Technical Field
[0001] The invention relates to aluminum alloys containing lithium as an alloying element,
and particularly to a process for improving the fracture toughness of aluminum-lithium
alloys without detracting from their strength.
Background of the Invention
[0002] It has been estimated that some current large commercial transport aircraft may be
able to save from 15 to 20 gallons of fuel per year for every pound of weight that
can be saved when building the aircraft. Over the projected 20 year life of an airplane,
this savings amounts to 300 to 400 gallons of fuel. At current fuel costs, a significant
investment to reduce the structural weight of the aircraft can be made to improve
overall economic efficiency of the aircraft.
[0003] The need for improved performance in aircraft of various types can be satisfied by
the use of improved engines, improved airframe design, or by the use of new or improved
structural materials. Improvements in engines and aircraft design have been vigorously
pursued, but only recently has the development of new and improved structural materials
received commensurate attention, and their implementation in new aircraft designs
is expected to yield significant gains in performance.
[0004] Materials have always played an important role in dictating aircraft structural
concepts. Since the early 1930's, structural materials for large aircraft have remained
remarkably consistent, with aluminum being the primary material of construction in
the wing, body and empennage, and with steel being utilized for landing gears and
certain other speciality applications requiring very high strength. Over the past
several years, however, several important new materials concepts have been under development
for incorporation into aircraft structures. These include new metallic materials,
metal matrix composites and resin matrix composites. It is believed by many that improved
aluminum alloys and carbon fiber resin matrix will dominate aircraft structural materials
in the coming decades. While composites will be used in increased percentages as aircraft
structural materials, new lightweight aluminum alloys, and especially aluminum-lithium
alloys show great promise for extending the usefulness of materials of this type.
[0005] Heretofore, aluminum-lithium alloys have been used only sparsely in aircraft structures.
The low use has been caused by their relatively low fracture toughness and by casting
difficulties associated with lithium-bearing aluminum alloys compared to other more
conventional aluminum alloys. Lithium additions to aluminum, however, provide a substantial
lowering of the density which has been determined to be very important in decreasing
the overall structural weight of aircraft. While substantial strides have been made
in improving the aluminum-lithium processing technology, a major challenge is still
to obtain a good blend of fracture toughness and high strength in these alloys.
Summary of the Invention
[0006] The present invention provides a method for aging aluminum-lithium alloys of various
compositions at relatively low temperatures to develop a high and improved fracture
toughness without reducing the strength of the alloy. Simply, after the alloy is formed
into an article, solution heat treated and quenched, the alloy is aged at a relatively
low temperature for a relatively long time. This process may be generally referred
to as low temperature underaging. More specifically, the alloy can be aged at temperatures
ranging from 200°F to below 300°F for a period of time ranging from 1 up to 80 or
more hours. This low temperature aging regimen will result in an alloy having a greater
fracture toughness, often on the order of 150 to 200 percent, than that of materials
aged at conventional higher temperatures while maintaining an equivalent strength.
Brief Description of the Drawing
[0007] A better understanding of the present invention can be derived by reading the ensuing
specification in conjunction with the accompanying drawing wherein:
FIGURE 1 is a graph showing fracture toughness/strength combinations of several specimens
of an aluminum-lithium alloy aged at various times and various temperatures as described
in the Example.
Detailed Description of the Invention
[0008] An aluminum-lithium alloy formulated in accordance with the present invention can
contain from about 1.0 to about 3.2 percent lithium. The current data indicates that
the benefits of the low temperature underaging are most apparent at lithium levels
of 2.7 percent and below. All percentages herein are by weight percent (wt%) based
on the total weight of the alloy unless otherwise indicated. Additional alloying agents
such as magnesium, copper and manganese can also be included in the alloy. Alloying
additions function to improve the general engineering properties but also affect density
somewhat. Zirconium is also present in these alloys as a grain refiner at levels between
0.08 to 0.15 percent. Zirconium is essential to the development of the desired combination
of engineering properties in aluminum-lithium alloys, including those subjected to
our low temperature underaging treatment.
[0009] The impurity elements iron and silicon can be present in amounts up to 0.3 and 0.5
percent, respectively. It is preferred, however, that these elements be present only
in trace amounts of less than 0.10 percent. Certain trace elements such as zinc and
titanium may be present in amounts up to but not to exceed 0.25 percent and 0.15 percent,
respectively. Certain other trace elements such as cadmium and chromium must each
be held to levels of 0.05 percent or less. If these maximums are exceeded, the desired
properties of the aluminum-lithium alloy will tend to deteriorate. The trace elements
sodium and hydrogen are also thought to be harmful to the properties of aluminum-lithium
alloys and should be held to the lowest levels practically attainable, for example
on the order of 15 to 30 ppm (0.0015-0.0030 wt%) maximum for the sodium and less than
15 ppm (0.0015 wt%) and preferably less than 1.0 ppm (0.0001 wt%) for the hydrogen.
The balance of the alloy, of course, comprises aluminum.
[0010] The following Table represents the proportions in which the alloying and trace elements
may be present. The broadest ranges are acceptable under some circumstances, while
the preferred ranges provide a better balance of fracture toughness and strength.
The most preferred ranges yield alloys that presently provide the best set of overall
properties for use in aircraft structures.

[0011] An aluminum-lithium alloy formulated in the proportions set forth in the foregoing
paragraphs and Table is processed into an article utilizing known techniques. The
alloy is formulated in molten form and cast into an ingot. The ingot is then homogenized
at temperatures ranging from 925°F to approximately 1000°F. Thereafter, the alloy
is converted into a usable article by conventional mechanical forming techniques such
as rolling, extrusion or the like. Once an article is formed, the alloy is normally
subjected to a solution treatment at temperatures ranging from 950°F to 1010°F, followed
by quenching into a medium such as water that is maintained at a temperature on the
order of 70°F to 150°F. If the alloy has been rolled or extruded, it is generally
stretched on the order of 1 to 3 percent of its original length to relieve internal
stresses and improve engineering properties. The aluminum alloy may then be further
worked and formed into the various shapes for its final application. Additional heat
treatments such as those outlined above may then be employed if desired.
[0012] Thereafter, in accordance with the present invention, the article is subjected to
an aging treatment that will increase the strength of the material while maintaining
its fracture toughness and other engineering properties at relatively high levels.
In accordance with the present invention, the article is subjected to a low temperature
underage heat treatment at temperatures ranging from about 200°F to less than 300°F.
Low temperature underaging at temperatures in the range of from about 250°F to about
275°F is considered preferred for most alloys, taking into consideration the economic
impetus for minimizing the time spent in commercial heat-treatment facilities. At
the higher temperatures, less time is needed to bring about the proper balance between
strength and fracture toughness than at lower aging temperatures, but the overall
property mix will be slightly less desirable. For example, when the aging is conducted
at temperatures on the order of 275°F to just below 300°F, it is preferred that the
product be subjected to the aging temperature for periods of from 1 to 40 hours. On
the other hand, when aging is conducted at temperatures on the order of 250°F or below,
aging times from 2 to 80 hours or more are preferred to bring about the proper balance
between fracture toughness and strength. After the aging treatment, the aluminum-lithium
article is cooled to room temperature.
[0013] When the low temperature underaging treatment is conducted in accordance with the
parameters set forth above, the treatment will result in an aluminum-lithium alloy
having an ultimate strength typically on the order of 45 to 95 ksi, depending on the
composition of the particular alloy. The fracture toughness of the alloy will be greater,
often on the order of 1 1/2 to 2 times greater, than that of similar aluminum-lithium
alloys aged to equivalent strength levels by conventional aging treatments at temperatures
greater than 300°F.
[0014] The following Example is presented to illustrate the superior strength and toughness
combination achieved by low temperature underaging an aluminum-lithium alloy in accordance
with the present invention and to assist one of ordinary skill in making and using
the present invention. The following Example is not intended in any way to otherwise
limit the scope of this disclosure or the protection granted by Letters Patent hereon.
EXAMPLE
[0015] An aluminum alloy containing 2.4 percent lithium, 1 percent magnesium, 1.3 percent
copper, 0.15 percent zirconium with the balance being aluminum was formulated. The
trace elements present in the formulation constituted less than 0.25 percent of the
total. The iron and silicon present in the formulation constituted less than 0.07
percent each of the formulation. The alloy was cast and homogenized at 975°F. Thereafter,
the alloy was hot rolled to a thickness of 0.2 inches. The resulting sheet was then
solution treated at 975°F for about 1 hour. The sheet was then quenched in water maintained
at about 70°F. Thereafter, the sheet was subjected to a stretch of 1 1/2 percent of
its initial length and was then cut into specimens. Some specimens were cut to a size
of 0.5 inch by 2.5 inch by 0.2 inch for precrack Charpy impact tests, a known method
of measuring fracture toughness. Other specimens prepared for tensile strength tests
were 1 inch by 4 inches by 0.2 inches. A plurality of specimens were then aged at
350°F for 4, 8, and 16 hours; at 325°F for 8, 16, and 48 hours; at 305°F for 8 hours;
at 275°F for 16 and 40 hours; and at 250°F for 40 and 72 hours. Specimens aged at
each of the temperatures and times were then subjected to precrack Charpy impact and
tensile strength tests in accordance with standard testing procedures. The test values
of the specimens aged at a particular temperature and time were then averaged. These
average test values are set forth in the graph shown in FIGURE 1.
[0016] By examining FIGURE 1 it will be readily observed that specimens aged at temperatures
greater than 300°F exhibited a toughness on the order of from 225 to 525 inch-pounds
per square inch as measured by the Charpy impact test. In contrast, the specimens
underaged at a low temperature in accordance with the present invention exhibited
toughnesses on the order of 650 to almost 850 inch-pounds per square inch as indicated
by the Charpy impact test. At the same time, the average strengths of the materials
fell generally within the 64 to 71 ksi range, with the exception of the specimens
aged at 350°F for 16 hours. (The 350°F age specimens, however, exhibited the lowest
toughness of any of the specimens.) Thus, the test results indicate that aging at
a temperature less than 300°F for a relatively long time will clearly provide a strength/toughness
combination that is superior to that of specimens aged in accordance with conventional
procedures at temperatures on the order of 325 to 350°F or more for relatively short
periods of time. The test results also show that there is a remarkable improvement
in the strength-toughness combination of properties as the aging temperature is lowered
below 300°F, i.e., a higher fracture toughness for any given strength level.
[0017] The present invention has been described in relation to various embodiments, including
the preferred processing parameters and formulations. One of ordinary skill after
reading the foregoing specification will be able to effect various changes, substitutions
of equivalents and other alterations without departing from the broad concepts disclosed
herein. For example, it is contemplated that the subject low temperature underaging
treatment may be applicable to other alloying combinations not now under development,
and specifically to aluminum-lithium alloys with substantial amounts of zinc, silicon,
iron, nickel, beryllium, bismuth, germanium, and/or zirconium. It is therefore intended
that the scope of Letters Patent granted hereon will be limited only by the definition
contained in the appended claims and equivalents thereof.
1. A process for improving the relative strength and fracture toughness of an aluminum
alloy containing lithium as an alloying element, said alloy consisting essentially
of:

said alloy first being formed into an article, solution heat treated and quenched,
said process comprising the step of aging said alloy at temperatures ranging from
about 200°F to less than 300°F for a period of time ranging from about one up to eighty
or more hours.
2. The process of Claim 1 wherein said aging temperature is less than about 275°F.
3. The process of Claim 1 wherein said aging temperature is between about 250°F and
about 275°F.
4. The process of Claim 1 wherein said aging temperature is less than about 250°F.
5. The process of Claim 1 wherein said alloy consists essentially of:
6. The process of Claim 5 wherein said alloy consists essentially of:
7. The product produced by the process of Claim 1.