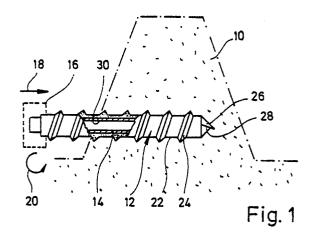
12

EUROPÄISCHE PATENTANMELDUNG


21 Anmeldenummer: 87107458.9

(5) Int. Cl.4: **E02D 5/56**, E02D 7/22

- 2 Anmeldetag: 22.05.87
- 3 Priorität: 23.07.86 DE 3624943
- Veröffentlichungstag der Anmeldung: 27.01.88 Patentblatt 88/04
- Benannte Vertragsstaaten:

 AT BE CH DE FR GB IT LI NL

- Anmelder: Delmag-Maschinenfabrik Reinhold
 Dornfeld GmbH & Co.
 Postfach 190
 D-7300 Esslingen(DE)
- ② Erfinder: Mauch, Magnus, Dipl.-Ing.
 Justinus-Kerner-Strasse 2
 D-7320 Göppingen(DE)
 Erfinder: Von Dobbeler, Hans
 Im Pfarrgarten 23
 D-7306 Denkendorf(DE)
- Vertreter: Ostertag, Reinhard et al Patentanwälte Dr. Ulrich Ostertag Dr. Reinhard Ostertag Eibenweg 10 D-7000 Stuttgart 70(DE)
- (54) Vorgefertigtes Betonteil sowie Verfahren zum Einbringen eines solchen in das Erdreich.
- © Zum Eindrehen eines vorgefertigten hohlen, rohr-oder pfahlartigen Betonteiles (12) in das Erdreich ist eine mittige axiale Ausnehmung (30) desselben mit unrundem Querschnitt ausgebildet. In diese Ausnehmung (30) wird ein entsprechend unrunden Querschnitt aufweisendes Eindrehwerkzeug (14) eingesetzt, welches die Drehmomentübertragung zur Spitze des Betonteiles (12) hin übernimmt.

10

15

25

30

35

Die Erfindung betrifft ein vorgefertigtes pfahloder rohrartiges Betonteil sowie ein Verfahren zum Einbringen eines solchen in das Erdreich.

In "Baumaschine und Technik", 9. Jahrgang, 1962, Seiten 253ff. ist ein Betonpfahl angegeben, welcher auf seiner Außenseite mit einer wendelförmigen Rippenanordnung versehen ist. Auf diese Weise kann der Betonpfahl ähnlich wie eine Schraube rasch und ohne große Geräuschbelästigung ins Erdreich eingebracht werden.

Damit der Betonpfahl die zu seinem Einbringen aufzuwendenden Drehmomente sicher vom getriebenen Pfahlende zum vorderen Pfahlende übertragen kann, wird in der Hauptanmeldung eine speziell ausgebildete Armierung vorgeschlagen. Diese Armierung kann bei gesetztem Pfahl zugleich statische Aufgaben übernehmen.

Für manche Anwendungsfälle ist es jedoch nicht notwendig, daß ein Betonteil nach dem Eindringen ins Erdreich noch hohen Belastungen standhalten muß, so z.B. dann, wenn es sich um einen hohlen Betonpfahl handelt, der im wesentlichen nur als verlorene Schalung dient, in welche Ortsbeton und die jeweils notwendige Armierung eingebracht wird, oder auch dann, wenn ein hohles Betonteil als Teilstück einer Rohrleitung dienen soll. In diesem Falle müßte das Betonteil dann eine teure Armierung erhalten, die nur während des Eindrehens ins Erdreich benötigt wird, für den in Aussicht genommenen Dauereinsatz des Pfahles aber überdimensioniert oder gar ganz entbehrlich ist.

Durch die vorliegende Erfindung soll ein vorgefertigtes Betonteil gemäß dem Oberbegriff des Anspruches 1 so weitergebildet werden, daß es ohne aufwendige Armierung ins Erd reich eingeschraubt werden kann.

