
©  
buropaiscnes  Patentamt 

European  Patent  Office 

Office  europeen  des  brevets 

©  Publication  number: 0  2 5 7   6 5 0  

A 2  

©  E U R O P E A N   PATENT  A P P L I C A T I O N  

Application  number:  87112494.7  ©  Int.  CI.4:  G06F  9 / 3 0  

@  Date  of  filing:  27.08.87 

©  Priority:  27.08.86  JP  198871/86  ©  Applicant:  HITACHI,  LTD. 
6,  Kanda  Surugadai  4-chome  _  ©  Date  of  publication  of  application:  Chiyoda-ku  Tokyo  101(JP) 

02.03.88  Bulletin  88/09 
Applicant:  HITACHI  MICROCOMPUTER 

©  Designated  Contracting  States:  ENGINEERING  LTD. 
DE  FR  GB  IT  1479,  Josuihon-cho 

Kodaira-shi  Tokyo(JP) 

Applicant:  Sakamura,  Ken 
105,  12-30,  Shiroganedai  3-chome  Minato-ku 
Tokyo(JP) 

@  Inventor:  Sakamura,  Ken 
No.  105,  12-30,  Shiroganedai  3-chome 
Minato-ku  Tokyo(JP) 
Inventor:  Kawasaki,  Ikuya 
Hitachiwakyouryou  459-2,  Naka-machi 
Kodaira-shi  Tokyo(JP) 
Inventor:  Hasegawa,  Atsushi 
No.  102,  Kohpomine  20-22,  Hon-cho  1-chome 
Koganei-shi  Tokyo(JP) 
Inventor:  Iwasaki,  Kazuhiko 
No.  A203,  Hitachikoyasudaiapahto  2-32 
Koyasu-machi 
Hachiohji-shi  Tokyo(JP) 
Inventor:  Tonomura,  Motonobu 
B3-6  Hitachisuzukishindenshataku  1473 
Josuihon-cho 
Kodaira-shi  Tokyo(JP) 

©  Representative:  Strehl,  Schiibel-Hopf, 
Groening,  Schulz 

^  Widenmayerstrasse  17  Postfach  22  03  45 
^  D-8000  MUnchen  22(DE) 
=s 
Ci 
^ ©   Microprocessor. 

f )  

*"e 

2)  A  microprocessor  is  disclosed  which  includes  instruction  decoding  means  (4),  instruction  execution  means 
5)  and  information  holding  means  (3),  and  includes  a  first  step  of  storing  the  information  obtained  by  execution 
if  a  first  instruction  in  the  information  holding  means  (3)  and  a  second  step  of  controlling  the  instruction 
ixecution  means  on  the  basis  of  the  information  when  a  second  instruction  is  executed. 

erox  Copy  Centre 



0  257  650 

FIG.   3  

la .  



U  257  650 

MIUHUPROCESSOR 

Conventionally,  microprocessors  are  equipped  with  various  logical  operation  instructions  such  as  logical 
5  product  (AND),  logical  sum  (OR),  exclusive-or  (XOR),  and  the  like  in  addition  to  arithmetical  operation 

instructions  such  as  addition,  subtraction,  multiplication,  division,  comparison  and  the  like. 
In  the  instruction  system  of  the  conventional  microprocessors,  the  kind  of  operation  is  designated  by  an 

instruction  (an  operation  code).  In  other  words,  an  instruction  is  prepared  for  each  operation,  and  the  kind  of 
operation  is  fixed  on  a  program  and  cannot  be  changed  unlike  data.  Therefore,  when  the  program  is  stored 

w  in  ROM  (Read-Only  Memory),  it  is  not  possible  to  change  the  operation. 

rs  When  graphic  processing  such  as  so-called  "smear-away"  or  "see-through"  is  carried  out  by  making 
logical  operations  of  data  in  a  bit  field  in  the  technical  field  such  as  a  computer  graphic,  for  example,  a 
program  could  be  developed  more  easily  if  the  kind  of  operation  can  be  determined  dynamically  while 
viewing  a  display  surface. 

