BACKGROUND OF THE INVENTION
Field of the Invention
[0001] This invention relates to post-mix beverage dispensers and to dispensing valves for
mixing together and dispensing a controlled ratio of syrup and carbonated water; more
particularly, this invention concerns a volumetric ratio control device in the dispensing
valve.
Description of the Prior Art
[0002] Known post-mix dispensing valves control syrup and soda (carbonate water) flow with
two mechanical flow controls that are adjusted independently of each other to achieve
proper mixture ratio. If either flow control malfunctions or changes, the ratio will
change because one flow control cannot compensate for the variations of the other.
The mechanical flow controls, which require high flowing pressures (about 50 psig)
to function properly, do not compensate for viscosity changes caused by temperature
fluctuations. New electrical flow control valves including sensors and microprocessors
are being developed to overcome these problems, however, they are relatively complicated
and expensive.
SUMMARY OF THE INVENTION
[0003] This invention provides a relatively simple, inexpensive, post-mix valve that provides
positive ratio control. This valve volumetrically controls the amount of syrup and
soda that are mixed together. The volumetric ratio control device (VRCD) includes
syrup and soda pistons connected together, associated syrup and soda chambers, and
valves for controlling the flow to and from the chambers. The VRCD of this invention
provides an improvement over known dispensing valves because it does not require high
flowing pressures and because the pistons allow one liquid flow to compensate for
fluctuations in the other liquid flow. The VRCD of this invention is simpler and less
expensive than the new electrical ratio control valves because it is not concerned
with (and does not measure) temperatures, viscosities, syrup characteristics of Reynolds
numbers, for example. The VRCD is only concerned with repeatedly filling volumetric
measuring chambers and then emptying the chambers into a mixing nozzle.
[0004] Another advantage of this VRCD is that it can work with a variety of different post-mix
syrup packages. Present pressurized post-mix dispensers require a source of pressurized
syrup to operate correctly. This syrup can come from a pressurized figal or from a
syrup pump that is connected to a bag-in-box package. However, it is difficult with
the present equipment to readily convert from one type of package to another. The
VRCD of this invention overcomes this shortcoming because it can work as a pressurized
valve or as a valve/pump combination. When operated as a pressure valve, it can function
properly with high pressure syrup or with low pressure syrup. When operated as a valve/pump
combination, it can empty the contents of a bag-in-box package, a vented package,
or a very low pressure syrup package, without the use of a syrup pump. The VRCD also
works with a gravity dispenser and will provide better ratio control than the gravity
dispenser valves presently being used. To summarize, the VRCD will work with either
a gravity dispenser or a pressurized dispenser. It will work with pressurized containers
(figals) or non-pressurized containers (bag-in-box, syrup containers, etc.). Because
the VRCD in this invention works with syrups at no pressure and at low pressures,
the present invention also includes inexpensive, non-returnable, syrup containers
including one that can operate at no pressure and ones that can be pressurized up
to about 5 to 10 psig. Such low pressure containers could not previously have been
used because of the high pressures required to make the known pressurized dispensing
valves operate properly. It is also important to note tha t the VRCD of
this invention can work with all of these different types of dispensers and syrup
packages, and it can do so without making any adjustments to the dispensing valve,
and without adding any auxiliary equipment (such as a syrup pump) to the valve or
dispenser.
[0005] It is an object of the present invention to provide a simple, inexpensive, post-mix
dispensing valve that can provide positive ratio control.
[0006] It is another object of the present invention to provide a beverage dispenser and
a beverage dispenser valve that work with a variety of different post-mix syrup packages
and that do so without making any adjustments to the valve or adding any auxiliary
equipment to the valve or to the dispenser.
[0007] It is another object of the present invention to provide a beverage dispenser and
a beverage dispenser valve that can readily convert from one type of syrup package
to another.
[0008] It is another object of the present invention to provide a dispensing valve for a
beverage dispenser that can operate as a valve/pump combination that can empty the
contents of a bag-in-box package or a non-returnable, low pressure or no pressure
syrup package, without the use of a syrup pump.
[0009] It is another object of the present invention to provide a beverage dispensing method
using a dispensing valve incorporating a volumetric ratio control device for dispensing
from a non-pressurizable, collapsible concentrate container without the use of a syrup
pump.