Diese Aufgabe ist erfindungsgemäß gelöst durch ein Betonteil gemäß Anspruch 1.

Bei Anwendung des erfindungsgemäßen Betonteiles wird in die unrunden Querschnitt aufweisende mittige axiale Ausnehmung ein Eindrehwerkzeug eingesetzt, welches auf hohe Torsion belastbar ist. Da dieses Werkzeug wiederholt eingesetzt wird, können höhere Werkzeugkosten in Kauf genommen werden.

Über die Formschlußverbindung zwischen der Umfangsfläche des Eindrehwerkzeuges und der Umfangswand der axialen Ausnehmung des Betonteiles werden die notwendigen Eindrehmomente ohne grössere Belastung des Materiales des Betonteiles übertragen: Die Drehmomentübertragung erfolgt weitaus überwiegend oder ausschließlich über das Eindrehwerkzeug.

Die Weiterbildung der Erfindung gemäß Anspruch 2 ist im Hinblick auf das Vermeiden linienhaften Kontaktes zwischen Eindrehwerkzeug und Betonteil, im Hinblick auf eine kantenfreie Innenfläche des Betonteiles und im Hinblick auf eine gute Aufnahme von Ringspannungen von Vorteil.

Die Weiterbildung der Erfindung gemäß Anspruch 5 ist im Hinblick auf ein niederes Gewicht, leichte Handhabbarkeit und geringe Herstellungskosten des Eindrehwerkzeuges von Vorteil.

Bringt man ein Betonteil gemäß Anspruch 6 ins Erdreich ein, so kann über den Innenraum des Eindrehwerkzeuges ein Teil des verdrängten Erdreiches aufgenommen werden.

Nachstehend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigen:

Figur 1: Eine seitliche Ansicht eines Betonrohres sowie eines mit ihm zusammenarbeitenden Eindrehwerkzeuges, teilweise axial geschnitten;

Figur 2: Einen transversalen Schnitt durch das Betonrohr nach Figur 1 in vergrößertem Maßstab: und

Figur 3: Einen transversalen Schnitt, ähnlich zu Figur 2, durch ein abgewandeltes Betonrohr.

In Figur 1 ist ein Damm 10 angedeutet, durch welchen hindurch eine großen Durchmesser aufweisende Rohrleitung verlegt werden soll. Dies erfolgt unter Verwendung eines vorgefertigten, insgesamt mit 12 bezeichneten Betonrohres, das formschlüssig ein insgesamt mit 14 bezeichnetes Eindrehwerkzeug aufnimmt, welches unter Verwendung eines nur schematisch angedeuteten Antriebskopfes 16 um seine Achse gedreht (Pfeil 18) und längs seiner Achse vorgeschoben (Pfeil 20) wird.

Wie aus Figur 1 ersichtlich, hat das Betonrohr 12 eine im wesentlichen zylindrische Außenfläche 22, an welche eine wendelförmige Rippe 24 angeformt ist. Letztere hat im wesentlichen dreieckigen Querschnitt und gibt dem Betonrohr 12 die Eigenschaft einer selbstschneidenden Schraube im Erdreich. Bei seinem vorderen, in Figur 1 rechts gelegenen Ende hat das Betonrohr eine das Erdreich verdrängende Spitze 26, die - wie dargestellt - mit einer Schneidkante 28 versehen sein kann.

Wie insbesondere aus Figur 2 ersichtlich, hat das Betonrohr 12 eine innenliegende axiale Ausnehmung 30, welche sich vom hinteren, in Figur 1 links gelegenen Ende des Betonrohres 12 bis zu dessen Spitze 26 hin erstreckt. Die Ausnehmung 30 hat eine Querschnittsfläche, die durch eine Ellipse begrenzt ist. Das Verhältnis der Ellipsenhalbachsen liegt in der Praxis zwischen 0,7 und 0,9.