However,  in  the  conventional  microprocessors  wherein  the  instruction  is  determined  in  accordance  with 
io  the  kind  of  operation,  the  operation  instruction  in  a  program  must  be  re-written  in  order  to  change  the 

content  of  the  operation  processing  and  the  program  does  not  have  flexibility. 
On  the  other  hand,  in  order  to  determine  a  next  operation  or  the  kind  of  operation  on  the  basis  of  result 

obtained  by  execution  of  a  certain  preceding  instruction,  those  instructions  or  operations  which  might  be 
executed  next  must  be  listed  up.  In  other  words,  a  program  must  be  prepared  in  such  a  manner  as  to  select 

»  one  instruction  or-  one  operation  among  those  listed  up  on  the  basis  of  the  result  obtained  by  execution  of 
the  certain  instruction.  Therefore,  in  addition  to  low  flexibility  of  program,  another  problem  develops  in  that 
instruction  selection  processing  must  be  made  and  a  high  speed  operation  is  limited  when  executing  a series  of  instructions. 

It  is  therefore  an  object  of  the  present  invention  to  provide  an  instruction  system  which  provides  a 
io  program  in  a  microcomputer  system  with  flexibility  and  which  makes  it  possible  to  develop  easily  a  program for  graphic  processing,  for  example. 

The  above  and  other  objects  and  novel  features  of  the  present  invention  will  become  more  apparent from  the  following  description  taken  in  conjunction  with  the  accompanying  drawings. 
Among  the  inventions  disclosed  herein,  the  following  will  illustrate  a  typical  example, 

s  Namely,  the  present  invention  executes  a  desired  operation  by  an  instruction  to  which  an  operand 
information  for  designating  the  kind  of  operation  is  added  outside  or  into  an  operation  designation  portion 
storing  therein  a  common  operation  code  of  "operations"  (broad  sense  of  the  word)  which  provides  the  kind 
of  operation  as  one  of  the  operands. 

According  to  the  means  described  above,  the  content  of  the  operand  for  designating  the  kind  of 
o  operation  on  the  basis  of  result  of  execution  of  a  certain  instruction  is  set  in  advance  and  the  operation  can be  executed  by  a  next  instruction  in  accordance  with  the  content  of  the  operand  described  above. 

Therefore,  the  kind  of  operation  can  be  changed  dynamically  in  the  program,  and  the  above-mentioned 
objects  of  providing  flexibility  to  a  program  and  developing  easily  a  program  for  graphic  processing  can  be 
accomplished. 

5 

BRIEF  DESCRIPTION  OF  THE  DRAWINGS 

Figs.  1  and  2  are  explanatory  views  showing  structural  examples  of  inter-bit  fields  in  bit  field 
o  operation  instructions  to  which  the  present  invention  is  applied; 

Fig.  3  is  a  block  diagram  showing  a  structural  example  of  a  microprocessor  for  executing  the  bit  field 
instruction  in  accordance  with  the  present  invention; 

Fig.  4  is  a  block  diagram  showing  an  internal  structure  of  the  execution  unit  shown  in  Fig.  3; 
Figs.  5,  6A  and  6B  are  structural  views  of  the  arithmetic  and  logic  unit  ALU  shown  in  Fig.  4; 



0  257  650 

Fig.  7  is  a  flowchart  showing  the  execution  sequence  of  the  inter-bit  field  operation  instruction  to 
which  the  present  invention  is  applied; 

Fig.  8  shows  an  execution  sequence  useful  for  explaining  in  more  detail  a  step  SI  in  Figr7;  - 
Figs.  9A  and  9B  shows  examples  of  instruction  formarts  to  which  the  present  invention  is  applied; 

5  and 
Figs.  10  and  11  are  explanatory  views  useful  for  explaining  the  operations  in  the  execution  sequence 

shown  in  Fig.  8. 

io  DESCRIPTION  OF  THE  PREFERRED  EMBODIMENTS 

Hereinafter,  an  embodiment  of  the  present  invention  which  is  applied  to  an  instruction  relating  to 
handling  of  data  from  an  arbitrary  bit  to  an  arbitrary  bit  inside  a  memory  called  a  "bit  field"  (hereinafter 
referred  to  as  a  "bit  field  instruction")  will  be  described. 

