 30 minutes as the temperature gradually decreases to 74 °C. The methanol and other volatile materials are stripped from the carbonated mixture by blowing nitrogen through it at 2 cfh. while the temperature is slowly increased to 150 °C over 90 minutes. After stripping is

completed, the remaining mixture is held at 155-165°C for about 30 minutes and filtered to yield an oil solution of the desired basic sodium sulfonate having a metal ratio of about 7.75. This solution contains 12.5% oil.

5 Example B-2

Following the procedure of Example B-1, a solution of 780 parts (1 equivalent) of an alkylated benzenesulfonic acid and 119 parts of the polybutenyl succinic anhydride in 442 parts of mineral oil is mixed with 800 parts (20 equivalents) of sodium hydroxide and 704 parts (22 equivalents) of methanol. The 10 mixture is blown with carbon dioxide at 7 cfh. for 11 minutes as the temperature slowly increases to 97°C. The rate of carbon dioxide flow is reduced to 6 cfh. and the temperature decreases slowly to 88°C over about 40 minutes. The rate of carbon dioxide flow is reduced to 5 cfh. for about 35 minutes and the temperature slowly decreases to 73°C. The volatile materials are stripped by blowing nitrogen through the carbonated mixture at 2 cfh. for 105 minutes as the temperature is slowly increased to 160°C. After 15 stripping is completed, the mixture is held at 160°C for an additional 45 minutes and then filtered to yield an oil solution of the desired basic sodium sulfonate having a metal ratio of about 19.75. This solution contains 18.7% oil.

Example B-3

20 Following the procedure of Example B-1, a solution of 3120 parts (4 equivalents) of an alkylated benzenesulfonic acid and 284 parts of the polybutenyl succinic anhydride in 704 parts of mineral oil is mixed with 1280 parts (32 equivalents) of sodium hydroxide and 2560 parts (80 equivalents) of methanol. The mixture is blown with carbon dioxide at 10 cfh. for 65 minutes as the temperature increases to 90°C 25 and then slowly decreases to 70°C. The volatile material is stripped by blowing nitrogen at 2 cfh. for 2 hours as the temperature is slowly increased to 160°C. After stripping is completed, the mixture is held at 160°C for 0.5 hour, and then filtered to yield an oil solution of the desired basic sodium sulfonate having a metal ratio of about 7.75. This solution contains 12.35% oil content.

30 Example B-4

Following the procedure of Example B-1, a solution of 3200 parts (4 equivalents) of an alkylated benzenesulfonic acid and 284 parts of the polybutenyl succinic anhydride in 623 parts of mineral oil is mixed with 1280 parts (32 equivalents) of sodium hydroxide and 2560 parts (80 equivalents) of methanol. 35 The mixture is blown with carbon dioxide at 10 cfh. for about 77 minutes. During this time the temperature increases to 92°C and then gradually drops to 73°C. The volatile materials are stripped by blowing with nitrogen gas at 2 cfh. for about 2 hours as the temperature of the reaction mixture is slowly increased to 160°C. The final traces of volatile material are vacuum stripped and the residue is held at 170°C and then 40 filtered to yield a clear oil solution of the desired sodium salt, having a metal ratio of about 7.72. This solution has an oil content of 11%.

Example B-5

45 Following the procedure of Example B-1, a solution of 780 parts (1 equivalent) of an alkylated benzenesulfonic acid and 86 parts of the polybutenyl succinic anhydride in 254 parts of mineral oil is mixed with 480 parts (12 equivalents) of sodium hydroxide and 640 parts (20 equivalents) of methanol. The reaction mixture is blown with carbon dioxide at 6 cfh. for about 45 minutes. During this time the temperature increases to 95°C and then gradually decreases to 74°C. The volatile material is stripped by blowing with nitrogen gas at 2 cfh. for about one hour as the temperature is increased to 160°C. After 50 stripping is complete the mixture is held at 160°C for 0.5 hour and then filtered to yield an oil solution of the desired sodium salt, having a metal ratio of 11.8. The oil content of this solution is 14.7%.

Example B-6

55 Following the procedure of Example B-1, a solution of 3120 parts (4 equivalents) of an alkylated benzenesulfonic acid and 344 parts of the polybutenyl succinic anhydride in 1016 parts of mineral oil is mixed with 1920 parts (48 equivalents) of sodium hydroxide and 2560 parts (80 equivalents) of methanol. The mixture is blown with carbon dioxide at 10 cfh. for about 2 hours. During this time the temperature

increases to 96°C and then gradually drops to 74°C. The volatile materials are stripped by blowing with nitrogen gas at 2 cfh. for about 2 hours as the temperature is increased from 74° to 160°C by external heating. The stripped mixture is heated for an additional hour at 160°C and filtered. The filtrate is vacuum stripped to remove a small amount of water, and again filtered to give a solution of the desired sodium salt, 5 having a metal ratio of about 11.8. The oil content of this solution is 14.7%.

Example B-7

Following the procedure of Example B-1, a solution of 2800 parts (3.5 equivalents) of an alkylated 10 benzenesulfonic acid and 302 parts of the polybutenyl succinic anhydride in 818 parts of mineral oil is mixed with 1680 parts (42 equivalents) of sodium hydroxide and 2240 parts (70 equivalents) of methanol. The mixture is blown with carbon dioxide for about 90 minutes at 10 cfh. During this period, the temperature increases to 96°C and then slowly drops to 76°C. The volatile materials are stripped by blowing with nitrogen at 2 cfh. as the temperature is slowly increased from 76°C to 165°C by external heating. Water is 15 removed by vacuum stripping. Upon filtration, an oil solution of the desired basic sodium salt is obtained. It has a metal ratio of about 10.8 and the oil content is 13.6%.