[0010] It is another object of the present invention to provide a dispensing valve for a
beverage dispenser incorporating therein a volumetric ratio control device.
[0011] It is a further object of the present invention to provide a beverage dispensing
system including a beverage dispenser, a dispensing valve, and a non-returnable, rigid,
pressurizable syrup container pressurized to about 5-10 psig.
[0012] It is another object of the present invention to provide a non-returnable, pressurizable
syrup container for use with beverage dispensers and having sufficient strength to
safely hold syrup under pressure no greater than about 5-10 psig.
Brief Description of the Drawings
[0013] The present invention will be more fully understood from the detailed description
below when read in connection with the accompanying drawings wherein like reference
numerals refer to like elements and wherein:
Fig. 1 is a partly cross-sectional end view through a dispensing valve according to
one embodiment of the present invention;
Fig. 2 is a partly cross-sectional side view through the valve of Fig. 1 taken along
line 2-2 thereof;
Fig. 3 is an elevational view taken along line 3-3 of Fig. 2;
Fig. 4 is an elevational view taken along line 4-4 of Fig. 2
Fig. 5 is a schematic view of the embodiment shown in Figs. 1 to 4;
Fig. 6 is a diagrammatic view of another embodiment of the present invention;
Fig. 7 is a diagrammatic view similar to Fig. 6 but showing the valves in the opposite
position to that shown in Fig. 6;
Fig. 8 is a partly cross-sectional side view of a dispensing valve according to another
embodiment of the present invention;
Fig. 9 is a partly cross-sectional end view of the valve of Fig. 8 taken along line
9-9 of Fig. 8;
Fig. 10 is a perspective view of the paddle valves used in the embodiment shown in
Figs. 8 and 9;
Fig. 11 is a partly diagrammatic, partly schematic view of a volumetric ratio control
device showing an electrical switch means associated therewith;
Fig. 12 is a partial, cross-sectional view of a dispensing valve showing a variable
flow control feature thereof;
Fig. 13 is an electrical schematic of a circuit useful with the volumetric ratio control
device of the present invention; and
Fig. 14 is a diagrammatic view of a beverage dispenser incl uding a
dispensing valve according to the present invention, and showing the four different
types of syrup containers useful therewith.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] With reference now to the drawings, Figs. 1 - 5 show a dispensing valve 10 according
to a preferred embodiment of the present invention. The dispensing valve 10 can be
mounted on a beverage dispenser 12 as shown in Fig. 14. Any one of a number of the
dispensing valves 10 such as four, five or six, for example, can be mounted on the
beverage dispenser 12. The syrup source can be a figal 14, a bag-in-box 16, a gravity
tank 18 built directly into the beverage dispenser 12, or a non-returnable container
20 according to the present invention and described in more detail hereinafter.
[0015] Returning now to the dispensing valve 10 of Figs. 1 - 5, the valve includes a body
22 including separate soda and syrup passageways 24 and 26, respectively, therethrough,
valve means 28 for controlling the flow through the passageways 24 and 26, a nozzle
30 for mixing together the soda and syrup and for dispensing the mixture therefrom,
and a volumetric ratio control device (VRCD) 32 in said body for controlling the ratio
of soda to syrup in the beverage dispensed from the valve 10. The valve 10 can include
a cover 91 (see Fig. 14), if desired.
[0016] The VRCD 32 includes a syrup piston 40, a soda piston 42 connected to the syrup piston
40, a pair of syrup chambers 44 and 46, a pair of soda chambers 48 and 50, two four-way
valves 52 and 54, and two solenoids 56 and 58. The soda passageway 24 includes a passageway
to each of the soda chambers 48 and 50, and the syrup passageway 26 includes a syrup
passageway to each of the syrup chambers 44 and 46.
[0017] The valve means for controlling the flow through the passageway includes the solenoids
56 and 58, one of which (58) is shown in Fig. 2 controlling an armature 60 in the
syrup passageway 26. When the armature is in the position shown in Fig. 2 (for example,
with the solenoid 58 not energized), the syrup can flow through syrup inlet passageway
26, through a port 62 in the armature 60, through passageways 70 and 71, one of the
syrup chambers 44 or 46, while at the same time syrup is flowing from the other of
the chambers 44 or 46 through the passageway 64, then through the groove 66, and then
into passageway 68 where it flows down into the nozzle 30 as shown in Fig. 2. When
the syrup piston 40 reaches the end of its stroke, the solenoid 58 is energized to
retract the armature 60 to provide communication between the inlet passageway 26 and
the other syrup chamber through the passageways 64 and 65, while syrup is forced out
of the other syrup chamber into the nozzle through passageway 71, then passageway
70, through groove 66 and then through passageway 68 to the nozzle 30. The same operation
occurs on the other side of the dispensing valve with respect to the soda (or carbonated
water).