15  As  shown  in  Figs.  1  and  2  of  the  accompanying  drawings,  the  bit  field  instruction  provides  as  operands 
three  values,  that  is,  a  base  address  BA,  an  offset  Off  from  this  base  address  and  a  field  width  WD 
representing  field  length  (bit  number)  and  designates  a  desired  field  inside  a  memory  in  order  to  make 
logical  operation  processing  such  as  AND  and  OR.  Incidentally,  such  a  bit  field  instruction  is  already 
prepared  in  microprocessors  such  as  a  Motorola  MC6802.  In  this  bit  field  instruction,  the  base  address  BA, 

20  the  offset  Off  and  the  field  width  WD  are  given  by  operands  after  the  operation  code. 
This  embodiment  designates  the  kind  of  operation,  too,  by  the  operand.  As  a  definite  method  of 

designating  the  operation  by  the  operand,  the  embodiment  shown  in  Fig.  9A,  for  example,  uses  a  register 
direct  addressing  system  having  a  register  number.  In  other  words,  a  code  representing  the  kind  of 
operations  is  put  in  advance  into  a  predetermined  register  R5  and  the  register  number  storing  the  code  and 

25  an  addressing  mode  are  put  into  the  operand.  In  the  embodiment  shown  in  Fig.  9B,  on  the  other  hand, 
information  to  the  effect  that  the  kind  of  operation  is  to  be  determined  on  the  basis  of  the  content  of  the 
register  R5  is  added  to  the  operation  code.  When  the  instruction  shown  in  Fig.  9A  or  9B  is  executed,  the 
code  representing  the  kind  of  operation  is  in  advance  read  out  as  data  from  the  memory  by  a  MOVE 
instruction  or  the  like  and  stored  in  the  predetermined  register  R5. 

30  Similarly,  the  values  stored  in  predetermined  registers  are  used  for  the  base  address  BA,  the  offset  Off 
and  the  field  width  WD  to  execute  an  instruction. 

The  instruction  shown  in  Rg.  9A  or  9B  is,  for  example,  the  bit  field  instruction  which  is  a  so-called 
"inter-bit  field  operation"  instruction  which  calculates  logic  between  the  data  of  a  certain  bit  field  (source 
side)  and  the  data  of  another  bit  field  (destination  side)  and  puts  the  logic  to  the  bitfield  on  the  destination 

35  side.  Execution  of  this  instruction  needs  registers  for  storing  the  base  address  BAs,  offset  Offs  and  field 
width  WDs  for  designating  the  bit  field  on  the  source  side,  registers  for  storing  the  base  address  BAd,  offset 
OFFd  and  base  width  WDd  for  designating  the  bit  field  on  the  destination  side  and  a  register  for  storing  the 
code  for  designating  the  kind  of  operation.  However,  in  the  instruction  which  calculates  the  logic  between 
these  two  bit  fields,  the  field  width  WD  is  essentially  the  same  and  for  this  reason,  one  register  can  be  used 

40  in  common. 
Table  I  shows  one  example  of  relation  between  the  registers  used  for  the  inter-bit  field  operation 

instruction  and  the  data  stored  in  the  registers. 

45 

50 

55 

3 



u  ao(  Dt)U 

T a a i e   i  

RO  BA  of   b i t   f i e l d   on  s o u r c e   s i d e  

Rl  Of f   of   b i t   f i e l d   on  s o u r c e   s i d e  

R2  f i e l d   w i d t h   (WD) 

R3  BA  of   b i t   f i e l d   on  d e s t i n a t i o n   s i d e  

R4  Of f   of   b i t   f i e l d   on  d e s t i n a t i o n   s i d e  

R5  k i n d   of   o p e r a t i o n  

jyu.uui  on  loijioaeius  tne  uase  aaaress  ana  utt  does  the  offset. 
fable  2  illustrates  the  kinds  of  operations  designated  by  the  register  R5  described  above. 



0  257  650 

T a b l e   2 

5 

10 

25 

K i n d   of   o p e r a t i o n s   C o n t e n t  

1  T r u e   1  d e s t  

2  F a l s e   0  d e s t  

3  N o t D e s t   d e s t .   d e s t  

4  D e s t   d e s t   d e s t  

5  N o t S r c   s r c   d e s t  

6  S rc   s r c   -»@@  d e s t  

7  AND  d e s t .   a n d .   s r c   d e s t  

8  Or  d e s t .   o r .   s r c   d e s t  

9  Xor  d e s t .   x o r .   s r c   d e s t  

10  N o t A n d   d e s t .   a n d .   s r c   -*@  d e s t  

11  N o t O r   d e s t .   o r .   s e c .   ->@  d e s t  

12  A n d N o t   d e s t .   a n d .   s r c   -9-  d e s t  

13  O r N o t   d e s t .   o r .   s r c   @+  d e s t  

14  N o t A n d N o t   d e s t .   a n d .   s r c   d e s t  

15  Not   O r N o t   d e s t .   o r .   s r c   -*@  d e s t  

16  N o t X o r   d e s t .   x o r .   s r c   d e s t  

40 
In  Table  2  above,  the  operation  represented  by  True  means  the  operation  which  makes  all  the  bits  "1  " 

in  the  bit  field  on  the  destination  side  and  the  operation  False  makes  all  the  bits  "0"  in  the  bit  field  on  the 
destination  side.  The  operation  NotDest  represents  the  operation  which  inverses  the  data  of  all  the  bits  of 
the  bit  field  on  the  destination  side  and  returns  them  into  the  original  bit  field  and  the  operation  Dest  returns 