2

55

15

30

4

Die Außenkontur der transversalen Querschnittsfläche des Eindrehwerkzeuges 14 entspricht unter Berücksichtigung der üblichen Oberflächenrauhigkeit vorgefertigter Betonteile und der in der Praxis nicht vermeidbaren Verschmutzungen auf der Oberfläche des Eindrehwerkzeuges 14 einer kleinen Spielpassung. Dies bedeutet, daß die Außenfläche des Eindrehwerkzeuges 14 nach Drehung um einen kleinen Winkel in im wesentlichen flächige Anlage an die Innenwand der Ausnehmung 30 kommt. Auf diese Weise erfolgt die Kraftübertragung zwischen dem Eindrehwerkzeug 14 und dem Betonpfahl 12 in Umfangsrichtung verteilt, und im Material des Betonrohres 12 werden überwiegend Ringspannungen und radiale Belastungen erzeugt, welche das Betonrohr 12 auf Grund seiner Formgebung gut aufnehmen

Das Eindrehwerkzeug 14 ist seinerseits ein Hohlzylinder mit elliptischem Querschnitt, wobei die Wandstärke des Eindrehwerkzeuges 14 so groß gewählt ist, daß die Drehmomentübertragung zur Spitze des Betonrohres 12 hin weitaus überwiegend oder ausschließlich über das Eindrehwerkzeug erfolgt. Die verschiedenen axial hintereinander liegenden Abschnitte des Betonrohres 12 sind auf diese Weise gleichermaßen weitestgehend von der Aufgabe der Drehmomentübertragung befreit.

Dadurch, daß das Eindrehwerkzeug 14 hohl ist, wird nicht nur sein Gewicht klein gehalten, was sowohl im Hinblick auf eine einfache Handhabung als auch im Hinblick auf geringe Herstellungskosten von Vorteil ist, man kann auch durch das Innere des Eindrehwerkzeuges 14 von der Spitze des Betonrohres 12 her anfallendes Erdreich aufnehmen, wenn das Betonrohr 12 in Abwandlung des in Figur 1 gezeigten Ausführungsbeispieles mit einem offenen Ende ausgebildet wird.

Obwohl dies in der Zeichnung nicht näher dargestellt ist, versteht sich, daß der Antriebskopf 16 durch einen entsprechenden Schlitten längs der gewünschten Rohrachse verfahrbar ist. Beim Eindrehen des Betonrohres 12 ins Erdreich, beim hier betrachteten Ausführungsbeispiel also den Damm 10, werden die Winkelgeschwindigkeit und die Vorschubgeschwindigkeit des Antriebskopfes 16 so aufeinander abgestimmt, wie dies der Steigung der Rippe 24 entspricht. Ist das Betonrohr 12 auf die gewünschte Länge ins Erdreich eingedreht worden, beim hier betrachteten Ausführungsbeispiel vollständig durch den Damm 10 hindurchgedreht worden, so wird die Drehbewegung des Antriebskopfes 16 beendet und das Eindrehwerkzeug 14 wird durch reine Translationsbewegung in dem Pfeile 20 entgegengesetzter Richtung aus dem Betonrohr 12 herausgezogen. Nach Entfernen der Spitze 26 hat man dann ein den Damm 10 durchquerendes

Rohrleitungsstück, welches an herkömmliche externe Leitungen angeschlossen werden kann. Wie aus Figur 2 ersichtlich, hat dieses Rohrleitungsstück dann einen glatten Innenquerschnitt, der sich gut für die Führung auch verunreinigter Flüssigkeiten eignet.

Figur 3 zeigt einen transversalen Schnitt durch ein abgewandeltes Betonrohr, bei welchem die innenliegende axiale Ausnehmung 30 sechseckigen Querschnitt aufweist. Dieses abgewandelte Betonrohr wird zusammen mit einem entsprechend abgewandelten Eindrehwerkzeug verwendet, welches zur Ausnehmung 30 passenden sechseckigen Querschnitt hat.