[0018] Fig. 3 shows the three ports 72, 73 and 74 providing communication with the passageways
70, 68 and 64, respectively, in a central member 76. Fig. 4 shows the port 62 and
the groove 68 in the armature 60 of the solenoid 58.
[0019] The solenoids 56 and 58 and the valves 52 and 54 direct syrup and soda to the left
side of the pistons as shown in Fig. 5, while the pistons move from left to right
causing the liquids on the right side of the pistons to be expelled into the mixing
nozzle. When the pistons reach the right-hand end of their travel, the solenoids are
energized to activate the valves and thus reverse the flow and cause the liquids on
the left side of the pistons to be directed to the mixing nozzle. In a properly sized
valve, the pistons will preferably change directions several times each second. In
order to change ratio in this type of valve, the pistons/chamber assembly must be
replaced with a different sized assembly.
[0020] An advantage of placing the VRCD directly in the dispensing
valve is to reduce the number of water lines that would be required if the VRCD were
placed, for example, upstream of the refrigeration system and the soda and syrup lines
were kept separate up to the valve.
[0021] Reference will now be made to Figs. 6 and 7 which show another embodiment of the
VRCD of the present invention, and in particular one using four three-way valves rather
than the two four-way valves used in the embodiments of Figs. 1-5.
[0022] Figs. 6 and 7 show a volumetric ratio control device 80 that can be used in a dispensing
valve such as the valve 10 of Figs. 1-5. Figs. 6 and 7 diagrammatically show the syrup
piston 40, the soda piston 42, syrup chambers 44 and 46, and the soda chambers 48
and 50. The volumetric ratio control device 80 includes a soda-in conduit 82, a syrup-in
conduit 84, a soda-out conduit 86 to a mixing nozzle 88, and a syrup-out conduit 90
to the mixing nozzle 88. The volumetric ratio control device 80 includes valve means
for controlling the flow in the soda and syrup passageways including four three-way
pilot-actuated poppet valves 92, 94, 96 and 98 controlled by a single solenoid-actuated
pilot valve 100. The valve 100 is actuated by a solenoid 102. The solenoid-actuated
pilot valve 100 uses pressurized soda as the pilot fluid.
[0023] Fig. 6 shows the solenoid 102 in its energized condition such that the valve 100
is open to provide pressurized soda communication to the four three-way poppet valves
92, 94, 96 and 98 to position these valves in their orientation shown in Fig. 6 with
the pistons 40 and 42 moving to the left as shown in Fig. 6. At the end of the stroke
of the piston to the left as shown in Fig. 6, the solenoid 102 is de-energized allowing
a spring to move the pilot valve to its position shown in Fig. 7. At this time the
soda line to the four three-way poppet valves is vented by the pilot valve 100 which
causes the four three-way valves 92, 94, 96 and 98 to move to their position shown
in Fig. 7 for use when the pistons 40 and 42 are moving to the right (as shown in
Fig. 7), at which time the syrup and soda flow into the leftmost chambers and are
forced by the pistons out of the rightmost chambers to the mixing nozzle. This embodiment
with the four three-way poppet valves is presently the preferred embodiment.
[0024] Figs. 8 to 10 show a dispensing valve 110 according to another embodiment of the
present invention which uses four three-way paddle valves 111, 112, 113 and 114 which
are mechanically actuated by a single solenoid 116 having an armature 117. The valves
111 and 113 are syrup valves, and valves 112 and 114 are soda valves. The cross-section
in Fig. 8 is taken through the syrup valves 111 and 113. The cross-section in Fig.
9 is taken through the valves 113 and 114.
[0025] The dispensing valve 110 includes the syrup piston 40, the soda piston 42, syrup
chambers 44 and 46, soda chambers 48 and 50, and the nozzle 30. The dispensing valve
110 includes a body 118 having a syrup passageway 120 and a soda passageway 122 therethrough.