Example B-8

20 Following the procedure of Example B-1, a solution of 780 parts (1 equivalent) of an alkylated benzenesulfonic acid and 103 parts of the polybutenyl succinic anhydride in 350 parts of mineral oil is mixed with 640 parts (16 equivalents) of sodium hydroxide and 640 parts (20 equivalents) of methanol. This mixture is blown with carbon dioxide for about one hour at 6 cfh. During this period, the temperature increases to 95°C and then gradually decreases to 75°C. The volatile material is stripped by blowing with 25 nitrogen. During stripping, the temperature initially drops to 70°C over 30 minutes and then slowly rises to 78°C over 15 minutes. The mixture is then heated to 155°C over 80 minutes. The stripped mixture is heated for an additional 30 minutes at 155-160°C and filtered. The filtrate is an oil solution of the desired basic sodium sulfonate, having a metal ratio of about 15.2. It has an oil content of 17.1%.

30 Example B-9

Following the procedure of Example B-1, a solution of 2400 parts (3 equivalents) of an alkylated 35 benzenesulfonic acid and 308 parts of the polybutenyl succinic anhydride in 991 parts of mineral oil is mixed with 1920 parts (48 equivalents) of sodium hydroxide and 1920 parts (60 equivalents) of methanol. This mixture is blown with carbon dioxide at 10 cfh. for 110 minutes, during which time the temperature rises to 98°C and then slowly decreases to 76°C over about 95 minutes. The methanol and water are stripped by blowing with nitrogen at 2 cfh. as the temperature of the mixture slowly increases to 165°C. The last traces of volatile material are vacuum stripped and the residue is filtered to yield an oil solution of 40 the desired sodium salt having a metal ratio of 15.1. The solution has an oil content of 16.1%.

Example B-10

Following the procedure of Example B-1, a solution of 780 parts (1 equivalent) of an alkylated 45 benzenesulfonic acid and 119 parts of the polybutenyl succinic anhydride in 442 parts of mineral oil is mixed well with 800 parts (20 equivalents) of sodium hydroxide and 640 parts (20 equivalents) of methanol. This mixture is blown with carbon dioxide for about 55 minutes at 8 cfh. During this period, the temperature of the mixture increases to 95°C and then slowly decreases to 67°C. The methanol and water are stripped by blowing with nitrogen at 2 cfh. for about 40 minutes while the temperature is slowly increased to 160°C. After stripping, the temperature of the mixture is maintained at 160-165°C for about 30 minutes. The 50 product is then filtered to give a solution of the corresponding sodium sulfonate having a metal ratio of about 16.8. This solution contains 18.7% oil.

Example B-11

55 Following the procedure of Example B-1, 836 parts (1 equivalent) of a sodium petroleum sulfonate (sodium "Petronate") in an oil solution containing 48% oil and 63 parts of the polybutenyl succinic anhydride is heated to 60°C and treated with 280 parts (7 equivalents) of sodium hydroxide and 320 parts (10 equivalents) of methanol. The reaction mixture is blown with carbon dioxide at 4 cfh. for about 45

minutes. During this time, the temperature increases to 85°C and then slowly decreases to 74°C. The volatile material is stripped by blowing with nitrogen at 2 cfh. while the temperature is gradually increased to 160°C. After stripping is completed, the mixture is heated an additional 30 minutes at 160°C and then is filtered to yield the sodium salt in solution. The product has a metal ratio of 8.0 and an oil content of 22.2%.

5

Example B-12

Following the procedure of Example B-11, 1256 parts (1.5 equivalents) of the sodium petroleum sulfonate in an oil solution containing 48% oil and 95 parts of polybutenyl succinic anhydride is heated to 60°C and treated with 420 parts (10.5 equivalents) of sodium hydroxide and 960 parts (30 equivalents) of methanol. The mixture is blown with carbon dioxide at 4 cfh. for 60 minutes. During this time, the temperature is increased to 90°C and then slowly decreases to 70°C. The volatile materials are stripped by blowing with nitrogen and slowly increasing the temperature to 160°C. After stripping, the reaction mixture is allowed to stand at 160°C for 30 minutes and then is filtered to yield an oil solution of sodium sulfonate having a metal ratio of about 8.0. The oil content of the solution is 22.2%.

10

15

Example B-13

A mixture of 584 parts (0.75 mole) of a commercial dialkyl aromatic sulfonic acid, 144 parts (0.37 mole) of a sulfurized tetrapropenyl phenol prepared as in Example 3, 93 parts of a polybutenyl succinic anhydride as used in Example B-1, 500 parts of xylene and 549 parts of oil is prepared and heated with stirring to 70°C whereupon 97 parts of potassium hydroxide are added. The mixture is heated to 145°C while azeotroping water and xylene. Additional potassium hydroxide (368 parts) is added over 10 minutes and heating is continued at about 145-150°C whereupon the mixture is blown with carbon dioxide at 1.5 cfh. for about 110 minutes. The volatile materials are stripped by blowing with nitrogen and slowly increasing the temperature to about 160°C. After stripping, the reaction mixture is filtered to yield an oil solution of the desired potassium sulfonate having a metal ratio of about 10. Additional oil is added to the reaction product to provide an oil content of the final solution of 39%.

