(19)
(11) EP 0 249 838 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.12.1987  Patentblatt  1987/52

(21) Anmeldenummer: 87108207.9

(22) Anmeldetag:  05.06.1987
(51) Internationale Patentklassifikation (IPC)4B63G 9/06
(84) Benannte Vertragsstaaten:
ES FR GB GR IT NL SE

(30) Priorität: 18.06.1986 DE 3620402

(71) Anmelder: Bundesrepublik Deutschland vertr. durch d. Bundesm. d. Vert. vertr. durch den Präs. d. Bundesamt. für Wehrtech. u. Beschaffung
D-5400 Koblenz (DE)

(72) Erfinder:
  • Flecken, Johann, Dr.
    D-2333 Holzbunge (DE)
  • Kock, Rudolf, Dipl.-Ing.
    D-2370 Rendsburg (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Vorrichtung zum Steuern einer magnetischen Eigenschutz (MES)-Anlage


    (57) Die Erfindung beschreibt eine prozeßgesteuerte magnetische Eigenschutz(MES)-Anlage, die ein großräumiges dreiachsiges Spulensystem, bestehend aus stromdurchflossenen Spulen in den drei orthogonalen Fahrzeugachsen zur Kompensation des vom Erd­magnetfeld am Fahrzeugort und der Fahrzeugbewegung (Kurs, Schlingern, etc.) abhängigen magnetischen Eigenfeldes des Fahrzeuges aufweist. Es ist eine Prozeßsteuerung mit einem digitalen Datenprozessor (9) vorgesehen, dem eine Datenbank (8) zugeordnet ist, in
    - der fahrzeugspezifische Daten der Erstvermessung am Meßort,
    - standortabhängige Daten über die erdmagnetischen Verhältnisse im Operationsgebiet des Fahrzeuges (geomagnetische Daten) abgelegt sind, dem an Bord des Fahrzeuges (Schiff 1) befind­liche Meßgeber für Spulendaten, geographischer Standort, Kurs und Fahrzeugeigenbewegung zugeordnet sind, und der aufgrund einer vorgegebenen Ablaufsteuerung (Algorithmen) die Ampere­windungszahlen in den Kompensationsspulen so steuert, daß eine optimale Kompensation gewährleistet ist.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf eine Vorrichtung zum Steuern einer magnetischen Eigenschutz(MES)-Anlage eines Fahrzeuges, die ein großräumiges dreiachsiges Spulensystem bestehend aus stromdurchflossenen Spulen in drei orthogonalen Fahrzeugachsen zur Kompensation des vom Erdmagnetfeld am Fahrzeugort und der Fahrzeugbewegung im Erdmagnetfeld (Kurs, Schlingern, etc.). abhängigen magnetischen Eigenfeldes des Fahrzeuges aufweist.

    [0002] Schiffe, Boote und andere Fahrzeuge der Bundeswehr, aber auch Handelsschiffe, werden aufgrund ihres magnetischen Eigenfeldes (Störfeld), das sich dem Erdfeld überlagert und dieses verzerrt, von Minen und Torpedos mit magnetischen Sensoren direkt bedroht oder sind durch Ortungssysteme mit magnetischen Sensoren aufzu­spüren. Aus diesem Grund sind die zu schützenden Fahrzeuge mit einer MES-Anlage ausgerüstet, die die Aufgabe hat, das magneti­sche Eigenfeld und damit die Gefährdung, herabzusetzen.

    [0003] Das magnetische Eigenfeld enthält dabei einen sogenannten Permanentanteil und einen Induziertanteil, der auf die dauernde Aufmagnetisierung des Fahrzeuges beim Fahren im Erdfeld zurück­zuführen ist, wobei seine Größe je nach dem Kurs und der Lage der Fahrzeugachsen zum Horizont veränderlich ist.

    [0004] Derartige MES-Anlagen sind in der Literatur hinlänglich be­schrieben (z.B. Kosack und Wangerin, "Elektrotechnik auf Handelsschiffen", Springer Verlag 1956, Seite 255-257, Abb.234). Sie weisen ein großräumiges, dreiachsiges Spulensystem, beste­hend aus stromdurchflossenen Spulen in drei orthogonalen Achsen zur Kompensation des magnetischen Eigenfeldes des Fahrzeuges, auf.

    [0005] Jedes mit einer MES-Anlage ausgerüstete Fahrzeug erfährt zunächst aufgrund einer sogenannten magnetischen Vermessung eine Grundeinstellung der MES-Anlage (Erstvermessung), bei der durch Einstellen geeigneter Wicklungsströme und geeigneter Spulenschaltzustände (Amperewindungszahlen) ein optimaler Kompensationswert erreicht wird.

    [0006] Die Einstellung ändert sich jedoch - abgesehen von Langzeit­veränderungen, die in gewissen Zeitabständen eine Einstellungs­kontrolle erfordern - im Fahrbetrieb. Infolge der

    - Breitenabhängigkeit des Erdmagnetfeldes

    - Kursabhängigkeit des von der Horizontalkomponente des Erdmagnetfeldes erzeugten Induziertanteiles

    - Abhängigkeit des Induziertfeldes von der Lage der Fahr­zeugachsen zum Horizont

    weist die MES-Anlage eine Regeleinrichtung bzw. eine Steuerung auf, die die Ströme bzw. durch Schalten von Windungen die Amperewindungszahlen in den einzelnen Spulen im Fahrbetrieb so nachstellt, daß die eingestellte Kompensation des Störfeldes erhalten bleibt.

    [0007] Es ist bekannt, einen Hand-Breitengradregler und einen sowohl von Hand als auch selbsttätig durch den Kreiselkompaß betätig­baren Kursausgleichregler vorzusehen (Deutsche Minenräumdienst­vorschrift Nr.16 "Magnetischer Schutz der Minenräumfahrzeuge, 1946 insbesondere Seite 14/15).