The solenoid 116 includes a spring (not shown) for forcing the armature 117 downwardly
(as viewed in Fig. 8). When the solenoid is energized it pulls the armature 117 upwardly.
Fig. 8 shows the pistons 40 and 42 moving to the left, the paddle valves 113 and 114
being opened by the solenoid 116 being energized to pull upon a lever arm 126 (as
viewed in Fig. 10), thus pushing down on the actuating arms 128 and 130 of the paddle
valves 113 and 114 thus causing them to open. At the same time, the paddle valves
111 and 112 are caused to close. The soda and syrup flows through the soda and syrup
passageways into the rightmost chambers 50 and 46 filling those chambers, and the
soda and syrup is at the same time forced out of the leftmost chambers to the nozzle
30. At the end of the stroke of the pistons 40 and 42 to the left (as viewed in Fig.
8), the solenoid 116 is de-energized, whereby the solenoid spring (not shown) forces
the lever arm 126 down, reversing the above described li quid flow.
[0026] Fig. 11 is a diagrammatic and schematic showing of a syrup piston 140, a soda piston
142, syrup chambers 144 and 145, and soda chambers 146 and 147. Fig. 11 also shows
electrical circuit contact means 148 for detecting when the pistons 140 and 142 have
reached the end of their stroke. The electrical contact means 148 can use microswitches
149 and 150 for energizing the solenoid means of the various valve means shown in
the drawings of the previously described embodiments.
[0027] Fig. 12 shows a variable flow rate system that can be used on any of the above described
embodiments. This system includes a cup lever arm 151 located below a dispensing valve
10 and adjacent to the nozzle 30 as is well-known in the art for actuating a dispensing
valve to dispense the beverage into a cup.
[0028] According to the invention shown in Fig. 12, movement of the cup lever arm 151 immediately
energized a switch 152 to actuate the dispensing valve. This switch remains closed
as long as the arm 151 is depressed. The cup lever arm 151 is also connected to a
flow control 154 (through an arm 153) in the soda passageway 156 to the nozzle 30.
If a high flow rate is desired, the cup lever arm 151 is pushed all the way back,
whereby the flow control 154 provides a completely open passageway 156. The cup lever
arm 151 is spring biased to its closed position shown in Fig. 12 and can be moved
varying amounts to the right (as viewed in Fig. 12) to dispense beverage into a cup
and to open the soda passageway 156 in varying amounts. As the cup approaches being
filled, the cup lever arm 151 is allowed to move toward its closed position whereby
the flow control 154 moves into the passageway 156 to slow down the flow. By means
of the volumetric ratio control device of the present invention, even though only
one of the soda and/or syrup passageways to the nozzle is varied, the ratio remains
constant, because when the piston slows down, it slows down the pumping of both the
soda and the syrup and at the correct ratio.
[0029] Fig. 13 shows a standard electrical circuit, including a holding circuit, for causing
the soda and syrup pistons to reciprocate when the dispensing valve, including the
VRCD, is energized. Fig. 13 shows the switches 152, 149 and 150, the solenoid 102
and relay CR-1. The operation of this standard circuit is well known and need not
be described in any further detail herein.
[0030] Fig. 14 shows an overall arrangement of a beverage dispenser 12 with one or more
dispensing valves 10 according to any one of the embodiments of the present invention.
The beverage dispenser 12 can be provided with a syrup supply from any one of a known
type of syrup containers such as a figal 14, a bag-in-box 16, or a gravity tank 18.
In addition, according to the present invention, a syrup supply can also be provided
in a non-returnable container 20 such as a plastic bottle. The container can be vented
to atmosphere or preferably it can be a container that is capable of being safely
pressurized to no higher than about 10 psig. The container 20 can be similar to the
present two-liter PET bottles used for premix. The container 20 includes a lid 170
having a dip tube 172 extending down toward the bottom of the container 20 and a coupling
for connection to the syrup line 21. The lid 170 also includes a one-way valve and
fitting 174 for use in pressurizing the container 20 to its low pressure. It is noted
that the pressure to which container 20 can be pressurized is much less than that
to which a stainless steel figal 20 can be pressurized. According to the present invention,
the means for delivering the syrup to the dispensing valve is the suction created
by the volumetric ratio control device; however, it can be useful to have small pressure
in the container 20, if desired. However, the low pressure that is preferred to be
used in the container 20 does no require the container to withstand any substantial
pressures, whereby the container 20 can be made relatively inexpensively; that
is, it can have relatively thin walls and a relatively inexpensive lid 170 that can
be screw-threaded (or otherwise connected) onto the container 20 with a suitable O-ring
or other seal structure.