20

25

Example B-14

A mixture of 705 parts (0.75 mole) of a commercially available mixture of straight and branched chain alkyl aromatic sulfonic acid, 98 parts (0.37 mole) of a tetrapropenyl phenol prepared as in Example 1, 97 parts of a polybutenyl succinic anhydride as used in Example B-1, 750 parts of xylene, and 133 parts of oil is prepared and heated with stirring to about 50°C whereupon 65 parts of sodium hydroxide dissolved in 100 parts of water are added. The mixture is heated to about 145°C while removing an azeotrope of water and xylene. After cooling the reaction mixture overnight, 279 parts of sodium hydroxide are added. The mixture is heated to 145°C and blown with carbon dioxide at about 2 cfh. for 1.5 hours. An azeotrope of water and xylene is removed. A second increment of 179 parts of sodium hydroxide is added as the mixture is stirred and heated to 145°C whereupon the mixture is blown with carbon dioxide at a rate of 2 cfh. for about 2 hours. Additional oil (133 parts) is added to the mixture after 20 minutes. A xylene:water azeotrope is removed and the residue is stripped to 170°C at 50 mm. Hg. The reaction mixture is filtered through a filter aid and the filtrate is the desired product containing 17.01% sodium and 1.27% sulfur.

30

35

Example B-15

A mixture of 386 parts (0.75 mole) of a commercially available primary branched chain monoalkyl aromatic sulfonic acid, 58 parts (0.15 mole) of a sulfurized tetrapropenyl phenol prepared as in Example 3, 926 grams of oil and 700 grams of xylene is prepared, heated to a temperature of 70°C whereupon 97 parts of potassium hydroxide are added over a period of 15 minutes. The mixture is heated to 145°C while removing water. An additional 368 parts of potassium hydroxide are added over 10 minutes, and the stirred mixture is heated to 145°C whereupon the mixture is blown with carbon dioxide at 1.5 cfh. for about 2 hours. The mixture is stripped to 150°C and finally at 150°C at 50 mm. Hg (6.65 kPa). The residue is filtered, and the filtrate is the desired product.

40

45

The diesel lubricants containing components (A) and (B) as described above may be further characterized as containing at least about 0.8 sulfate ash and more generally at least about 1% sulfate ash. The amounts of components (A) and (B) included in the diesel lubricants may vary over a wide range as can be determined by one skilled in the art. Generally, however, the diesel lubricants will contain from about 1.0 to

about 10% by weight of component (A) and from about 0.05 to about 5% and more generally up to about 1% by weight of component (B).

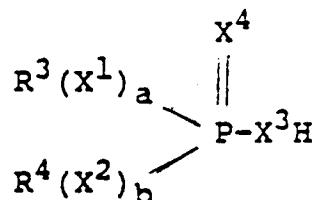
In another preferred embodiment, the diesel lubricants also contain (C) at least one oil-soluble neutral or basic alkaline earth metal salt of at least one acidic organic compound. Such salt compounds generally are 5 referred to as ash-containing detergents. The acidic organic compound may be at least one sulfur acid, carboxylic acid, phosphorus acid, or phenol, or mixtures thereof.

Calcium, magnesium and barium are the preferred alkaline earth metals. Salts containing a mixture of ions of two or more of these alkaline earth metals can be used.

The salts which are useful as component (C) can be neutral or basic. The neutral salts contain an

10 amount of alkaline earth metal which is just sufficient to neutralize the acidic groups present in the salt anion, and the basic salts contain an excess of the alkaline earth metal cation.

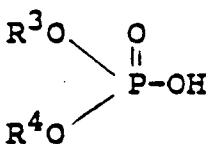
The commonly employed methods for preparing the basic salts comprises heating a mineral oil solution of the acid with a stoichiometric excess of a metal neutralizing agent, e.g., a metal oxide, hydroxide, carbonate, bicarbonate, sulfide, etc., at temperatures above about 50 °C. In addition, various promoters may 15 be used in the neutralizing process to aid in the incorporation of the large excess of metal. These promoters are presently known and include such compounds as the phenolic substances, e.g., phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol and the various condensation products of formaldehyde with a phenolic substance, e.g., alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbital, ethylene, glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylene-diamine, 20 phenothiazine, phenyl-beta-naphthylamine, and dodecyl amine, etc. A particularly effective process for preparing the basic salts comprises mixing the acid with an excess of the basic alkaline earth metal in the presence of the phenolic promoter and a small amount of water and carbonating the mixture at an elevated temperature, e.g., 60 °C to about 200 °C.


As mentioned above, the acidic organic compound from which the salt of component (C) is derived may

25 be at least one sulfur acid, carboxylic acid, phosphorus acid, or phenol or mixtures thereof.

