(1) Publication number:

0 250 182 **A1**

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 87305252.6

(a) Int. Cl.4: H01B 7/18, H01B 11/00, H01B 13/24

2 Date of filing: 12.06.87

The title of the invention has been amended (Guidelines for Examination in the EPO, A-III,

- 3 Priority: 20.06.86 CA 512057
- (43) Date of publication of application: 23.12.87 Bulletin 87/52
- (84) Designated Contracting States: **DE FR GB**

7) Applicant: NORTHERN TELECOM LIMITED 600 de la Gauchetiere Street West Montreal Quebec H3B 4N7(CA)

(72) Inventor: Walling, Jorg-Hein

431 Church Street

Beaconsfield Quebec, H9W 3R9(CA)

Inventor: Cornibert, Jacque

170 Berlioz

lle Des Seours Quebec, H3E 1K5(CA)

Inventor: Baxter, Gordon Douglas

221 Welborne Avenue

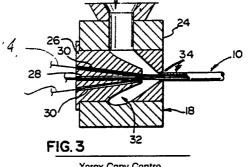
Kingson Ontario, K7M 4G5(CA)

Inventor: Bottin, Marie-Francoise

671-5th Avenue

Lachine SQuebec, H8S 2W3(CA)

Inventor: Axiuk. Olea 584 Duhamel Boulevard Pincourt Quebec, J7V 4E9(CA)


Inventor: Reed, Philip J.

248 Vinet Avenue

Dorval Quebec, H9S 2M6(CA)

(74) Representative: Crawford, Andrew Birkby et al A.A. THORNTON & CO. Northumberland House 303-306 High Holborn London WC1V 7LE(GB)

- (54) Telecommunications cable including tensile members.
- (b) A telecommunications cable having no metal sheath, but having a plurality of equally pre-tensioned and inextensible tensile members (14) embedded in the cable jacket. These members are spaced apart around the Core (12) and extend longitudinally of the cable to apply an axially compressive force upon the jacket. The members may be glass fibers and each member is preferably a roving of fibers. The filaments may be coated with a material which sticks them to the jacket and the core may be filled with a moisture blocking material.

Xerox Copy Centre

TELECOMMUNICATIONS CABLE

This invention relates to a telecommunications cable.

15

20

30

45

50

Some telecommunications cables have a core comprising one or more pairs of individually insulated conductors covered by a plastic jacket and are intended to be used to connect a subscriber's line from a distribution terminal to the subscriber's premises. Such cables are normally referred to as "service wire". "Service wire" may be buried or, if installed aerially, is called "drop wire" and is strung between supports such as from a distribution terminal at a pole to a line protector on the subscriber's premises.

"Drop wire" or other aerial cable needs to be clamped around the cable jacket at support positions. The weight of the cable between support positions creates tensile stresses and unless axially extending tensile members are present in the cable, then the cable will stretch significantly so as to hang in a catenary with a progressively increasing sag. The magnitude of the stresses is increased by wind pressure and ice formation, the latter adding to the weight of the cable.

In early "drop wire" cable structures, the conductors acting as transmission elements and also as the tensile members, were formed from steel wire coated with copper and the jacket was bonded closely to the copper to transmit the tensile forces from the cable support clamps to the conductors. In latter structures, conductors of "drop wire" cables have been formed solely from copper. To prevent the tensile stresses acting unduly on the copper conductors, axially extending tensile members are embedded in the jackets of such cables so that the stresses are taken directly along the members from one clamp to another. A problem with such a construction is, however, that there is a significant degree of extensibility of the cables after installation.

The present invention provides a telecommunications cable devoid of a metal sheath and which comprises a core including a plurality of individually insulated conductors, a surrounding jacket and a plurality of substantially equally pre-tensioned and substantially inextensible elongate tensile members embedded in the jacket and extending longitudinally of the cable to place an axially compressive force upon the jacket, the elongate members spaced apart circumferentially around the core.

The pre-tensioned members will immediately be further stressed by any axial load placed upon the cable and will thus immediately resist cable extension. On the other hand, in a cable having tensile members which are not pretensioned, upon the application of an axial load placed upon the cable, the tensile members will not immediately resist extension of the cable because the initial load will merely straighten out the members themselves. Initial extension of the cable will thus take place without resistance offered by the tensile members and such extension will be in excess of that of the cable of the present invention.

The material of the tensile members and the degree of pre-tensioning thereof is such that the recoverable elastic elongation of the members must not be so great as to cause buckling of the cable.