    [0008] Die Kreisel-MES-Anlage ist jedoch in der Praxis eine Handsteue­rung. Fehler in der Bedienung der Regler werden daher nur durch manuelle Kontrolle erkannt. Zudem werden bei der bekannten Anlage die Eigenfeldänderungen nicht erfaßt. Die bekannte MES-­Anlage kann daher im Hinblick auf die gesteigerte Empfindlich­keit der Zünder heutigen Ansprüche nicht mehr genügen.

    [0009] Es ist auch bekannt, durch magnetische Fühlorgane (Sensoren) die Änderungen des Schiffs- und Erdfeldes zu erfassen (Kosack und Wangerin v.g. S.257). Diese vollautomatischen, sondenge­steuerten, stromgeregelten MES-Anlagen weisen heute üblicher­weise ein schiffsfest montiertes Magnetfeldsondentripel zur Erfassung des Erdfeldes am Schiffsort und der Schiffsbewegungen im Erdfeld (Kurs, Schlingern, Stampfen, Gieren) auf (DE-PS 977 846). Es erfolgt dabei eine getrennte Kompensation der Permanent-, Induziert- und Wirbelstrom-Komponenten des Schiffsstörfeldes in allen drei Schiffsachsen (Vertikal-, Hori­zontal- und Querschiff).

    [0010] Diese bekannte MES-Anlage besitzt folgende Nachteile:
    Die Sondenanlage, das Sonden-Tripel, kann aus technischen Gründen am Fahrzeug nicht am Ort für die günstigste Messung mit optimalen Meßbedingungen angebracht werden, sondern nur dort, wo es baulich möglich ist.

    [0011] Das Meßsignal der Sonden im Erdfeld ist das alleinige Regel­signal für die MES-Anlage. Beim Total-Ausfall der Sonden kann die Anlage daher nur von Hand gefahren werden, wobei die soge­nannten MES-Kanäle kursabhängig gesteuert werden. Sondenfehler werden nicht leicht bemerkt.

    [0012] Wird das Meßsignal nicht vom Erdfeld, sondern vom Schiffsfeld erzeugt, ist die Fehlererkennung noch wesentlich schwieriger und führt noch eher zu einer Fehlinterpretation und damit zu einer fehlerhaften MES-Einstellung.

    [0013] Durch die Weiterentwicklung der Sensortechnik ist dabei eine Situation entstanden, in der nicht ausreichende magnetische Schutzmaßnahmen einerseits eine trügerische Sicherheit vor­gaukeln, dem intelligenten Sensor aber andererseits die Möglich­keit geben, genauer "zu treffen".

    [0014] Es ist also erforderlich, die Wirkung der MES-Anlage der Sensorentwicklung anzupassen. Diese Forderung gilt sowohl für Fahrzeuge in ferromagnetischer Bauweise als auch für Fahrzeuge in amagnetischer Bauweise mit teilweise ferromagnetischen Einbauten.

    [0015] Der Erfindung liegt daher die Aufgabe zugrunde, die eingangs bezeichnete Vorrichtung so weiterzubilden, daß sie eine wesent­lich bessere und zuverlässigere magnetische Kompensation von Fahrzeugen liefert als die Kompensation mit herkömmlichen MES-­Steuerungen. Es gilt einen optimalen magnetischen Schutzzustand zu erreichen und die Vermessung und Kontrolle des magnetischen Schutzzustandes von außen auf ein Minimum zu beschränken, um damit gleichzeitig die Betriebssicherheit der Anlage wesentlich zu steigern.

    [0016] Die Erfindung soll dabei auf hochgeschützten Fahrzeugen mit amagnetischer und elektrisch nicht leitender Außenhaut, auf hochgeschützen Fahrzeugen mit amagnetischer, aber elektrisch leitender Außenhaut und auf Fahrzeugen mit ferromagnetischer Außenhaut eingesetzt werden können.

    [0017] Die Lösung dieser Aufgabe gelingt gemäß der Erfindung dadurch, daß eine Prozeßsteuerung mit einem digitalen Datenprozessor vorgesehen ist,

    dem eine Datenbank zugeordnet ist, in der
    - fahrzeugspezifische Daten der Erstvermessung am Meßort
    - standortabhängige Daten über die erdmagnetischen Verhält­nisse im Operationsgebiet des Fahrzeuges (geomagnetische Daten)
    abgelegt sind,

    dem an Bord des Fahrzeuges befindliche Meßgeber für Spulen­daten, geomagnetischer Standort, Kurs- und Fahrzeugeigen­bewegungen zugeordnet sind und

    der aufgrund einer vorgegebenen Ablaufsteuerung (Algorithmen) die Amperewindungszahlen der Kompensationsspulen so steuert, daß eine optimale Kompensation gewährleistet ist.

    [0018] Bei der erfindungsgemäßen Vorrichtung einer prozeßgesteuerten MES-Anlage werden die magnetischen Gegenfelder zur Kompensation der am oder im Fahrzeug auftretenden magnetischen Wirkungen abhängig vom geographischen Standort, vom Kurs und von der Fahrzeugeigenbewegung gesteuert. Kernstück der prozeßgesteuerten MES-Anlage ist eine intelligente Steueranlage mit einem Daten-­Prozessor, der auf eine Datenhaltung (Datenbank) zurückgreift.

    [0019] In der Datenhaltung sind die Parameter enthalten, die benötigt werden, um eine optimale Steuerung der MES-Anlage zu erreichen. Es sind die Daten für die Kompensation

    - der standortabhängigen magnetischen Effekte
    - der standort- und kursabhängigen magnetischen Effekte
    - der von den Eigenbewegungen des Fahrzeuges im Erdfeld abhängigen magnetischen Effekte
    - der von Betriebszuständen abhängigen magnetischen Effekte.

    [0020] Die magnetischen Felder von ferromagnetischen Objekten wie Einbauten und Ausrüstungsgegenstände der Fahrzeuge sowie ihre magnetische Reaktion bei unterschiedlichen Betriebszuständen und bei Bewegung im Erdfeld, lassen sich dabei meßtechnisch genau erfassen. Dieses gilt auch für die ferromagnetische oder amagnetische Außenhaut des Fahrzeuges. Ebenso einfach sind mit bekannten, im Fahrzeuginneren angeordneten Datengebern - unter Verzicht auf Magnetfeldsonden - die Daten über den Kurs, Stand­ort und Eigenbewegung des Fahrzeuges zu ermitteln.