Suitable carboxylic acids include aliphatic, cycloaliphatic and aromatic mono- and polybasic carboxylic acids free from acetylenic unsaturation, including naphthenic acids, alkyl- or alkenyl-substituted cyclopentanoic acids, alkyl- or alkenyl-substituted cyclohexanoic acids, and alkyl- or alkenyl-substituted aromatic carboxylic acids. The aliphatic acids generally contain from about 8 to about 50, and preferably from about 30 12 to about 25 carbon atoms. The cycloaliphatic and aliphatic carboxylic acids are preferred, and they can be saturated or unsaturated. Specific examples include 2-ethylhexanoic acid, linolenic acid, propylene tetramer-substituted maleic acid, behenic acid, isostearic acid, pelargonic acid, capric acid, palmitoleic acid, linoleic acid, lauric acid, oleic acid, ricinoleic acid, undecyclic acid, dioctylcyclopentanecarboxylic acid, myristic acid, dilauryldecahydronaphthalene-carboxylic acid, stearyl-octahydroindenecarboxylic acid, palmitic acid, alkyl- and alkenylsuccinic acids, acids formed by oxidation of petrodatum or of hydrocarbon waxes, and commercially available mixtures of two or more carboxylic acids such as tall oil acids, rosin acids, and the like.

The pentavalent phosphorus acids useful in the preparation of component (C) may be represented by the formula


40

50 wherein each of R^3 and R^4 is hydrogen or a hydrocarbon or essentially hydrocarbon group preferably having from about 4 to about 25 carbon atoms, at least one of R^3 and R^4 being hydrocarbon or essentially hydrocarbon; each of X^1 , X^2 , X^3 and X^4 is oxygen or sulfur; and each of a and b is 0 or 1. Thus, it will be appreciated that the phosphorus acid may be an organophosphoric, phosphonic or phosphinic acid, or a thio analog of any of these.

55

The phosphorus acids may be those of the formula

- 10 wherein R³ is a phenyl group or (preferably) an alkyl group having up to 18 carbon atoms, and R⁴ is hydrogen or a similar phenyl or alkyl group. Mixtures of such phosphorus acids are often preferred because of their ease of preparation.

Component (C) may also be prepared from phenols; that is, compounds containing a hydroxy group bound directly to an aromatic ring. The term "phenol" as used herein includes compounds having more than one hydroxy group bound to an aromatic ring, such as catechol, resorcinol and hydroquinone. It also includes alkylphenols such as the cresols and ethylphenols, and alkenylphenols. Preferred are phenols containing at least one alkyl substituent containing about 3-100 and especially about 6-50 carbon atoms, such as heptylphenol, octylphenol, dodecyphenol, tetrapropene-alkylated phenol, octadecylphenol and polybutenylphenols. Phenols containing more than one alkyl substituent may also be used, but the 20 monoalkylphenols are preferred because of their availability and ease of production.

Also useful are condensation products of the above-described phenols with at least one lower aldehyde or ketone, the term "lower" denoting aldehydes and ketones containing not more than 7 carbon atoms. Suitable aldehydes include formaldehyde, acetaldehyde, propionaldehyde, the butyraldehydes, the valeraldehydes and benzaldehyde. Also suitable are aldehyde-yielding reagents such as paraformaldehyde, 25 trioxane, methylol, Methyl Formcel and paraldehyde. Formaldehyde and the formaldehyde-yielding reagents are especially preferred.

The equivalent weight of the acidic organic sulfonic compound is its molecular weight divided by the number of acidic groups (i.e., sulfonic acid present per molecule).

In one preferred embodiment, the alkali metal salts (B) are basic alkali metal salts having metal 30 Such acidic organic sulphonate compounds previously have been described above with respect to the preparation of the alkali metal salts (component (B)), and all of the acidic organic compounds described above can be utilized in the preparation of the alkaline earth metal salts useful as component (C) by techniques known in the art. The amount of component (C) included in the diesel lubricants also may be varied over a wide range, and useful amounts can be readily determined by one skilled in the art. Component (C) functions as 35 an auxiliary or supplemental detergent. The amount of component (C) contained in a diesel lubricant of the invention may vary from about 0% to about 5% or more.

The following examples illustrate the preparation of neutral and basic alkaline earth metal salts useful as component (C).

40 Example C-1

A mixture of 906 parts of an oil solution of an alkyl phenyl sulfonic acid (having an average molecular weight of 450, vapor phase osmometry), 564 parts mineral oil, 600 parts toluene, 98.7 parts magnesium oxide and 120 parts water is blown with carbon dioxide at a temperature of 78-85 °C for 7 hours at a rate of 45 about 3 cubic feet of carbon dioxide per hour. The reaction mixture is constantly agitated throughout the carbonation. After carbonation, the reaction mixture is stripped to 165 °/20 tor (2.66 kPa) and the residue filtered. The filtrate is an oil solution of the desired overbased magnesium sulfonate having a metal ratio of about 3.

50 Example C-2

A polyisobutylene succinic anhydride is prepared by reacting a chlorinated poly(isobutene) (having an average chlorine content of 4.3% and an average of 82 carbon atoms) with maleic anhydride at about 200 °C. The resulting polyisobutylene succinic anhydride has a saponification number of 90. To a mixture of 55 1246 parts of this succinic anhydride and 1000 parts of toluene there is added at 25 °C, 76.6 parts of barium oxide. The mixture is heated to 115 °C and 125 parts of water is added drop-wise over a period of one hour. The mixture is then allowed to reflux at 150 °C until all the barium oxide is reacted. Stripping and filtration provides a filtrate having a barium content of 4.71%.

Example C-3

A basic calcium sulfonate having a metal ratio of about 15 is prepared by carbonation, in increments, of a mixture of calcium hydroxide, a neutral sodium petroleum sulfonate, calcium chloride, methanol and an alkyl phenol.