In the above construction which is applicable for aerial cable, while the tensile members may be of any suitable material and structure they are preferably fibers which conveniently may be glass fibers. Each of the members may be twisted strands in which case the number of twists per unit length should be minimized to reduce the initial elongation of the strands under load conditions. It is envisaged that in a twisted structure, the twist should be below four turns per inch length. In the preferred arrangement, the tensile members are each formed from a roving of fibers having no twist or a negligible twist such as would be provided during unspooling of the roving when feeding it for incorporation into the cable. As each fiber of the roving extends longitudinally of the cable, then to allow for sufficient bending action of the cable structure with insignificant distortion, the tensile members should not lie at a distance greater than approximately .325 cm from the cable axis, e.g. the members may all be disposed upon a pitch circle with a maximum diameter of .65 cm.

The tensile members are preferentially coated with a material which increases the ultimate tensile strength of the members and which also causes adhesion of the tensile members to the jacket. Provision of an adhesive at the interface between tensile members and jacket also seals any moisture leakage path along the cable at the interfacial region. There are various suitable coating materials. These include polyethyleneimine, polyvinylchloride and polyurethane for adherence to a polyvinylchloride jacket.

In a further preferred arrangement, the cable is also suitable for buried application. In this structure, the cable core is filled with a moisture blocking material to resist penetration of moisture along the cable.

Any suitable moisture blocking material will suffice and, in general, any desired material for the jacket may be used and without a core wrap if none is required. However, care needs to be taken with the use of certain moisture blocking materials and jacketing materials in the same cable. For instance, where the moisture blocking material is a grease and the jacket is to be formed from a polyvinylchloride based

compound, contact with the grease by the compound during jacket extrusion tends to affect the compound deleteriously and the tensile members may become displaced in the cable. In a cable, therefore, where these two materials are to be used, a barrier such as a core wrap is required around the grease filled core to prevent its contact with the extrudate as the jacket is being formed. On the other hand, a polyvinylch-loride based jacket compound may be used with a plastisol as a water blocking medium without need of a core wrap.

It is also to be preferred to have a moisture barrier between the core wrap and the jacket. This is conveniently provided in a practical construction by adhering interfacial regions of the core wrap and the jacket. The core wrap is either pre-coated with an adhesive or surface treated such that the jacket sticks to the core wrap. A suitable surface treatment is that referred to, for instance, as "Corona" surface treatment which is a well known process for surface treating film.

The invention also includes a method of making a telecommunications cable which is devoid of a metal sheath and having a core including a plurality of independently insulated conductors, a surrounding jacket and a plurality of substantially inextensible elongate tensile members embedded in the jacket and extending longitudinally of the cable, the method comprising drawing the elongate tensile members and the core in desired respective positions along a passline through a jacket forming station to extrude molten polymeric material around the core and the tensile members to form the jacket while resisting movement of the tensile members in at least one position upstream from the jacket forming station to apply a tensile load to each of the tensile members which is greater than any tensile load applied to the core, and allowing the jacket to cool and harden while retaining a greater tensile load on each of the tensile members than on the core.

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:-

Figure 1 is an isometric view of a length of a cable according to a first embodiment and partly in cross-section;

Figure 2 is a side elevational and diagrammatic view of apparatus for making the cable shown in Figure 1;

Figure 3 is a side elevational view, in cross-section, of an extruder cross-head for extruding molten polymeric material onto the core of the cable to provide an extruded jacket;

Figure 4 is a cross-sectional view of a cable according to a second embodiment; and Figure 5 is a view, similar to Figure 2 of apparatus for making the cable of Figure 4.

In a first embodiment, as shown in Figure 1, a telecommunications cable 10 is to be used as a "service wire" for connecting a distribution terminal to a line protector on a subscriber's premises. This cable is constructed so that it is suitable either to be strung between supports from a pole carrying the distribution terminal to the subscriber's premises or it may be buried.

The cable comprises a core 12 consisting of two pairs of individually insulated conductors. The core is surrounded by a jacket of a polyvinylchloride based compound within which are embedded eight longitudinally extending tensile members 14, each of which consists of a roving of glass fibers. Each roving has approximately 735 tex and consists of at least 1000 to 2000 filaments. The rovings are pre-coated with a suitable adhesion promoting coating such as polyvinylchloride. The tensile members lie approximately upon a pitch circle having a diameter of approximately .65 cms and centered upon the longitudinal axis of the cable.

As each of the tensile members is in the form of a roving, then there is substantial avoidance of twist between the fibers of each member. Any negligible twist which does exist has been provided during the removal of a tensile member from a spool during its incorporation into the cable.