    [0021] Weiterhin sind die Daten für die Steuerung der MES-Anlage in Ausnahmesituationen abgelegt, so daß auch für eine gestörte Anlage eine möglichst optimale Einstellung gewährleistet ist.

    [0022] Bei der erfindungsgemäß ausgebildeten Vorrichtung werden die bislang über Magnetfeldsonden erlangten Daten für die Regelung bzw. Steuerung der Amperewindungszahlen der Kompensations­spulen über die gespeicherten geometrischen Daten in Verbindung mit Meßwerten über den geographischen Standort und direkte Messung der Fahrzeugeigenbewegung sowie der Betriebszustände durch entsprechende Geber im Fahrzeuginneren gemessen.

    [0023] Der große Vorteil der erfindungsgemäßen Vorrichtung liegt darin, daß auf eine mechanisch sehr leicht zu beschädigende Magnetfeldsondenanlage verzichtet werden kann, wodurch die Betriebssicherheit beträchtlich gesteigert werden kann. Der Schwerpunkt liegt nicht mehr in der Messung und komplizierten Kompensation von Sondensignalen, sondern in der eigentlichen Regelung/Steuerung, mit einer ständigen digitalen Kontrolle. Es ist die Berücksichtigung von Betriebszuständen ohne den Umweg über die Sondenreaktion gegeben. Die Kompensation ist daher optimal durchzuführen. Die prozeßgesteuerte MES-Anlage hat dabei besonders gute Einsatzmöglichkeiten bzw. Vorteile an Unterwasserfahrzeugen, da es stets problemhaft ist, die Magenetfeldsonden am Außenkörper der U-Boote an exponierter Stelle anzubringen.

    [0024] Weltweite Einsatzmöglichkeit, geringere Störanfälligkeit und besserer Schutz gegen Magnetsensoren zeichnen dabei die Fahr­zeuge, die mit der erfindungsgemäßen Vorrichtung ausgerüstet sind, aus.

    [0025] Anhand eines in den Zeichnungen dargestellten Ausführungsbei­spieles wird die Erfindung näher erläutert. Es zeigen:

    FIG 1 bis 3 das Spulensystem einer MES-Anlage in einem Schiffskörper,

    FIG 4 bis 6 die magnetischen Schiffseigenfelder (Störfelder) in den drei Schiffskoordinaten,

    FIG 7 bis 9 die Größen der Induziertanteile beim Schlingern des Schiffes,

    FIG 10 ein Blockdiagramm der erfindungsgemäßen prozeß­gesteuerten MES-Anlage,

    FIG 11 bis 14 die schematische Darstellung des Informations­flusses bei der Kompensation mit vier unter­schiedlichen Kompensations-Algorithmen.



    [0026] In den FIG 1-3 ist das großräumige, dreiachsige Spulensystem einer MES-Anlage eines Schiffes 1 (als Beispiel eines Fahr­zeuges als ferromagnetischer Störkörper) dargestellt. Dieses Spulensystem besteht aus Spulen 2,3,4 in den drei orthogonalen Achsen X-Y-Z. Jede Spule 2 bzw.3 bzw.4 ist üblicherweise in drei - nicht mehr näher dargestellte - Teilspulen aufgeteilt. Die eine Teilspule (Zusatzbezeichnung P) dient zur Kompensation eines permanenten fahrzeugabhängigen Störfeldanteiles. Eine zweite Teilspule (Zusatzbezeichnung I) dient zur Kompensation eines vom Erdfeld induzierten Störfeldanteiles.
    Da als Folge der Eigenbewegung des Schiffes 1 im Erdfeld in metallischen Teilen des Systems Wirbelfelder induziert werden, erfolgt deren Kompensation mit einer dritten Teilspule (Zusatz­bezeichnung E).

    [0027] Die magnetischen Schiffsfelder - die in den FIG 4-6 dargestellt sind - werden üblicherweise nach den Schiffskoordinaten wie folgt bezeichnet:

    Längsschiffkomponente = X-Komponente (FIG 5)
    Querschiffskomponente = Y-Komponente (FIG 6)
    Vertikale Komponente = Z-Komponente (FIG 4)

    Das X-Y-Z-Koordinatensystem wird als objektfest angenommen, d.h. ist auf den Erzeuger des magnetischen Störfeldes - im Ausführungsbeispiel das Schiff 1 - ausgerichtet.

    [0028] FIG 4 zeigt das Schiff mit dem objektfesten Koordinatensystem. Zusätzlich sind in schematischer Form die Isolinien 10 des Magnetfeldes bei rein vertikaler Magnetisierung des Schiffes 1 eingetragen. Eine Messung des vertikalen Feldanteiles in der Wassertiefe MT ergäbe den mit 11 gekennzeichneten prinzipiellen Verlauf unterhalb des Schiffes.

    [0029] FIG 5 zeigt das Schiff 1 und die Achsen des Koordinatensystems in der gleichen Lage wie in FIG 4, jedoch sind nun die Iso­linien 12 des Magnetfeldes bei reiner Längsmagnetisierung des Schiffes 1 dargestellt. Eine Messung des vertikalen Feldanteiles würde den mit 13 gekennzeichneten prinzipiellen Verlauf unter­halb des Schiffes 1 aufweisen.

    [0030] In FIG 6 ist das Schiff 1 in Frontansicht und entsprechend die y- und z-Achse des Koordinatensystems dargestellt. Dazu sind schematisch die Linien 14 gleicher Feldstärke bei reiner Quer­magnetisierung des Schiffes 1 eingetragen. Mißt man bei einer solchen Magnetisierung in der Tiefe MT die vertikale Komponente des Magnetfeldes, so würde sich der mit 15 gekennzeichnete Feldverlauf ergeben.