[0031] The container 14, 16 and 20 are connected in the usual, known, manner to the beverage
dispenser 12; this is what is intended by the arrows on the ends of the syrup conduits.
The dispenser 12 may or may not include a gravity tank 18.
[0032] While the preferred embodiments of this invention have been described above in detail,
it is to be understood that variations and modifications can be made therein without
departing from the spirit and scope of the present invention as set forth in the appended
claims. For example, while certain arrangements and designs of pistons and chambers
have been shown, a wide variety of such pistons and chambers can be used as will be
understood by one skilled in the art. Further, it is not necessary that the piston
be a double-acting piston arrangement; it can alternatively be a single-acting piston
using a return spring, for example. While the preferred non-returnable container 20
is a rigid plastic bottle, a collapsible container such as a plastic bag similar to
that used in the present bag-in-box containers 16 can also be used. The non-returnable
container 20 can alternatively be vented to atmosphere and not be under any additional
pressure. While the preferred water and concentrate are carbonated water and syrup,
respectfully, this invention can also be used with plain water and with fruit juice
concentrates, tea and coffee, for example. While the solenoids are preferably pull
solenoids, push solenoids can also be used. The soda and syrup pistons in the VRCD
can be separate pistons joined together, or they can be one single member.
1. A method for dispensing a beverage comprising a mixture of concentrate and water
comprising the steps of:
(a) providing a beverage dispenser with at least one dispensing valve for mixing together
concentrate and water and for dispensing said mixtures therefrom;
(b) incorporating a volumetric ratio control device in said dispensing valve to control
the ratio of water to concentrate dispensed from said dispensing valve, said device
being operated by the pressure of said water;
(c) providing a non-pressurizable, collapsible concentrate container as a source for
said concentrate and connecting a concentrate conduit directly from said container
to said device in said dispensing valve, such that each operating cycle of said device
under the pressure of said water causes concentrate to be forced therefrom and also
causes concentrate to be drawn by suction thereto from said source.
2. A method for dispensing a beverage comprising a mixture of concentrate and water
comprising the steps of:
(a) providing a beverage dispenser with at least one dispensing valve for mixing together
concentrate and water and for dispensing said mixture therefrom;
(b) incorporating a volumetric ratio control device in said dispensing valve to control
the ratio of water to concentrate dispensed from said dispensing valve, said device
being operated by the pressure of said water;
(c) providing a pressurized, concentrate container as a source for said concentrate
and connecting a concentrate conduit directly from said source to said device in said
dispensing valve, such that each operating cycle of said device under the pressure
of said water causes concentrate to be forced therefrom and also causes concentrate
to be drawn thereto from said source.
3. A method for dispensing a beverage comprising a mixture of concentrate and water
comprising the steps of:
(a) providing a beverage dispenser with at least one dispensing valve for mixing together
concentrate and water and for dispensing said mixture therefrom;
(b) incorpo rating a volumetric ratio control device in said dispensing valve to control
the ratio of water to concentrate dispensed from said dispensing valve, said device
being operated by the pressure of said water;
(c) providing a non-returnable, pressurizable, rigid concentrate container separate
from and outside of said dispenser, as a source for said concentrate and connecting
a concentrate conduit directly from said container to said device in said dispensing
valve, such that each operating cycle of said device under the pressure of said water
causes concentrate to be forced therefrom and also causes concentrate to be drawn
by suction thereto from said source.
4. Apparatus comprising:
(a) A beverage dispenser for dispensing a mixture of concentrate and water;
(b) at least one dispensing valve for mixing together concentrate and water and for
dispensing said mixture therefrom;
(c) a volumetric ratio control device in said dispensing valve for controlling the
ratio of water to concentrate in the mixture being dispensed from said dispensing
valve, said device being operated by the pressure of the water such that operation
of said device causes a predetermined ratio of water to concentrate to be forced therefrom
and also causes water and concentrate to be drawn thereto;
(d) means for connecting a water conduit to said device;
(e) a collapsible, concentrate container located separate from and outside of said
dispenser; and
(f) a concentrate conduit connected from said container directly to said device, such
that the concentrate is drawn from said container to said device by suction.