Es versteht sich, daß man analog wie oben für Betonrohre beschrieben, auch vertikale oder schräg geneigte Betonpfähle setzen kann, wobei man nach dem Herausziehen des Eindrehwerkzeuges in die Ausnehmung 30 eine Armierung einsetzen kann und anschließend die gesamte Ausnehmung mit Ortsbeton verfüllen kann, um so einen Verbundpfahl mit hoher statischer Belastbarkeit zu erzeugen, bei welchem der ursprüngliche, vorgefertigte Betonpfahl die Funktion einer verlorenen Schalung und einer Verankerung im Erdreich erfüllt.

Es versteht sich ferner, daß man an Stelle eines einzigen pfahl-oder rohrartigen Betonteiles auch mehrere axial hintereinander gesetzte Pfahloder Rohrsegmente verwenden kann, wobei die einzelnen Segmente in an sich von Bohrlochauskleidungen her bekannter Weise durch Gewindeverbindungen oder Bajonettverbindungen miteinander verbunden sein können. In diesem Falle wird dann das Eindrehwerkzeug zweckmäßig aus gleich langen Segmenten zusammengesetzt, die ihrerseits über drehmomentübertragende lösbare Verbindungen zusammengehalten sind und jeweils gemäß dem Fortschreiten des Einbringens der Segmente angesetzt werden. In diesem Falle werden zwischen die einzelnen Pfahl-oder Rohrsegmente vorzugsweise axial etwas verformbare Ausgleichselemente eingefügt, während durch zusammenarbeitende Anschläge auf den aufeinander folgenden Werkzeugsegmenten gewährleistet ist, daß die aufeinanderfolgenden Segmentaußenflächen exakt aufeinander ausgerichtet sind, so daß das gesamte Eindrehwerkzeug unbehindert aus dem aus mehreren Segmenten zusammengesetzten Gesamtpfahl oder Gesamtrohr herausgezogen werden kann.

Ansprüche

 Vorgefertigtes pfahl-oder rohrartiges Betonteil zum Einbringen ins Erdreich, welches zumindest auf einem Teil seiner Außenfläche mit einer wendelförmigen Rippenanordnung versehen ist und

50

55

gegebenenfalls eine Armierung aufweist, dadurch gekennzeichnet, daß es eine sich über einen großen Teil seiner Axialerstreckung, vorzugsweise über seine ganze Länge verlaufende mittige axiale Ausnehmung (30) aufweist, die unrunden Querschnitt hat.

- 2. Betonteil nach Anspruch 1, dadurch gekennzeichnet, daß der Ausnehmungsquerschnitt eine glatt durchgehende geschlossene Begrenzungslinie hat, vorzugsweise ein Oval, eine Ellipse oder Eiform.
- 3. Betonteil nach Anspruch 2, dadurch gekennzeichnet, daß der Ausnehmungsquerschnitt durch ein Polygon, insbesondere ein Sechseck begrenzt ist.
- 4. Verfahren zum Einbringen eines Betonteiles nach einem der Ansprüche 1-3 in das Erdreich, bei welchem das Betonteil am Einbringungsort in gewünschter Weise ausgerichtet wird und anschließend um seine Längsachse unter gleichzeitiger Ausübung einer axialen Vorschubbewegung in das Erdreich gedreht wird, dadurch gekennzeichnet, daß in die axiale Ausnehmung (30) ein auf hohe Torsion belastbares, vorzugsweise aus Stahl gefertigtes Eindrehwerkzeug (14) gesteckt wird, welches sich im wesentlichen über die Gesamtlänge der Ausnehmung (30) erstreckt und mit einem die Dreh-und Vorschubbewegung erzeugenden Antrieb (16) gekoppelt ist.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß ein hohles Eindrehwerkzeug (14) verwendet wird.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein Betonteil (12) mit offenem vorderem Ende verwendet wird.
- 7. Verfahren nach einem der Ansprüche 4-6, dadurch gekennzeichnet, daß nach dem Eindrehen eines ersten Segmentes des Betonteiles unter Verwendung eines entsprechend langen Werkzeugsegmentes weitere Betonteilsegmente und Werkzeugsegmente gleicher Länge angesetzt und eingedreht werden, derart, daß die Werkzeugsegmente insgesamt eine fluchtend durchgehende Außenfläche haben und die Stoßfugen zwischen Betonteilsegmenten und Werkzeugsegmenten in gemeinsamen Ebenen liegen.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Werkzeugsegmente zusammenarbeitende Anschläge aufweisen, bei deren Ineingriffkommen das Fluchten der Segmentaußenflächen gewährleistet ist, und zwischen die Betonteilsegmente axial verformbare Ausgleichsstücke eingefügt werden.