Example C-4

A mixture of 323 parts of mineral oil, 4.8 parts of water, 0.74 parts of calcium chloride, 79 parts of lime, and 128 parts of methyl alcohol is prepared, and warmed to a temperature of about 50 °C. To this mixture there is added 1000 parts of an alkyl phenyl sulfonic acid having an average molecular weight (vapor phase osmometry) of 500 with mixing. The mixture then is blown with carbon dioxide at a temperature of about 50 °C at the rate of about 5.4 pounds per hour for about 2.5 hours. After carbonation, 102 additional parts of oil are added and the mixture is stripped of volatile materials at a temperature of about 150-155 °C at 55 mm. pressure. The residue is filtered and the filtrate is the desired oil solution of the overbased calcium sulfonate having calcium content of about 3.7% and a metal ratio of about 1.7.

The present invention also contemplates the use of other additives in the diesel lubricant compositions. These other additives include such conventional additive types as anti-oxidants, extreme pressure agents, corrosion-inhibiting agents, pour point depressants, color stabilizing agents, anti-foam agents, and other such additive materials known generally to those skilled in the art of formulating diesel lubricants.

Extreme pressure agents and corrosion- and oxidation-inhibiting agents are exemplified by chlorinated aliphatic hydrocarbons such as chlorinated wax; organic sulfides and polysulfides such as benzyl disulfide, bis(chlorobenzyl)disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized terpene; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus sulfide with turpentine or methyl oleate; phosphorus esters including principally dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentyl phenyl phosphite, dipentyl phenyl phosphite, tridecyl phosphite, distearyl phosphite, dimethyl naphthyl phosphite, oleyl 4-pentylphenyl phosphite, polypropylene (molecular weight 500)-substituted phenyl phosphite, diisobutyl-substituted phenyl phosphite; metal thiocarbamates, such as zinc dioctyldithiocarbamate, and barium heptylphenyl dithiocarbamate; Group II metal phosphorodithioates such as zinc dicyclohexylphosphorodithioate, zinc dioctylphosphorodithioate, barium di(heptylphenyl)-phosphorodithioate, cadmium dinonylphosphorodithioate, and the zinc salt of a phosphorodithioic acid produced by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl alcohol and n-hexyl alcohol.

Many of the above-mentioned auxiliary extreme pressure agents and corrosion-oxidation inhibitors also serve as antiwear agents. Zinc dialkylphosphorodithioates are a well known example.

Pour point depressants are a particularly useful type of additive often included in the lubricating oils described herein. The use of such pour point depressants in oil-based compositions to improve low temperature properties of oil-based compositions is well known in the art. See, for example, page 8 of "Lubricant Additives" by C.V. Smalheer and R. Kennedy Smith (Lezius-Hiles Co. publishers, Cleveland, Ohio, 1967).

Examples of useful pour point depressants are polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this invention, techniques for their preparation and their uses are described in U.S. Patents 2,387,501; 2,015,748; 2,655,479; 1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715.

Anti-foam agents are used to reduce or prevent the formation of stable foam. Typical anti-foam agents include silicones or organic polymers. Additional anti-foam compositions are described in "Foam Control Agents", by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162.

The present invention will be further understood by a consideration of the following examples which are intended to be purely exemplary of the invention. Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the following examples.

Parts by
Weight

Lubricant I

5	Product of Example A-11	2
	Product of Example B-2	0.5
10	Lubricating Oil	97.5

Lubricant II

15	Product of Example A-12	1.0
	Product of Example B-2	0.4
	Product of Example C-3	0.25
20	Lubricating Oil	98.35

25	Lubricants III-V	Parts by Weight			
		III	IV	V	Control
	Product of Example A-11	.47	.47	.47	.47
	Product of Example B-2	.45	.33	-	-
30	Product of Example C-3	-	.12	-	-
	Product of Example B-13	-	-	.25	-
	Hydrogenated copolymer of isoprene-styrene	.60	.60	.60	.60
	Reaction product of maleic anhydride-styrene copolymer with alcohol and amine	.08	.08	.08	.08
35	Polybutenyl succinic anhydride-ethylene polyamine reaction product	1.97	1.97	1.97	1.97
	Basic calcium salt of a sulfurized tetrapropenyl phenol	1.18	1.118	1.12	1.11
	Zinc salt of mixed isobutyl- and primary amyl-phosphorodithioic acid	.39	.39	.39	.39
40	Zinc salt of mixed isoctyl phosphorodithioic acid	1.04	1.04	1.04	1.04
	Alkylated aryl amine	.08	.08	.06	.06
	Basic magnesium petroleum sulfonate	.50	.50	.49	.49
45	Basic magnesium petroleum sulfonate	.27	.27	.25	.25
	Silicone anti-foam agent	10ppm	10ppm	10ppm	10ppm
	Mineral oil	balance→			

50 The present invention is useful in the operation of diesel engines, and when the composition comprising (A) and (B), described hereinbefore, is utilized in accordance with the invention, diesel engines can be operated for longer periods of time without undergoing undesirable viscosity increases. Furthermore, the diesel lubricants are capable of passing the Caterpillar 1-G-2 and the Caterpillar 1-H-2 test procedures.

55 The advantages of the present invention is demonstrated by subjecting the diesel lubricants of lubricant Examples III-V to the Mack Truck Technical Services Standard Test Procedure No. 5GT 57 entitled "Mack T-7: Diesel Engine Oil Viscosity Evaluation", dated August 31, 1984. This test has been designed to correlate with field experience. In this test, a Mack EM6-285 engine is operated under low speed, high torque, steady-state conditions. The engine is a direct injection, in-line, six-cylinder, four-stroke, turbocharged series charge air-cooled compression ignition engine containing keystone rings. The rated power is

283 bhp at 2300 rpm governed speed.

The test operation consists of an initial break-in-period (after major rebuild only) a test oil flush, and 150 hours of steady state operation at 1200 rpm and 1080 ft/lb. of torque. No oil changes or additions are made, although eight 4 oz. oil samples are taken periodically from the oil pan drain valve during the test for

5 analysis. Sixteen ounces of oil are taken at the oil pan drain valve before each 4 oz. sample is taken to purge the drain line. This purge sample is then returned to the engine after sampling. No make-up oil is added to the engine to replace the 4 oz. samples.

The kinematic viscosity at 210°F is measured at 100 and 150 hours into the test, and the "viscosity slope" is calculated. The "viscosity slope" is defined as the difference between the 100 and 150-hour 10 viscosity divided by 50. It is desirable that the viscosity slope should be as small a number as possible, reflecting a minimum viscosity increase as the test progresses.

The kinematic viscosity at 210°F can be measured by two procedures. In both procedures, the sample is passed through a No. 200 sieve before it is loaded into the Cannon reverse flow viscometer. In the ASTM D-445 method, the viscometer is chosen to result in flow times equal to or greater than 200 seconds. In the 15 method described in the Mack T-7 specification, a Cannon 300 viscometer is used for all viscosity determinations. Flow times for the latter procedure are typically 50-100 seconds for fully formulated 15W-40 diesel lubricants.

The results of the Mack T-7 test using three of the diesel lubricants are summarized in the following table.

20

Mack T-7 Results			
Lubricant of Example	Detergent Supplement	Sulfated Ash Supplement (Wt.%)	Viscosity Slope*
Control	-	-	0.16
III	Sodium	0.33	0.01
IV	Sodium + Calcium	0.33	0.02
V	Potassium	0.09	0.11

* cst @ 210°F per hour.

30

Other embodiments of the invention will be apparent to those skilled in the art from a consideration of this specification or practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.

35

Claims

1. Use of a composition comprising

(A) at least one carboxylic derivative produced by reacting at least one substituted succinic acylating agent with at least one amino compound containing at least one -NH- group wherein said acylating agent consists of substituent groups and succinic groups, wherein the substituent groups are derived from polyalkene characterized by an Mn value of at least about 1200 and an Mw/Mn ratio of at least about 1.5, and wherein said acylating agents are characterized by the presence within their structure of an average of at least about 1.3 succinic groups for each equivalent weight of substituent groups, and

(B) at least one basic alkali metal salt of at least one acidic organic sulfonic compound having a metal ratio of at least about 2, wherein the basic sulfonate salt (B) is an oil-soluble dispersion prepared by a method which comprises contacting at a temperature between the solidification temperature of the reaction mixture and its decomposition temperature,

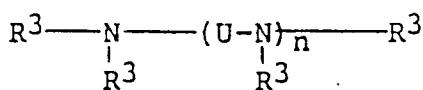
(B-1) at least one acidic gaseous material selected from carbon dioxide, hydrogen sulfide, sulfur dioxide, and mixtures thereof, with

(B-2) a mixture comprising

(B-2-a) at least one oil-soluble sulfonic acid, or derivative thereof susceptible to overbasing;

(B-2-b) at least one alkali metal selected from sodium or potassium, or one or more basic compounds thereof selected from hydroxides, alkoxides, hydrides, or amides;

(B-2-c) at least one lower aliphatic alcohol selected from monohydric alcohols or dihydric alcohols, or at least one alkyl phenol or sulfurized alkyl phenol; and


50

55

(B-2-d) at least one oil soluble carboxylic acid or functional derivative thereof,
and wherein the viscosity slope of the lubricant as measured in the Mack T-7 test is 0.11 or
smaller,

5 for minimising undesirable viscosity increases in a diesel lubricant composition comprising a major
amount of a lubricating oil.

2. The use of claim 1 wherein the lubricant contains at least about 1% sulfate ash.
3. The use of either of claims 1 and 2 wherein the substituent group in (A) is characterised by an Mn
10 value of about 1300 to about 5000.
4. The use of any preceding claim wherein the substituent groups are derived from one or more
15 polyalkenes selected from homopolymers and interpolymers of terminal olefins of 2 to about 16 carbon
atoms, with the proviso that said interpolymers can optionally contain up to about 25% of polymer units
derived from internal olefins of up to about 16 carbon atoms.
5. The use of any preceding claim wherein said value of Mw/Mn is about 2.0 to about 3.4.
6. The use of any preceding claim wherein the sulfonic acid (i) is represented by the formulae $R'(SO_3H)_r$
20 or $(R^2)_xT(SO_3H)_y$ in which R' and R^2 are each independently an aliphatic group free from acetylenic
unsaturation and containing up to 60 carbon atoms, T is an aromatic hydrocarbon nucleus, and x is a
number of 1 to 3, and r and y are numbers of 1 to 4.
7. The use of any preceding claim wherein the ratios of equivalents of the components of B-2 are:
25 (B-2-b)/(B-2-a) - at least 4:1;
(B-2-c)/(B-2-a) - between about 1:1 and about 80:1;
(B-2-d)/(B-2-a) - between about 1:1 and about 1:20.
8. The use of any preceding claim wherein the amino compound in (A) is an alkylene polyamine of the
30 formula

wherein U is an alkylene group of 2 to about 10 carbon atoms, each R^3 is independently a hydrogen
atom, a lower alkyl group or a lower hydroxy alkyl group, with the proviso that at least one R^3 is a
40 hydrogen atom, and n is 1 to about 10.