To make the cable, as shown in Figure 2, the core 12 is drawn from a reel 16 and is fed through a cross-head 18 of an extruder (not shown) which supplies polyvinylchloride in molten form in well known manner for extruding the jacket around the core to form the cable 10. Simultaneously with the drawing of the core through the cross-head, each of the tensile members 14 is also drawn into the cross-head from spools 19. These spools are provided with a controlled braking system 20, identified diagrammatically in Figure 2, and the braking system is applied so as to resist the drawing-off operation caused by a capstan 22 at the down-stream end of a feedpath for the cable. Thus each of the tensile members 14 is pretensioned as it moves towards the cross-head 18 and before incorporation into the cable. This pretensioning is greater for each tensile member than any tension which is placed upon the core itself. It has been found that a pre-tensioning load of approximately 2 lbs is suitable for this purpose.

55

25

30

As shown by Figure 3, the cross-head 18 is of normal construction in that it has a housing 24 incorporating a core tube 26 which has passages 28 and 30 for controllably guiding the core 12 and the tensile members 14 through the cross-head and into their desired relative positions preparatory to being provided with the jacket. As the core and tensile members move from the core tube, they move into the downstream end of a passage 32 for the molten material in the cross-head as it moves towards the extrusion orifice 34.

The polyvinylchloride jacket is extruded around the core and the tensile members and, as the finished cable moves downstream from the cross-head, the jacket is cooled and solidified. During the solidification process, the tension is maintained on each of the tensile members 14 between the reeler 22 and the baking system 20 so that in the finished construction and after release of the tensioning load, the tensile members relax slightly and place the remainder of the cable in compression.

In the finished construction therefore, the tensile members extend longitudinally along the cable with substantially no lateral deviation as would be the case if they were in a relaxed state. In view of this, immediately a tensile load is applied to the cable, e.g. upon being strung between a pole and a subscriber's premises, then the tensile members immediately are subjected to this load and their tension increases to resist any elongation of the cable. As a result, the cable will only extend to the degree that the tensile members themselves will extend under load and this extension is of course minimized, because of the avoidance of slack in the tensile members themselves.

Desirably, the tensile members should satisfy certain desired elongation requirements to ensure minimal elongation of the cable under tensile load. In a test procedure to determine the elongation under load and also the residual elongation after relaxation of the load of the tensile members, samples of potential tensile member material are prepared, these samples being sufficient to provide a measured 10 m length. The samples are suspended vertically from an upper end and an initial downwards load of 20 kg is applied to the other end of the sample to straighten it. A 10 m length is then measured on the sample and the initial load is afterwards increased to a maximum load of 154 kg which is maintained for 1 hr. The extension to the 10 m length is then measured to provide the elongation under maximum load. The maximum load is then reduced to the initial load of 20 kg and the extension to the original 10 m length is again measured to decide the residual elongation in the sample. In the above test, for a material to qualify as suitable for use as the tensile members, it must have a maximum elongation under the 154 kg of 0.9% and a maximum residual elongation, i.e. after reducing the 154 kg to 20 kg, of 0.3%. As can be seen from Table 1, in which the elongation requirements and the dead load and breaking strength requirements are included, the glass fiber roving material used for the tensile members 14 is compared under the above test conditions with a plied yarn material of 870 tex. The plied yarn material has a twist of four turns per inch. A glass fiber roving as used in the embodiment has a negligible twist and has 735 tex. A minimum of 330 tex is considered satisfactory for each tensile member of the invention.

In Table 1, a plied yarn is identified as Sample 1. As can be seen, this sample has an elongation under the 154 kg maximum load which is 1.09% and is higher than the maximum desired. Similarly, the residual elongation after reduction of the 154 kg load to 20 kg load is 0.51% and also is higher than the maximum desired. In comparison with this in Sample 2, each of the tensile members 14 in the embodiment has a maximum elongation under the 154 kg load of 0.79% and a residual elongation under the final 20 kg load of 0.10% which is significantly below the maximum figures.

It has been found that in a preferred arrangement, e.g. according to the first embodiment, ultimate tensile strength is increased when the tensile members are pre-coated with certain materials. Such materials may also cause adhesion of the fibers to the jacket. Suitable materials for these two purposes include for instance polyvinylchloride (as in the embodiment), polyurethane or polyethyleneimine. In a modification, Sample 3, no pre-coating material is used for the tensile members. As can be seen, with Sample 3, there is a slightly higher elongation and residual elongation than in Sample 2, i.e. 0.8%, but these are still satisfactorily below the maximum requirements. In addition to this, as can be seen from the breaking load in the Table, while Sample 3 has a breaking strength which exceeds the 720 lbs minimum, this breaking strength of 800 lbs is increased significantly in Sample 2. Thus the rovings coated with polyvinylchloride for adherence to the jacket provide a more desirable construction.

TABLE 1

5		REQUIRED	<u>s1</u>	<u>52</u>	<u>53</u>
	BREAKING STRENGTH (lbs)	720 (MIN)	820	1020	800
10	DEAD LOAD	SUPPORT 154 kg FOR 7d	pass	pass	pass
	ELONGATION UNDER MAXIMUM LOAD	0.9% MAX	1.09%	0.79%	0.8%
15	RESIDUAL ELONGATION	0.3% MAX	0.51%	0.1%	0.18%

In a second embodiment as shown in Figure 4, which is a cable 36 suitable for buried locations, and which is otherwise similar to the embodiment shown in Figure 1, the core is grease filled. The cable is provided with a core wrap 38 of suitable plastics material, e.g. "Mylar" (trademark), the core wrap being surface treated, for instance, by the "Corona" surface treatment process for surface treating film to promote adhesion between the core wrap and the jacket material during extrusion and jacket hardening. This adhesive is compatible with the polyvinylchloride. In this second embodiment, the grease filled core prevents the movement of the moisture along the core, and the adherence between the PVC Jacket and the core wrap provides a moisture proof barrier which also prevents the moisture from moving along the cable between the jacket and the core wrap by capillary action.

In the manufacture of cable 36, apparatus, which is otherwise the same as that shown in Figure 2, has a grease filling chamber 40 and core wrap applying means 42 as shown in Figure 5. The grease filling chamber 40 is of conventional construction for impregnating cable cores by a pressurized grease system, and is positioned upstream from the cross-head 18. The core 12 passes through the chamber 40 as it approaches the cross-head. The core wrap applying means 42 comprises a reel 44 of core wrap tape and a core wrap forming device 46 of conventional construction and which is positioned between the chamber 40 and cross-head 18. The core wrap tape 48 is fed into the device 46 so as to be wrapped around the grease filled core in conventional manner and form the core wrap 38. The core wrap protects the polyvinylchloride based compound of the jacket material from the effects of the grease during the extrusion and solidification process.

Claims

- 1. A telecommunications cable devoid of a metal sheath and comprising a core (12) including a plurality of individually insulated conductors, and a surrounding jacket characterized in that it includes a plurality of substantially equally pre-tensioned and substantially inextensible elongate tensile members (14) embedded in the jacket and extending longitudinally of the cable to place an axially compressive force upon the jacket, the elongate members spaced apart circumferentially around the core.
- 2. A cable according to claim 1 characterized in that each of the tensile members (14) is formed from glass fiber.
- 3. A cable according to claim 1 characterized in that each of the tensile members (14) is formed from tensile fibers in the form of a roving and each of the members is embedded in the jacket at a maximum distance of approximately .325 cm from the cable axis.
 - 4. A cable according to claim 3 characterized in that each roving has at least 330 tex.
- 5. A cable according to claim 3 characterized in that the tensile members are disposed substantially on a pitch circle having a maximum diameter of .65 cm around the cable axis.
- 6. A cable according to claim 3 characterized in that each of the tensile members has a coating of a material which is compatible with the jacket and the members are adhered to the jacket by means of the coating.

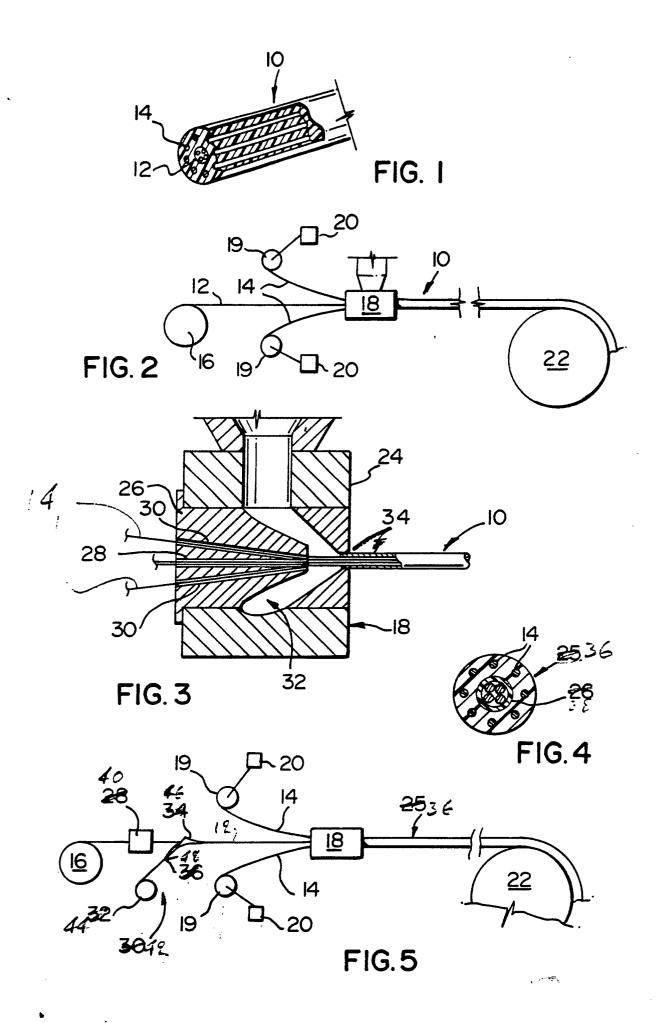
0 250 182

- 7. A cable according to claim 5 characterized in that the coating material comprises polyvinylchloride and the jacket is formed from a polyvinylchloride based compound.
- 8. A cable according to either of claims 1 and 3 characterized in that the core has interstices filled with a moisture blocking material.
- 9. A cable according to claim 8 characterized in that a core wrap (48) surrounds the core (12) and lies within the jacket.
 - 10. A cable according to claim 9 characterized in that the core wrap is adhered to the jacket.
- 11. A cable according to claim 8 characterized in that the moisture blocking material is grease, and the jacket is made from a polyvinylchloride based compound.
- 12. A method of making a telecommunications cable devoid of a metal sheath and having a core (12) including a plurality of individually insulated conductors, a surrounding jacket and a plurality of substantially inextensible elongate tensile members (14) embedded in the jacket and extending longitudinally of the cable, characterized in that the method comprises drawing the elongate tensile members (14) and the core (12), in desired respective positions, along a passline through a jacket forming station to extrude molten polymeric material around the core and the tensile members to form the jacket while resisting movement of the tensile members in at least one position upstream from the jacket forming station to apply a tensile load to each of the members which is greater than any tensile load applied to the core, and allowing the jacket to cool and harden while retaining a greater tensile load on each of the tensile members than on the core.
- 13. A method according to claim 12 characterized in that the tensile load which is applied to each of the tensile members is approximately 2 lbs.
 - 14. A method according to claim 11 characterized in embedding rovings of tensile fibers in the jacket as the tensile members.
 - 15. A method according to claim 14 characterized in providing the rovings with a coating and causing the coating to adhere to the jacket.
 - 16. A method according to claim 12 characterized in wrapping a core wrap around the core and extruding the jacket around the core wrap, the core wrap having a surface treatment to cause it to adhere to the jacket.

30

25

10


35

40

45

50

55

European Patent

EUROPEAN SEARCH REPORT

	DOCUMENTS CONSI	EP 87305252.6		
Category	Citation of document with of releva	indication, where appropriate, nt passages	Relevant to claim	APPLICATION (Int. Cl.4)
X Y	21-25; page	5,16; page 2, lines e 9, line 24 - ne 1; page 10,	1,2,6 3-5,8- 10,12, 14	H 01 B 7/18 H 01 B 11/00 H 01 B 13/24
Y	GB - A - 1 586 6	CABLES)	3-5	
	* Claims 1,3, 39-114; fig	6; page 2, lines ;. 2,3 *		
Y	GB - A - 1 299 3	61 (BRITISH INSULATED)	8-10	
	* Claim 1 *			TECHNICAL FIELDS
Y		olumn 5, lines n 7, lines 55-	12,14	H 01 B G 02 B 6/00 B 29 C 47/00
A		15 (LES CABLES DE LYON) es 5-58; fig. 2 *	1,2,6, 7,12, 15	,
		•		
	The precent search report has b		<u> </u>	Examiner
Place of search VIENNA		Date of completion of the search 27–08–1987		KUTZELNIGG
Y : pa	CATEGORY OF CITED DOCU articularly relevant if taken alone pricularly relevant if combined w ocument of the same category chnological background on-written disclosure	MENTS T : theory or E : earlier par after the fi	tent document iling date I cited in the ap I cited for othe	rlying the invention but published on, or