    [0031] Unter normalen Umständen weist ein Schiff 1 sowohl vertikale als auch Längs- und Quermagnetisierungen, d.h. in allen drei Koordinatenrichtungen, auf.

    [0032] Die Z-Komponente des dadurch erzeugten Schiffsfeldes ist unabhängig vom Kurswinkel. Die X-Komponente ändert sich kursabhängig nach einer Cosinus-Funktion, die ihren Höchstwert bei Nord- und Südkurs hat und bei Ost- und Westkurs Null ist. Die Y-Komponente ändert sich gleichfalls kursabhängig, jedoch nach einer Sinus-Funktion, die ihren Höchstwert bei Ost- und Westkurs hat und bei Nord-und Südkurs Null ist. Alle drei Komponenten verändern ihren Wert zusätzlich noch bei Schlinger- ­und Stampfbewegungen des Schiffes. Die Induziert-Störfeldanteile beim Schlingern sind dabei in den FIG 7-9 näher dargestellt. Das Erdmagnetfeld erzeugt in der Richtung seiner Totalen den Induziertfeldvektor S, der sich entsprechend dem Kreuzungswinkel des Schiffes 1 in die Komponenten SZI und SYI aufteilt.

    [0033] Die Spulen wiederum werden entsprechend ihren magnetischen Hauptwirkungsrichtungen bezeichnet. Die Spulen 2 nach FIG 1, die parallel zur Y-Z-Ebene liegen, sind die L-Spulen (L-MES-­Wicklung), deren magnetische Wirkungsachsen in der Schiffs­längsrichtung liegen (L entspricht longitudinal).
    Die Spulen 3 nach FIG 2 (nur eine ist dargestellt), die paral­lel zur X-Y-Ebene liegen, sind die V-Spulen (V-MES-Wicklung) mit vertikalen magnetischen Wirkungsachsen (V entspricht ver­tikal).
    Die Spulen 4 nach FIG 3, die parallel zu oder in der X-Z-Ebene liegen, sind die A-Spulen (A-MES-Wicklung) deren magnetische Wirkungsrichtung in Y-Richtung liegt (A entspricht athwort-ship).

    [0034] Da, wie erwähnt, jede Spule 2 bzw.3 bzw.4 aus drei Teilspulen mit den Zusatzbereichnunen P,I,E besteht, weist eine MES-Anlage nachstehend bezeichnete Wicklungen (Teilspulen) auf:

    VI vertikalwirkende Induziertfeldwicklung
    VP vertikalwirkende Permanentfeldwicklung
    VE vertikalwirkende Wirbelstromfeldwicklung
    LI längsschiffwirkende Induziertfeldwicklung
    LP längsschiffwirkende Permanentfeldwicklung
    LE längsschiffwirkende Wirbelstromfeldwicklung
    AI querschiffwirkende Induziertfeldwicklung
    AP querschiffwirkende Permanentfeldwicklung
    AE querschiffwirkende Wirbelstromfeldwicklung

    [0035] Die Spulenwicklungen werden mit Gleichströmen in unterschied­lichen Richtungen beschickt. Die positiven Stromrichtungen resultieren dabei aus den positiven Richtungen des in FIG 1 dargestellten Koordinatensystems X-Y-Z.

    [0036] Bei der Ersteinstellung und bei Einstellungskontrollen (magne­tische Vermessung) werden die Ströme so eingestellt und die Wicklungen so geschaltet, daß das magnetische Eigenfeld des Schiffskörpers, das sogenannte Störfeld, möglichst optimal kompensiert wird. Im laufenden Betrieb (Fahrt) sorgt ein Regler bzw. eine Steuerung dafür, daß die eingestellte Kompensation erhalten bleibt.

    [0037] In FIG 10 ist das Grundprinzip der erfindungsgemäßen Vorrich­tung in einem Blockdiagramm schematisch dargestellt. In diesem Blockdiagramm entspricht 5 dem aus den Spulen 2-4 bestehenden Spulensystem und 6 stellt das mit Meßwertgebern ausgerüstete Fahrzeug (Schiff 1) dar. Mit 7 ist ein die aktuellen Meßwerte enthaltender Meßwertspeicher und mit 8 eine Datenbank bezeich­net, in der allgemein und langfristig geltende Daten gespei­chert sind. In einem Datenprozessor 9 werden die von dem Meß­ wertspeicher 7 und der Datenbank 8 gelieferten Daten zu Steuer­werten für das Spulensystem 5 verarbeitet. Der Meßwertspeicher 7 erhält die aktuellen Meßwerte von den Meßwertgebern des Fahr­zeuges 6 zugeführt, wobei diese Meßwertgeber keine äußeren Magnetfeldsonden sind, sondern lediglich Geber für die Erfas­sung von Bewegungen und des Standortes des Fahrzeuges.

    [0038] Bei der erfindungsgemäß prozeßgesteuerten MES-Anlage ist das Hardware-Kernstück eine intelligente Steueranlage, deren Daten­prozessor 9 mit Hilfe eines integrierten Kontroll- und Regel­verfahrens und einer Datenbank 8 von fest vorgegebenen Para­metern und gemessenen Einflußgrößen (Meßwertspeicher 7) die Stromeinspeisung in das Spulensystem 5 des Fahrzeuges 6 auf­grund einer vorgegebenen Ablaufsteuerung (Steueralgorithmen) so steuert, daß eine optimale Kompensation gewährleistet ist. Das Kontroll- und Regelverfahren soll dabei auf Fahrzeugen mit amagnetischer Außenhaut, auf Fahrzeugen mit amagnetischer, aber elektrisch leitender Außenhaut und auf Fahrzeugen mit ferro­magnetischer Außenhaut seine Anwendung finden.

    [0039] Alle Daten, die die prozeßgesteuerte MES-Anlage für die Steue­rung zum Erreichen einer optimalen Kompensation benötigt, sind in der Datenbank 8 abgespeichert bzw. werden durch Geber, die keine Magnetfeldsonden sind, im Innern des Fahrzeuges 6 ermittelt. Die Daten in der Datenbank 8 sind in für alle Fahrzeuge gültige Daten (allgemein gültige Daten) und in Daten, die fahrzeug-­typisch sind und langfristig gelten, unterteilt. Für alle Fahr­zeuge gültig sind die geopraphischen Daten. Die spezifischen Daten eines Fahrzeuges werden bei der Erstvermessung ermittelt. Sie ergeben die Abhängigkeit zwischen dem Spulensystem 5 des betreffenden Fahrzeuges 6 und den Einflüssen der Erdfeldkompo­nenten wieder.

    [0040] Mit einem dauernd laufenden Meßprogramm werden vom Datenprozes­sor 9 die Geber der Einflußgrößen abgefragt und damit den Steuer-Algorithmen über den Meßwertspeicher 7 die aktuellen Daten zugeführt, die zur Ermittlung einer optimalen MES-Ein­stellung notwendig sind.

    [0041] Die Daten, die die intelligente Steueranlage der prozeßgesteu­erten MES-Anlage benötigt sind in drei Gruppen unterteilt. Gruppe 1 und 2 sind allgemein und langfristig gültige Daten und somit in der Datenbank 8 abgelegt. Die Gruppe 3 sind aktuelle Meßdaten und werden daher dem Meßwertspeicher 7 zugeführt.

    [0042] Jede Gruppe enthält wiederum systematisch untergliederte Daten-­Teilgruppen. Die Datengruppen lassen sich daher wie folgt darstellen:

    1. Gruppe: Geomagnetische Daten (in Datenbank 8)

    1.1 Standortbereich 1 des Fahrzeuges

    1.1.1 Horizontales Erdfeld

    1.1.2 Vertikales Erdfeld

    1.1.3 Inklinationswinkel

    1.2 Standortbereich 2 des Fahrzeuges

    2. Gruppe: Daten die bei der Erstvermessung ermittelt wurden (in Datenbank 8)

    2.1 Kompensation des Permanentfeldes

    2.1.1 Strom und Schaltung aller LP-Spulen

    2.1.2 Strom und Schaltung aller AP-Spulen

    2.1.3 Strom und Schaltung aller VP-Spulen

    2.2 Kompensation des vertikalen Induziertfeldes IV am Meßort

    2.2.1 Strom und Schaltung aller VI-Spulen

    2.3 Kompensation des horizontalen Induziertfeldes IH am Meßort auf Nordkurs (N)

    2.3.1 Strom und Schaltung aller LI-Spulen

    2.3.2 Strom und Schaltung aller AI-Spulen

    2.4 Kompensation des horizontalen Induziertfeldes IH am Meßort auf Ostkurs (O)

    2.4.1 Strom und Schaltung aller LI-Spulen

    2.4.2 Strom und Schaltung aller AI-Spulen

    2.5 Kompensation des Wirbelstromfeldes beim Schlingern am Meßort auf Ostkurs

    2.5.1 Strom und Schaltung aller AE-Spulen

    2.5.2 Strom und Schaltung aller VE-Spulen

    2.6 Kompensation des Wirbelstromfeldes beim Stampfen am Meßort auf Nordkurs

    2.6.1 Strom und Schaltung aller LE-Spulen

    3. Gruppe: Daten die an Bord des Fahrzeuges gemessen werden (in Meßwertspeicher 7)

    3.1 Kontrolldaten aus der Spulenanlage

    3.1.1 Spulenströme

    3.1.2 Spulenwärme

    3.1.3 Spulenwiderstandswerte

    3.2 Bewegungsdaten

    3.2.1 Geographischer Standort

    3.2.2 Kurs

    3.2.3 Schlingerbewegung

    3.2.4 Stampfbewegung



    [0043] In der Prozeßsteuerung der intelligenten Regelanlage läuft ein ständiges Meßprogramm ab, welches die Kontrolldaten aus dem Spulensystem 5 und die Bewegungsdaten des Fahrzeugs 6 erfaßt und dem Meßwertspeicher 7 zugeführt. Die Bewegungsdaten haben gegenüber den Kontrolldaten im Auslösen einer Reaktion der Prozeßsteuerung eine vorrangige Priorität.

    [0044] Innerhalb der Bewegungsdatenliste herrscht folgende Reihenfolge:

    - Kurs
    - Schlingern
    - Stampfen
    - geographischer Standort

    [0045] In der Ablaufsteuerung des Datenprozessors 9 wird daher auf eine Kursänderung sofort reagiert, dann auf Schlingern und Stampfen und dann erst auf das Erreichen eines anderen geogra­phischen Standortes.

    [0046] Für die Ermittlung der Kompensationen der einzelnen magneti­schen Wirkungen laufen quasi parallele Prozesse mit unter­schiedlichen Regelalgorithmen ab, die in den FIG 11-14 darge­stellt sind.

    [0047] Die einzelnen Teilwicklungen und ihre Stromeinspeisungen werden danach gemäß folgenden Kriterien behandelt:

    1) Bei der Kompensation der Permanentanteile sind gemäß FIG 11 nur die Daten der Gruppe 2.1 der Erstvermessung maßgebend. Die eingestellte Kompensation gilt weltweit.
    Bei der Kompensation des P-Anteils bleibt für die Regel­anlage des MES die Aufgabe, den eingestellten Spulenstrom und die elektrischen Werte des Spulensystems 5 zur P-Kompen­sation zu kontrollieren. Hierzu enthält der Datenprozessor 9 aus der Datenbank 8 und einem Überwachungssektor 7a des Meß­wertspeichers 7 die entsprechenden Werte. Über seinen Steuerausgang 9a kann der Datenprozessor 9 das Spulensystem bei Abweichungen entsprechend nachsteuern.