10

15

20

25

30

35

40

45

50

55

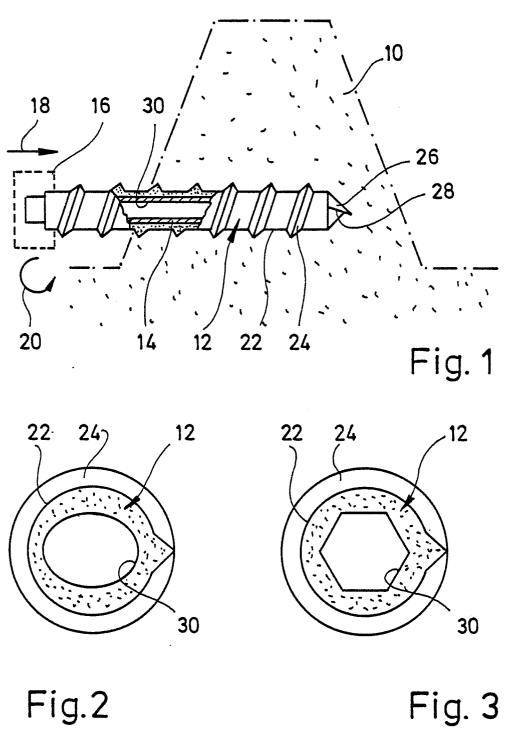


Fig. 3

EUROPÄISCHER RECHERCHENBERICHT

ΕP 87 10 7458

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
х	EP-A-O 127 221 (FABER) * Seite 1, Zeilen 1-7; Seite 2, Zeilen 9-25; Seite 3, Zeilen 5-20; Seite 4, Zeilen 13-30; Seite 6, Zeilen 8-17; Seite 7, Zeilen 15-25; Seite 8, Zeilen 21-35; Seite 9, Zeilen 37-39; Seite 10, Zeilen 1-28; Seite 11, Zeilen 16-33; Seite 12, Zeilen 9-10; Ansprüche 1,2,6,12,13; Figuren 1-7,12,14,15,16 *	1,3,4,	E 02 D 5/56 E 02 D 7/22
A		2,7,8	
х	PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 252 (M-420)[1975], 9. Oktober 1985; & JP-A-60 102 416 (MASUKAWA KENSETSU K.K.) 06-06-1985 * Das ganze Dokument *	1,4	RECHERCHIERTE SACHGEBIETE (Int. Ci.4)
A	IDEM	3	
A	FR-A-2 369 388 (GILLEN)		
Der	vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt. Recherchenort Abschlußdatum der Recherche DEN HAAG 17-09-1987	. RUYMI	Prüfer BEKE L.G.M.

EPA Form 1503 03 82

<sup>X: Von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur
T: der Erfindung zugrunde liegende Theorien oder Grundsätze</sup>

D: in der Anmeldung angeführtes Dokument
L: aus andern Gründen angeführtes Dokument

[&]amp;: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument