(11) Publication number:

0 251 327 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 87109576.6

(51) Int. Cl.3: C 07 H 15/252

(22) Date of filing: 03.07.87

(30) Priority: 04.07.86 JP 157359/86

Date of publication of application: 07.01.88 Bulletin 88/1

(84) Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE 71) Applicant: KIRIN BEER KABUSHIKI KAISHA 26-1 Jingumae 6-chome Shibuya-ku Tokyo-To(JP)

(72) Inventor: Umezawa, Hamao 4-23, Toyotama Kita Nerima-Ku Tokyo-To(JP)

(72) Inventor: Odagawa, Atsuo Kirin Beer K.K. Iyaku Kaihatsu Kenkyusho 2-2, Soja-Machi(JP)

(72) Inventor: Kataoka, Shiro Kirin Beer K.K. iyaku Kaihatsu Kenkyusho 2-2, Soja-Machi(JP)

72 Inventor: Nakajima, Shohachi Kirin Beer K.K. Iyaku Kaihatsu Kenkyusho 2-2, Soja-Machi(JP)

(74) Representative: Reichel, Wolfgang, Dipl.-Ing. et al, Reichel und Reichel Parkstrasse 13 D-6000 Frankfurt am Main 1(DE)

54 Process for production of anthracycline compound R2OX2.

(57) An anthracycline compound, R20X2, of the following formula (II) is produced by a process which comprises subjecting an anthracycline compound, R20X3, of the following formula (I) or a salt thereof to reaction in the co-presence of (1) acetone and/or dimethylformamide and (2) an aqueous solution containing ammonium ion and/or trialkylamine.

The anthracycline compound, R20X2, can be produced not only by the cultivation of actinomycetes but also, in accordance with the process as shown above, by chemical conversion of the anthracycline compound, R20X3, in a high yield.

P 0 251

PROCESS FOR PRODUCTION OF ANTHRACYCLINE COMPOUND R20X2

BACKGROUND OF THE INVENTION

The present invention relates to a process for producing an anthracycline compound, R20X2 (13-deoxo-10-hydroxycarminomycin, hereinafter referred to as R20X2), which is useful as an antitumor antibiotic.

We have already found R20X2 in the culture broth of actinomycetes and applied for patents (Japanese Patent Laid-Open Pub. Nos. 33194/1986 and 76498/1986). In both patent applications, R20X2 was isolated from the culture broth of a microorganism. While methods based on the cultivation of microorganisms are per se useful, a more efficient method, if developed, would be advantageous as a matter of course.

One of the co-inventors of the present invention has also found in the culture broth of actinomycetes an anthracycline compound, R20X3 (13-deoxo-10-hydroxycarbonylcarminomycin, hereinafter referred to as R20X3), which can be a starting compound for the R20X2 of the present invention, and again applied for a patent (Japanese Patent Laid-Open Pub. No.8300/1985).

SUMMARY OF THE INVENTION

The present invention provides a process for 25 producing R20X2 more efficiently.

More particularly, the process for producing the anthracycline compound, R20X2, of the following formula (II) according to this invention comprises subjecting the anthracycline compound, R20X3, of the following formula (I) or a salt thereof to reaction in the co-presence of

(1) acetone and/or dimethylformamide and (2) an aqueous solution containing ammonium ion and/or trialkylamine.

30

10

15

The anthracycline compound, R20X2, can be produced not only by the cultivation of actinomycetes but also, in accordance with the present invention, by chemical conversion of the anthracycline compound, R20X3. The

chemical conversion of the R20X3 in this case can be carried out very readily with respect to the species of reagents as well as the reaction conditions while ensuring a good yield, and the starting compound R20X3 can be obtained by a simple microbiological method. For these reasons, it can be said that the R20X2 has been made more readily available.

DETAILED DESCRIPTION OF THE INVENTION

R20X3

The R20X3 used in the present invention is a known substance and can be produced by the method described in Japanese Patent Laid-Open Pub. No. 8300/1985 mentioned previously.

Salts of the R20X3 include acid addition salts and alkali salts. Specific examples of the former salts are inorganic acid salts with hydrochloric acid, sulfuric acid, and phosphoric acid and organic acid salts with acetic acid, lactic acid, propionic acid, maleic acid, oleic acid, palmitic acid, citric acid, succinic acid, tartaric acid, fumaric acid, glutamic acid, pantothenic acid, and lauryl sulfonate, while examples of the latter salts are alkali salts such as sodium, pottasium and calcium.

Reaction Conditions

35

In the present invention, the R20X2 is produced by subjecting the R20X3 or a salt thereof to reaction in the co-presence of (1) acetone and/or dimethylformamide and (2) an aqueous solution containing ammonium ion and/or trialkylamine, and the particular reaction conditions required are as follows.

The method of bringing the above mentioned components into co-presence is not particularly limited, and any method suitable for the purpose can be employed. For example, the R20X3 is dissolved in an aqueous solution containing ammonium ion and/or trialkylamine, and acetone and/or dimethylformamide may be added

Preferably, the reaction system thereto. homogeneous solution.

The quantities of the respective components used are not critical and can be selected suitably. For reaction the following conditions 5 efficiency, however, generally preferred.

- The R20X3 or a salt thereof is used in such a quantity that the same can be dissolved in an aqueous solution containing ammonium ion and/or trialkylamine.
- more ammonium mols or (2) 10 trialkylamine are/is used per mol of the R20X3 or a salt thereof.
- acetone and/or volumes of 100 to (3) 2 dimethylformamide are/is used per volume of an aqueous 15 solution containing ammonium ion and/or trialkylamine.

For the source of ammonium ion, aqueous ammonia or ammonium salts such as ammonium chloride, carbonate, and ammonium acetate can be used. For the trialkylamine, tri-lower alkylamine such 20 trimethylamine, triethylamine, diisopropylethylamine, tripropylamine, and tributylamine can be These are just typical particularly preferably. examples, and any other compounds suitable for purpose can be employed.

A suitable reaction temperature is in the range of 25 from the solidifying point to the boiling point of the reaction system, a temperature around room temperature (0°C - 30°C) being particularly suitable.

Under the above stated reaction conditions, 30 reaction of converting the hydroxycarbonyl group in the R20X3 into the hydroxyl group can be terminated within several minutes to several days.

The reaction mixture obtained by the method of the present invention can be purified to isolate a desired 35 compound, R20X2, by a known purification procedure employed in the preparation of anthracycline, example, chromatography using silica gel.

The reaction according to this invention ensures an increased yield when it is carried out in the copresence of molecular oxygen and therefore is particularly preferably performed under aeration.

This reaction is desirably carried out with all the reactants in solution state as has been indicated hereinbefore. It is also possible, however, to cause a suitable column to adsorb the starting compound R20X3 and to treat the column with acetone and/or dimethylformamide and aqueous ammonia and/or trialkylamine as eluents to elute the R20X3 as R20X2. This embodiment is also included in the present invention.

Example 1

100 mg of R20X3 was dissolved in 3 ml of 2.8% aqueous ammonia. 15 ml of acetone was added to the solution, and the mixture was left standing at room temperature (20°C) for one hour. The resultant mixture was concentrated to dryness and subjected to silica gel column chromatography by using a 10:1 chloroform-methanol system to obtain 47.4 mg of R20X2. In this Example, the starting compound R20X3 had been prepared in accordance with the method described in Japanese Patent Laid-Open Pub. No. 8300/1985 (similarly as in Examples 2 and 3).

Example 2

25 100 mg of R20X3 was dissolved in 3 ml of a triethylamine solution, and to this solution was added 15 ml of dimethylformamide. The resultant solution was left standing at room temperature (20°C) for one hour. The reaction solution was concentrated to dryness and 30 subjected to silica gel column chromatography by using a 10:1 chloroform-methanol system to obtain 46.0 mg of R20X2.

Example 3

100 mg of R20X3 was dissolved in 3 ml of 2.8% 35 aqueous solution of ammonium carbonate, and to this solution was added 15 ml of acetone. The resultant solution was left standing at room temperature (20°C) for

one hour. The reaction solution was concentrated to dryness and subjected to silica gel column chromatography by using a 10:1 chloroform-methanol system to obtain 52.8 mg of R20X2.

5 Example 4

- (1) Preparation of culture fluid containing R20X3

 The culture fluid was prepared from strain R20 (FERM BP-945 (FERM P-7138)) in the following manner.
- (a) Inoculum Preparation
- The culture medium used was prepared by dissolving the following ingredients in 1 litre of water and adjusting the pH of the solution to 7.2.

	Polypeptone	1%
	Molasses	1%
15	Meat extract	1%

a 500-ml Erlenmeyer flask and inoculated with a loopful of spores collected from a slant culture of strain R20. The inoculated medium was subjected to shake culture for 5 days at 27°C on a rotary shaker (200 r.p.m.) to prepare an inoculum.

(b) Cultivation

A fermentation medium was prepared by dissolving the following ingredients in 1 litre of water and adjusting the pH of the resultant solution to 6.5.

	Glucose	0.5%
	Corn steep liquor	1.5%
	Soybean meal	1.5%
	Maltose	4.0%
30	Dry yeast	0.2%
	Calcium carbonate (precipitated)	0.4%

in a 50-ℓ jar fermenter, and 3 vials of the inoculums prepared as described above were added to the sterilized medium. Fermentation was carried out for 7 days at 27°C at 1 v.v.m. and 200 r.p.m.

(c) Treatment of R20X3

The fermented mash was adjusted to pH 10 and filtered to separate cells from the filtrate. The filtrate was adjusted to pH 2, and the precipitate formed was subjected to centrifugation. The precipitate fraction was dried to obtain 7.9 g of crude R20X3 powder.

7.9 g of the crude R20X3 powder obtained by centrifugation was dissolved in 1 litre of 2.8% aqueous ammonia, and 5 litres of acetone was added thereto. The 10 resulting solution was left standing at room temperature for 2 hours and then concentrated.

The residue from the concentration was extracted three times with a 10:1 chloroform-methanol solvent mixture. The chloroform-methanol layer was dehydrated 15 with sodium sulfate anhydride and then concentrated. The product obtained was subjected to silica gel column chromatography by using a 10:1 chloroform-methanol system to obtain 0.75 g of R20X2.

R20X3 which remained dissolved in the supernatant formed when the fermented mash was subjected to 20 centrifugation, on the other hand, was adsorbed onto a resin "Diaion HP20" (supplied by Mitsubishi Kasei K.K., Japan). The R20X3 thus adsorbed was washed with water and eluted with a 2.8% aqueous ammonia-acetone (1:5) solution mixture (which corresponds to a reactant mixture The colored eluate was in the present invention). concentrated, and the residue from the concentration was neutralized with 1N hydrochloric acid and extracted three times with a 10:1 chloroform-methanol solvent mixture. 30 The chloroform-methanol layer was dehydrated with sodium sulfate anhydride and then concentrated to dryness. product obtained was subjected to silica gel column chromatography by using a 10:1 chloroform-methanol system to obtain 1.35 g of R20X2.

WHAT IS CLAIMED IS:

anthracycline for producing an process A ı. compound, R20X2, of the following formula (II), which comprises subjecting an anthracycline compound, R20X3, of the following formula (I) or a salt thereof to reaction and/or acetone (1)co-presence of in dimethylformamide and (2) an aqueous solution containing ammonium ion and/or trialkylamine.