Patentansprüche

1. Verwendung einer Zusammensetzung umfassend
 - 45 (A) mindestens ein Carbonsäure-Derivat, hergestellt durch Umsetzung mindestens eines substituierten Bernsteinsäure-Acylierungsmittels mit mindestens einer Aminoverbindung, die mindestens eine -NH-Gruppe enthält, wobei das Acylierungsmittel aus Substituentenresten und Bernsteinsäureresten besteht, wobei sich die Substituentenreste von Polyalkenen mit einem Mn-Wert von mindestens etwa 1200 und einem Mw/Mn-Verhältnis von mindestens etwa 1,5 ableiten und wobei in den Acylierungsmitteln durchschnittlich mindestens 1,3 Bernsteinsäurereste pro Gewichtsäquivalent der Substituentenreste vorliegen, und
 - (B) mindestens ein basisches Alkalimetallsalz mindestens einer sauren organischen Sulfonverbindung mit einem Metallverhältnis von mindestens etwa 2, wobei das basische Sulfonatsalz (B) eine öllösliche Dispersion ist, die nach einem Verfahren hergestellt wird, welches das Zusammenbringen von
 - 55 (B-1) mindestens einer gasförmigen sauren Verbindung ausgewählt aus Kohlendioxid, Schwefelwasserstoff, Schwefeldioxid und Gemischen daraus, mit
 - (B-2) einem Gemisch umfassend

(B-2-a) mindestens eine öllösliche Sulfonsäure oder ein Derivat davon, das geeignet ist zur Überalkalisierung,

(B-2-b) mindestens ein Alkalimetall ausgewählt aus Natrium oder Kalium, oder eine oder mehrere basische Verbindungen daraus, ausgewählt aus Hydroxiden, Alkoxiden, Hydriden oder Amiden,

(B-2-c) mindestens einen niederen aliphatischen Alkohol ausgewählt aus einwertigen oder zweiwertigen Alkoholen oder mindestens einem Alkylphenol oder geschwefeltem Alkylphenol, und

(B-2-d) mindestens eine öllösliche Carbonsäure oder ein funktionelles Derivat davon,

bei einer Temperatur zwischen der Erstarrungstemperatur des Reaktionsgemisches und seiner Zersetzungstemperatur umfaßt, wobei der mit dem Mack T-7-Test bestimmte Viskositätsverlauf des Schmiermittels 0,11 oder kleiner ist,

zur Minimierung unerwünschter Viskositätserhöhung in einer Dieselschmiermittelzusammensetzung, die eine Hauptmenge eines Schmieröls umfaßt.

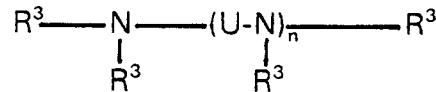
2. Verwendung nach Anspruch 1, wobei das Schmiermittel mindestens etwa 1% Sulfatasche enthält.

3. Verwendung nach Anspruch 1 oder 2, wobei die Substituentenreste aus (A) durch einen Mn-Wert von etwa 1300 bis etwa 5000 gekennzeichnet sind.

4. Verwendung nach einem der vorstehenden Ansprüche, wobei die Substituentenreste von einem oder mehreren Polyalkenen, ausgewählt aus Homopolymeren und Copolymeren von terminalen Olefinen mit 2 bis etwa 16 C-Atomen abgeleitet sind, mit der Maßgabe, daß die Copolymeren gegebenenfalls bis zu etwa 25% Polymereinheiten aus inneren Olefinen mit bis zu 16 C-Atomen enthalten können.

5. Verwendung nach einem der vorstehenden Ansprüche, wobei das Mw/Mn-Verhältnis etwa 2,0 bis etwa 3,4 beträgt.

6. Verwendung nach einem der vorstehenden Ansprüche, wobei die Sulfonsäure (i) die allgemeine Formel $R'(SO_3H)_x$, oder $(R^2)_xT(SO_3H)_y$ hat, wobei R' und R^2 unabhängig aliphatische, keine acetylenische Bindungen enthaltende Reste mit bis zu 60 C-Atomen sind, T ein aromatischer Kohlenwasserstoffrest ist, x einen Wert von 1 bis 3 hat, und y Werte von 1 bis 4 haben.


7. Verwendung nach einem der vorstehenden Ansprüche, wobei die Verhältnisse der Äquivalente der Komponenten von B-2 sind:

(B-2-b)/(B-2-a) - mindestens 4:1;

(B-2-c)/(B-2-a) - zwischen etwa 1:1 und etwa 80:1;

(B-2-d)/(B-2-a) - zwischen etwa 1:1 und etwa 1:20.

8. Verwendung nach einem der vorstehenden Ansprüche, wobei die Aminoverbindung (A) im Alkylenpolyamin der allgemeinen Formel

ist, wobei U ein Alkylenrest mit 2 bis etwa 10 C-Atomen ist, jeder R^3 -Rest unabhängig ein Wasserstoffatom, ein niederer Alkylrest oder ein niederer Hydroxyalkylrest ist, mit der Maßgabe, daß mindestens ein R^3 -Rest ein Wasserstoffatom ist, und n einen Wert von 1 bis etwa 10 hat.

Revendications

1. Utilisation d'une composition comportant :

(A) au moins un dérivé carboxylique préparé en faisant réagir au moins un agent acylant succinique substitué avec au moins un composé aminé renfermant au moins un groupe -NH- dans lequel ledit agent acylant est constitué de groupes substituants et de groupes succiniques, dans lesquels les groupes substituants sont dérivés d'un polyalkylène caractérisé par une valeur de poids moléculaire

moyen en nombre (Mn) d'au moins 1200 et d'un rapport de poids moléculaire moyen en poids (poids moléculaire moyen en nombre (Mn) d'au moins 1,5, tandis que lesdits agents acylants sont caractérisés par la présence dans leur structure d'une moyenne d'au moins environ 1,3 groupes succiniques pour chaque poids équivalent de groupes substituants, et

5 (B) au moins un sel basique de métal alcalin d'au moins un composé succinique organique acide présentant un rapport métallique d'au moins 2, dans lequel le sel de sulfonate basique (B) est une dispersion soluble dans l'huile préparée par un procédé qui consiste à mettre en contact à une température entre la température de solidification du mélange de réaction et sa température de décomposition,

10 (B-1) au moins un produit gazeux acide choisi parmi le dioxyde de carbone, l'hydrogène sulfuré, le dioxyde de soufre ainsi que des mélanges de ceux-ci, avec

(B-2) un mélange comportant :

(B-2-a) au moins un acide sulfonique dans l'huile, ou un de ses dérivés susceptibles d'être surbasé ;

15 (B-2-b) au moins un métal alcalin choisi parmi le sodium ou le potassium, ou bien un ou plus d'un composé basique de ceux-ci choisis parmi les hydroxydes, les alcoolates, les hydrures ou les amides ;

(B-2-c) au moins un alcool aliphatique inférieur choisi parmi les alcools monohydriques ou les alcools dihydriques, ou au moins un alkyl phénol ou un alkyl phénol sulfuré ; et

20 (B-2-d) au moins un acide carboxylique soluble dans l'huile ou un dérivé fonctionnel de celui-ci,

et dans lequel la pente de viscosité du lubrifiant, telle que mesurée dans l'essai Mack T-7, est de 0,11 ou plus petite,

afin de réduire au minimum les augmentations de viscosité non souhaitées dans une composition lubrifiante diesel comportant une quantité prépondérante d'une huile lubrifiante.

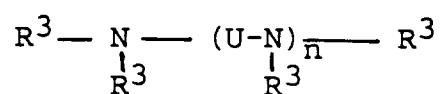
2. L'utilisation selon la revendication 1, dans laquelle le lubrifiant renferme au moins 1% de cendre de sulfate.

30 3. L'utilisation selon l'une des revendications 1 et 2, dans laquelle un groupe substituant dans (A) est caractérisé par une valeur Mn d'environ 1300 à environ 5000.

4. L'utilisation selon l'une des revendications précédentes, dans laquelle les groupes substituants sont dérivés d'un ou de plus d'un polyalcène choisi parmi les homopolymères et les interpolymères d'oléfines terminales de 2 à environ 16 atomes de carbone, sous la condition que lesdits interpolymères peuvent renfermer, le cas échéant, jusqu'à 25% de motifs polymères dérivés d'oléfines internes ayant jusqu'à environ 16 atomes de carbone.

40 5. L'utilisation selon l'une des revendications précédentes, dans laquelle ladite valeur de Mw/Mn est d'environ 2,0 à environ 3,4.

45 6. L'utilisation selon l'une des revendications précédentes, dans laquelle l'acide sulfonique (i) est représenté par les formules $R'(SO_3H)_r$, ou $(R^2)_xT(SO_3H)_y$, dans lesquelles R' et R^2 représentent chacun indépendamment un groupe aliphatique exempt d'insaturation acétylénique et renfermant jusqu'à 60 atomes de carbone, T est un noyau d'hydrocarbure aromatique, et x est un nombre de 1 à 3, et r et y sont des nombres de 1 à 4.


7. L'utilisation selon l'une des revendications précédentes, dans laquelle les rapports des équivalents des composants de B-2 sont :

50 (B-2-b)/(B-2-a) - au moins 4:1 ;

(B-2-c)/(B-2-a) - entre environ 1:1 et environ 80:1 ;

(B-2-d)/(B-2-a) - entre environ 1:1 et environ 1:20.

8. L'utilisation selon l'une des revendications précédentes, dans laquelle le composé aminé en (A) est une alcylène polyamine de la formule

5

dans laquelle U est un groupe alcylène de 2 à environ 10 atomes de carbone, chaque R³ représente indépendamment un atome d'hydrogène, un groupe alkyle inférieur ou un groupe hydroxy-alkyle inférieur, sous la condition qu'au moins un R³ est un atome d'hydrogène, et n est de 1 à environ 10.

10

15

20

25

30

35

40

45

50

55