5. Apparatus comprising:
(a) a beverage dispenser for dispensing a mixture of concentrate and water;
(b) at least one dispensing valve for mixing together concentrate and water and for
dispensing said mixture therefrom;
(c) a volumetric ratio control device in said dispensing valve for controlling the
ratio of water to concentrate in the mixture being dispensed from said dispensing
valve, said device being operated by the pressure of the water such that operation
of said device causes a predetermined ratio of water to concentrate to be forced therefrom
and also causes water and concentrate to be drawn thereto;
(d) means for connecting a water conduit to said device;
(e) a pressurized concentrate container located separate from and outside of said
dispenser; and
(f) a concentrate conduit connected from said concentrate container directly to said
device, such that the concentrate is drawn from said container to said device by suction.
6 . Apparatus comprising:
(a) a beverage dispenser for dispensing a mixture of concentrate and water, comprising;
(b) at least one dispensing valve for mixing together concentrate and water and for
dispensing said mixture therefrom;
(c) a volumetric ratio control device in said dispensing valve for controlling the
ratio of water to concentrate in the mixture being dispensed from said dispensing
valve, said device being operated by the pressure of the water such that the operation
of said device causes a predetermined ratio of water to concentrate to be forced therefrom
and also causes water and concentrate to be drawn thereto;
(d) means for connecting a water conduit to said device;
(e) a non-returnable, pressurizable, rigid concentrate container located separate
from the outside of said dispenser; and
(f) a concentrate conduit connected from said container directly to said device such
that the concentrate is drawn from said container to said device by suction.
7. The apparatus as recited in Claim 6 and the method as recited in claim 3 wherein
said container can safely hold pressure no higher than about 10 psig.
8. The apparatus as recited in Claim 6 and the method as recited in Claim 3 wherein
said container is under pressure in the range of from about 5 to 10 psig.
9. A dispensing valve for a beverage dispenser comprising:
(a) a body including a water passageway therethrough and a separate concentrate passageway
therethrough;
(b) valve means for controlling the flow through said passageways;
(c) a nozzle for mixing together water and concentrate and for dispensing said mixture
therefrom;
(d) a double acting volumetric ratio control device in said dispensing valve for controlling
the ratio of water to concentrate in the beverage dispensed from said dispensing valve,
said device including a water piston and a concentrate piston linked to said water
piston, said piston being located in cylinders defining two water chambers and two
concentrate chambers, said passageways including a water passageway in fluid communication
with each water chamber and a concentrate passageway in fluid communication with each
concentrate chamber;
(e) said valve means including four paddle valves, one in each of said pair of water
and concentrate passageways, a single solenoid adapted to move a pivotable lever arm
back and forth, and said lever arm being connected to said four paddle valves for
opening and closing them; and
(f) means for energizing said solenoid one for every cycle of operation of said device.
10. A dispensing valve for a beverage dispenser comprising:
(a) a body including a water passageway therethrough and a separate concentrate passageway
therethrough;
(b) valve means for controlling the flow through said passageways;
(c) a nozzle for mixing together water and concentrate and for dispensing said mixture
therefrom;
(d) a double acting volumetric ratio control device in said dispensing valve for controlling
the ratio of water to concentrate in the beverage dispensed from said dispensing valve,
said device including a reciprocatable piston in a cylinder defining two water chambers
and two concentrate chambers, said passageways including a water passageway in fluid
communication with each water chamber and a concentrate passageway in fluid communication
with each concentrate chamber;
(e) said valve means including a single solenoid, a pilot valve using water as the
pilot fluid, and four 3-way poppet valves, two in each of the water and concentrate
conduits between device and said nozzle, said solenoid being connected to said pilot
valve, and said pilot valve operating said 3-way valves; and
(f) means for energizing said solenoid once for every cycle of operation of said device.