    2) Die erdmagnetischen Einflüsse auf das Fahrzeug 6, das Indu­ziertfeld, muß in seine Komponenten zerlegt werden. Da die vertikale und horizontale Komponente IV und IH des Induziert­feldes unterschiedliche Auswirkungen auf den magnetischen Zustand des Fahrzeuges 6 haben, ist ihre Kompensation völlig getrennt vorzunehmen. Das durch die vertikale Komponente des Erdfeldes im Fahrzeug erzeugte vertikale Induziertfeld IV ist zwar standortabhängig, aber nicht kursabhängig. Das durch die horizontale Komponente des Erdfeldes im Fahrzeug erzeugte horizontale Induziertfeld IH dagegen ist standort- ­und kursabhängig.

    a) Bei der Kompensation des verikalen Induziertfeldes IV gemäß FIG 12 greift der Regelalgorithmus daher nur ein, wenn eine Veränderung im geographischen Standort gemessen worden ist. Der Datenprozessor 9 erhält die zur Berech­nung eines Korrektursignals notwendigen Werte von der Datenbank 8 und einem die aktuellen Werte des Standortes bzw. der Standortänderung enthaltenden ersten Speicher­sektor 7b des Meßwertspeichers 7. Außerdem werden ihm von dem Überwachungssektor 7a die notwendigen Werte zugeführt. Durch das an seinem Ausgang 9b erscheinende Steuersignal werden die VI-Spulen entsprechend gesteuert.

    b) Bei der Kompensation des horizontalen Induziertfeldes IH nach FIG 13 dagegen greift der Regelalgorithmus ein, wenn eine Kursänderung und/oder eine Veränderung im geographi­schen Standort gemessen worden ist. Der Datenprozessor 9 erhält hierzu neben den Werten aus der Datenbank 8 und dem Überwachungssektor 7a noch die aktuellen Werte aus dem ersten Speichersektor 7b und einem zweiten Speicher­sektor 7c, der die Meßwerte für den Kurs bzw. die Kurs­änderung enthält, zugeführt. An dem Ausgang 9c erscheinen die zur Steuerung notwendigen Steuersignale. Der Regel­algorithmus für die Horizontalkompensation soll auch das Gieren mit abfangen.

    Zur Ermittlung der gegenmagnetischen Maßnahmen gemäß vor­stehendem Regelalgorithmus benötigt daher die Prozeßsteue­rung der MES-Anlage den Standort und den Kurs des Fahrzeuges. Diese Information erhält die Prozeßsteuerung durch Kopp­lungen an die den Standort bestimmenden Geräte und den Kreiselkompaß oder im Notfall durch eine manuelle Eingabe. Der Inklinationswinkel und die Horizontalintensität des Erd­feldes und damit auch die Vertikalintensität ändern sich auf der Erde von Ort zu Ort. Im Rahmen der zugelassenen Abwei­chung von der Idealkompensation durch das Kompensations­system ist es möglich, die Navigationskarte in Standort­bereiche einzuteilen, wobei Isoklinen und Isodynamen bei der Flächeneinteilung zu berücksichtigen sind.

    Für diesen Standortbereich ist ein gültiger Horizontalwert und Verikalwert und der Inklinationswinkel festgelegt. Gleichzeitig sollten auch die geographischen magnetischen Anomalien berücksichtigt werden. Die Standortflächenkarte ist als Datei in der Datenbank 8 des MES-Prozessors abge­legt. Die Standortflächen brauchen nicht gleich groß zu sein, aber rechtwinklig unter Berücksichtigung der Längen- und Breitengrade der Navigationskarte eines bestimmten Maßstabes, um die rechnerische Standortflächenbestimmung zu beschleu­nigen.

    Jede Standortfläche mit ihren Eckdaten stellt ein "File" dar. In dieses File werden die Horizontalkomponenten und Vertikalkomponenten des Erdfeldes eingetragen; außerdem die Ströme zur Einspeisung in die Vertikalkompensationsspulen, da die Vertikalkompensation nicht kursabhängig ist.

    Für die Horizontalkompensation wird der Strom für eine Nord­kurskompensation und eine Ostkurskompensation eingetragen. Aus diesen Werten kann der Strom für die Horizontalkompen­sation auf jedem Kurswinkel rechnerisch bestimmt werden.

    3) Die bisher angeführten Kompensationsmaßnahmen gegen das Induziertfeld gelten für ein Fahrzeug, welches sich auf einer Ebene bewegt.
    Bewegt sich das Fahzeug nicht auf ebenem Kiel, sondern macht das Fahrzeug Bewegungen, die bei einem Schiff mit Schlingern, Stampfen und Gieren bezeichnet werden, so muß die MES-Anlage auf diese Bewegung reagieren.



    [0048] Es sind zwei getrennt zu behandelnde Reaktionen auf die Bewe­gung zu berücksichtigen. Dazu ist es erforderlich, die Fahr­zeugbewegungen aufzunehmen. Die Bewegungen des Schlingerns oder Stampfens können entweder durch Rollkugelgeber oder Kreiselgeber aufgenommen werden. Das Gieren wird durch einen Kreiselgeber erfaßt und wie eine Kursänderung behandelt.

    [0049] Durch die dauernd sich verändernde Lage des Fahrzeuges im Erdfeld ändert sich auch ständig das Induziertfeld. Das macht auch eine Änderung der gegenmagnetischen Maßnahmen erforderlich. Die Reaktionen des Fahrzeuges sind durch elektrisch simulierte Bewegungen bei der Erstvermessung unter den magnetischen Verhältnissen des Meßortes festge­stellt worden. Mit Hilfe der ermittelten Reaktionsparameter und der Erdfeldkomponenten des Standortes wird die bewe­gungsrichtige magnetische Reaktion des Induziertfeldes-MES zu einem linearen Steuerungsproblem.

    [0050] Die zweite Reaktion auf Bewegungen wie Schlingern, Stampfen und Gieren ist die Erzeugung von Wirbelfeldern bei Fahr­zeugen mit großflächigen Einbauten aus leitendem Material oder Fahrzeugen, die ganz oder teileweise aus leitendem Material gefertigt sind. In den leitenden Materialien ent­stehen durch die Bewegung im Erdfeld Induktionsströme, soge­nannte Wirbelströme, die ihrerseits Magnetfelder erzeugen. Die Wirbelfelder treten nahezu 90° phasenverschoben auf und sind abhängig von der Schlinger- und Stampffrequenz.

    [0051] Von den Magnetfeldkomponenten befinden sich die Teilkompo­nenten P = Permanentanteil, IV = das durch die vertikale Erdfeldkomponente erzeugte vertikale Induziertfeld, IHN = der durch die horizontale Erdfeldkomponente auf Nordkurs erzeugte horizontale Induziertfeldanteil und IHO = der durch die horizontale Erdfeldkomponente auf Ostkurs erzeugte hori­zontale Induziertfeldanteil in der Datenbank 8.

    [0052] Für die Berechnung eines Störfeldes eines ferromagnetischen Objektes auf jedem beliebigen Kurs und an jedem beliebigen Punkt der Erde sind außer den Teilkomponenten P, IV, IHN und IHO noch folgende Angaben notwendig:

    - der Kurswinkel FI
    - der vertikale Erdfeldanteil am Meßort EVM
    - der vertikale Erdfeldanteil am "Rechnerort" EVR
    - der horizontale Erdfeldanteil am Meßort EHM
    - der horizontale Erdfeldanteil am "Rechnerort" EHR

    [0053] Hierbei wird unter "Meßort" der Ort der Vermessung des Fahr­zeuges und unter "Rechnerort" der aktuelle Standort des Fahrzeuges verstanden.

    [0054] Die Erdfeldkomponenten sind in einer einheitlichen Maßein­heit anzugeben. Welche Einheit bei der Angabe der Erdfeld­komponenten benutzt wird ist ohne Bedeutung. Aus den Angaben wird ein Vertikalfaktor VF und ein Horizontalfaktor HF be­stimmt und dieser wird dimensionslos. Es gilt:

        VF = EVR/EVM und
        HF = EHR/EHM

    [0055] Die Wirbelfelder benötigen ein eigenes Kompensationsprogramm, deren Reaktionsparameter wiederum bei der Erstvermessung mit elektrisch simulierter Bewegung ermittelt worden sind. Zur Vereinfachung sollte die Wirbelfeldkompensation mit einem zweiten Prozessor im Master-Slave-Betrieb betrieben werden.

    [0056] Bei der Kompensation der Wirbelstromfelder gemäß FIG 14 greift der Regelalgorithmus ein, wenn der Bewegungsgeber eine Bewegung des Fahrzeuges um seine Längs- und Querachse anzeigt. Der Datenprozessor 9 erhält außer den erforder­lichen Werten aus der Datenbank 8, den aktuellen Werten aus dem ersten und zweiten Speichersektor 7b und 7c noch die aktuellen Werte der Stampf- und Schlingerbewegungen, die in einem dritten und vierten Speichersektor 7d und 7e enthalten sind, zugeführt. Über seinen Ausgang 9d liefert der Daten­prozessor 9 die notwendigen Steuersignale für die Kompensa­tion, des durch die entsprechenden Fahrzeugbewegungen hervor­gerufenen Steuerfeldes.

    [0057] Die Wirksamkeit des Regelalgorithmuses durch den die Schlingerbewegungen nach den FIG 7-9 in die prozeßgesteuerte MES-Anlage mit einbezogen sind, ist abhängig von der Quali­tät der bei der Erstvermessung insoweit ermittelten Einstell­daten (Datenuntergruppen 2.5 und 2.6).

    [0058] In welcher Weise die Regelalgorithmen aus einem Verfahren zur Berechnung des Störfeldes eines ferromagnetischen Ob­jektes auf jeden beliebigen Kurs an jedem Punkt der Erde abgeleitet werden, soll nachstehendes Beispiel zeigen:

    [0059] Bei der magnetischen Vermessung von ferromagnetischen Objekten werden die Komponenten des Eigen-Magnetfeldes in Koordinatenrichtungen X,Y und Z gemessen und abgespeichert. Das Koordinatensystem ist zur leichteren Handhabung objekt­fest. In diesem objektfesten Koordinatensystem zeigt auf Nordkurs die Komponente in X-Richtung zum Bug des Objektes und damit zur Oberkante der Matrix, die Komponente in Y-Richtung zur rechten Seite von Objekt und Matrix und die Komponente in Z-Richtung nach unten. Bei der Datenablage im Rechner in Form von Matrizen der anderen Hauptkurse ist unabhängig von der Art der Meßwertaufnahme dafür zu sorgen, daß durch Klappen oder Stürzen oder durch Umkehr der Vor­zeichen der Meßwertmatrix der Bug des Objektes, und damit die Komponente in X-Richtung zur Oberkante der Matrix, die Komponente in Y-Richtung zur rechten Seite und die Kompo­nente in Z-Richtung nach unten zeigt.

    [0060] Der erste Teilschritt zur Lösung der weltweiten gültigen Störfeldberechnung eines Objektes ist die Berechnung des Störfeldes auf jedem Kurs am Meßort.

    [0061] Der Permanentanteil P, das vertikale Induziertfeld IV und die horizontalen Induziertfeldanteile auf Nord- bzw. Ostkurs IHN und IHO sind Parameter der Rechnung. Dabei verhält sich in der Rechnung der horizontale Induziertfeldanteil IHN auf Nordkurs wie der cos der Kurswinkel FI, der horizontale Induziertfeldanteil IHO auf Ostkurs wie der sin des Kurs­winkels FI.

    [0062] Das Störfeld HSF für die Komponenten in den Koordinaten­richtungen X,Y und Z wird jeweils mit der für die Programmie­rung aufbereitete Formel

    HSF = P + IHN × COS FI + IHO × SIN FI + IV

    gerechnet.

    [0063] Bei der Berechnung eines Störfeldes eines Objektes am Meßort auf unterschiedlichen Kursen bleibt der Permanentanteil P und das durch die vertikale Erdfeldkomponente hervorgerufene vertikale Induziertfeldanteil IV immer gleich. Soll das Störfeld eines Objektes für einen Ort mit anderen erdmag­netischen Verhältnissen wie am Meßort berechnet werden, so sind der Horizontalfaktor HF und der Vertikalfaktor VF in die Rechenvorschrift einzufügen.

    [0064] In eine für die Programmierung günstigen Form aufbereitet ergibt sich für das Störfeld HST eines Objektes mit anderen erdmagnetischen Verhältnissen als am Meßort folgende Rechenvorschrift:

    HST = P + (IHN × COS FI) × HF + (IHO × SIN FI) × HF + IV × VF

    Wie schon angedeutet, werden die Teilkomponenten der Daten­bank 8 entnommen.

    [0065] Die Erdfeldwerte des horizontalen und vertikalen Erdfeldes für den Meßort können im Rechnerprogramm fest vereinbart werden. Die Erdfeldkomponenten der Orte, für die das Stör­feld des Objektes berechnet werden soll, können bei häufiger Benutzung ebenfalls in der Datenbank 8 vorhanden sein. Eine Eingabe für nicht vorhandene Daten sollte vorgesehen werden.


    Ansprüche

    1. Vorrichtung zum Steuern einer magnetischen Eigenschutz(MES)-­Anlage eines Fahrzeuges, die ein großräumiges, dreiachsiges Spulensystem bestehend aus stromdurchflossenen Spulen in den drei orthogonalen Fahrzeugachsen zur Kompensation des vom Erdmagnetfeld am Fahrzeugort und der Fahrzeugbewegung im Erd­magnetfeld (Kurs, Schlingern, etc.) abhängigen magnetischen Eigenfeldes des Fahrzeuges aufweist,
    dadurch gekennzeichnet,
    daß eine Prozeßsteuerung mit einem digitalen Datenprozessor (9) vorgesehen ist, dem eine Datenbank (8) zugeordnet ist, in der
    - fahrzeugspezifische Daten der Erstvermessung am Meßort
    - standortabhängige Daten über die erdmagnetischen Verhältnisse im Operationsgebiet des Fahrzeuges (geomagnetische Daten) abgelegt sind,
    dem an Bord des Fahrzeuges (Schiff 1) befindliche Meßgeber für Spulendaten, geographischer Standort, Kurs- und Fahrzeugeigen­bewegungen zugeordnet sind, und
    der aufgrund einer vorgegebenen Ablaufsteuerung (Algotithmen) die Amperewindungszahlen der Kompensationsspulen so steuert, daß eine optimale Kompensation gewährleistet ist.
     
    2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Daten der Erstvermessung Daten zur Kompensation des Permanentfeldes (P), des vertikalen Induziertfeldes (IV) sowie des horizontalen Induziertfeldes (IHN und IHO) auf Nord- und Ostkurs sowie zur Kompensation des Wirbelstromfeldes beim Schlingern auf Ost- und beim Stampfen auf Nordkurs, jeweils bezogen auf den Meßort, sind.
     
    3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die Daten, die an Bord des Fahrzeuges gewonnen werden, Kontrolldaten aus der Spulenanlage (Spulenstrom, -wärme, -widerstandswerte) und Bewegungsdaten (geographischer Standort, Kurs, Schlinger- und Stampfbewegungen) sind.
     
    4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    daß die Ablaufsteuerung eine Prioritätsschaltung aufweist, derart, daß im Auslösen einer Reaktion der Prozeßsteuerung die Bewegungsdaten gegenüber den Kontrolldaten Vorrang haben und innerhalb der Bewegungsdatenliste folgende Rangfolge besteht:
    - Kurs
    - Schlingern
    - Stampfen
    - geographischer Standort.
     
    5. Vorrichtung nach Anspruch 1 oder einem der folgenden,
    dadurch gekennzeichnet,
    daß in der Prozeßsteuerung unterschiedliche Ablaufsteuerungen (Algorithmen) zur Ermittlung der Stellgrößen für die Ampere­windungszahleneinstellung der Spulen zur Kompensation
    - des magnetischen Permanentfeldes (P),
    - des horizontalen magnetischen Induziertfeldes (IH),
    - des vertikalen magnetischen Induziertfeldes (IV) und
    - des magnetischen Wirbelstromfeldes
    vorgesehen sind.
     
    6. Vorrichtung nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die Ablaufsteuerung so ausgebildet sind, daß
    - bei der Kompensation des Permanentfeldes (P) ein erster Algorithmus aufgrund der Daten der Erstvermessung die Stellgröße bildet,
    - bei der Kompensation des vertikalen Induziertfeldanteiles (IV) ein dritter Regelalgorithmus vorgesehen ist, der bei Messung einer Kursänderung und/oder einer Veränderung im geographischen Standort die Kompensation veranlaßt,
    - für die Kompensation der Wirbelstromfelder ein vierter Regelalgorithmus vorgesehen ist, der aufgrund von Signalen zugeordneter Bewegungsgeber für Bewegungen des Fahrzeuges um seine Achsen die Stellgröße für die Kompensation bildet.
     
    7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet,
    daß zur Wirbelfeldkompensation ein zweiter Datenprozessor vor­gesehen ist, der mit dem ersten Datenprozessor (9) im Master-­Slave-Betrieb geschaltet ist.
     
    8. Vorrichtung nach Anspruch 6 oder 7,
    dadurch gekennzeichnet,
    daß der Regelalgorithmus für die Kompensation des horizontalen Induziertfeldes (IH) so ausgebildet ist, daß er auch die Kompensation der Fahrzeugbewegung "Gieren" mit umfaßt.
     
    9. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß die geomagnetischen Daten auf vorgegebene rechtwinklige Flächen der Erdoberfläche bezogen sind unter Berücksichtigung von geographischen magnetischen Anomalien.
     
    10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    daß zur Erfassung der Fahrzeugeigenbewegungen (Schlingern, Stampfen, Gieren) Rollkugel- oder Kreiselgeber vorgesehen sind.
     




    Zeichnung



















    Recherchenbericht