11. A dispensing valve for a beverage dispenser comprising:
(a) a body including a water passageway therethrough and a separate concentrate passageway
therethrough;
(b) valve means for controlling the flow through said passageways;
(c) a nozzle for mixing together water and concentrate and for dispensing said mixture
therefrom;
(d) a double acting volumetric ratio control device in said dispensing valve for controlling
the ratio of water to concentrate in the beverage dispensed from said dispensing valve,
said device including a reciprocatable piston in a cylinder defining two water chambers
and two concentrate chambers, said passageways including a water passageway in fluid
communication with each water chamber and a concentrate passageway in fluid communication
with each concentrate chamber; and
(e) said valve means including two 4-way slide valves and solenoid means for actuating
said slide valves.
12. The apparatus and the method as recited in Claims 1 to 6 and 9 to 11 wherein said
water is carbonated water and said concentrate is syrup.
13. A dispensing valve for use in a beverage dispenser for mixing together a quantity
of water and concentrate in a predetermined and controlled ratio, and for dispensing
the mixture therefrom comprising:
(a) a body including a water passageway and a concentrate passageway extending therethrough;
(b) a nozzle connected to said body and including means for mixing water and concentrate
together and for dispensing the mixture therefrom;
(c) said body including a volumetric ratio control device for controlling the ratio
of water to concentrate fed to said nozzle, said device including a reciprocatable
piston in a cylinder, said piston and cylinder defining a water chamber and a concentrate
chamber, said passageways including a water passageway means in communication with
said water chamber and a concentrate passageway means in communication with said concentrate
chamber;
(d) valve means in said body for controlling the flow through said passageways;
(e) said piston being operated by the pressure of the water; and
(f) solenoid means for operating said valve means in response to the movement of said
piston.
14. The valve assembly as recited in Claim 13 wherein said alve means includes four
3-way pilot-actuated poppet valves.
15. The valve assembly as recited in Claim 13 wherein said valve means includes two
4-way solenoid-actuated slide valves.
16. The valve assembly as recited in Claim 13 wherein said valve means includes four
3-way paddle valves mechanically actuated by said solenoid means.
17. A method for converting a beverage dispenser from use with one type of syrup container
to another comprising:
(a) operating said beverage dispenser connected to a selected one of the types of
syrup containers including figals, bags-in-box, or gravity tanks;
(b) providing said beverage dispenser with a plurality of dispensing valves each including
a volumetric ratio control device therein;
(c) disconnecting at least one of said valves from said selected one type of container;
(d) connecting said one valve to a different syrup container from the types of syrup
containers including figals, bags-in-box, gravity tanks, or non-returnable, rigid,
pressurizable containers that can safely hold pressure no higher than about 10 psig;
and
(e) operating said one valve directly from said different syrup container, without
adding any auxiliary equipment to the dispenser.
18. A beverage dispensing system comprising:
(a) a beverage dispenser including a dispensing valve;
(b) said dispensing valve including a volumetric ratio control device therein;
(c) a non-returnable, rigid, pressurizable syrup container connected to said dispenser
by a syrup delivery conduit, and said container being capable of safely holding pressure
no greater than about 10 psig; and
(d) said container being pressurized to a pressure in the range of from about 5 to
10 psig.
19. A method for operating a beverage dispenser comprising:
(a) providing a beverage dispenser with a dispensing valve including a volumetric
ratio control device therein;
(b) providing a non-returnable, rigid, pressurizable syrup container capable of safely
holding pressure no greater than about 10 psig;
(c) connecting said container to said dispenser with a syrup delivery conduit; and
(d) maintaining said container under pressure in the range of from about 5 to 10 psig.
20. A non-returnable, pressurizable syrup container for use with beverage dispensers
comprising:
(a) a container;
(b) a lid for said container;
(c) said container and lid being capable of safely holding syrup under pressure no
greater than about 10 psig; and
(d) said lid including means for connecting a syrup conduit thereto for withdrawing
syrup therefrom.
21. The container as recited in Claim 20 wherein said container is made of PET plastic.
22. The container as recited in Claim 20 wherein said lid includes a dip tube connected
thereto.
23. The container as recited in Claim 20 wherein said lid and container are screw-threadedly
connected together and include means for sealing said lid and container together and
for holding pressure up to about 10 psig.
24. The container as recited in Claim 20 wherein said lid includes valve connector
means for allowing said container to be pressurized.