45  the  data  in  the  bit  field  on  the  destination  side  to  the  original  bit  field.  The  operation  Not  inverses  the  data  of 
all  the  bits  in  the  bit  field  on  the  source  side  and  puts  them  into  the  bit  field  on  the  destination  side  and  the 
operation  Src  puts  the  data  in  the  bit  field  on  the  source  side  into  the  bit  field  on  the  destination  side. 

Furthermore,  the  operation  AND  calculates  the  logical  product  between  the  data  of  the  bit  fields  on  the 
source  and  destination  sides  and  puts  the  result  into  the  bit  field  on  the  destination  side  and  the  operation 

50  Or  calculates  the  logical  sum  between  the  data  in  the  bit  fields  on  the  source  and  destination  sides  and  puts 
the  result  into  the  bit  field  on  the  destination  side.  The  operation  Xor  calculates  the  exclusive-or  between  the 
data  in  the  bit  fields  on  the  source  and  destination  sides  and  puts  the  result  into  the  bit  field  on  the 
destination  side.  The  operation  NotAnd  calculates  the  logical  product  between  the  inversed  value  of  the  data 
in  the  bit  field  on  the  destination  side  and  the  data  in  the  bit  field  on  the  source  side  and  puts  the  result  into 

55  the  bit  field  on  the  destination  side.  The  operation  NotOr  calculates  the  logical  sum  between  the  inversed 
value  of  the  data  in  the  bit  field  on  the  destination  side  and  the  data  in  the  bit  field  on  the  source  side  ancf 
puts  the  result  into  the  bit  field  on  the  destination  side,  and  the  operation  AndNot  calculates  the  logical 
product  between  the  data  in  the  bit  field  on  the  destination  side  and  the  inversed  value  of  the  data  in  the  bit 

5 



0  257  650 

@@em  un  me  source  siae  ana  puts  tne  result  into  the  bit  field  on  the  destination  side.  The  operation  OrNot 
calculates  the  logical  sum  between  the  data  in  the  bit  field  on  the  destination  side  and  the  inversed  value  of 
the  data  in  the  bit  field  on  the  source  side  and  puts  the  result  into  the  bit  field  on  -the  destination  side,  and 
the  operation  NotAndNot  calculates  the  logical  product  between  the  inversed  values  of  the  data  in  the  bit 

5  fields  on  the  source  and  destination  sides  and  puts  the  result  into  the  bit  field  on  the  destination  side,  and 
the  operation  NotOrNot  calculates  the  logical  sum  between  the  inversed  values  of  the  data  in  the  bit  fields 
on  the  source  and  destination  sides  and  puts  the  results  into  the  bit  field  on  the  destination  side.  The 
operation  NotXor  calculates  the  exclusive-or  between  the  inversed  value  of  the  data  in  the  bit  field  on  the 
destination  side  and  the  data  in  the  bit  field  on  the  source  side  and  puts  the  result  into  the  bit  field  on  the 

70  destination  side. 
The  various  operations  described  above  can  be  distinguished,  for  example,  by  the  lower  four  bits  of  the 

register  R5. 
When  the  inter-bit  field  operation  instruction  described  above  is  used,  the  kind  of  operation  is  given  as 

one  of  the  operands  so  that  the  kind  of  operation  can  be  changed  dynamically  during  execution  of  the 
75  program  by  merely  changing  the  data  in  the  memory  or  by  changing  the  data  loaded  from  the  memory. 

However,  it  is  necessary  to  put  the  base  address  and  the  offset  given  in  advance  as  the  operands  and  the 
code  representing  the  kind  of  operations  into  the  predetermined  registers  (Ro  -T5). 

Fig.  3  shows  an  example  of  a  graphic  display  program  using  the  inter-bit  field  operation  instruction 
(abbriviated  "BVMAP")  described  above. 

20 

-  Table  3 

LOOP  MOVE(R10)  +,  RO 
25  M0VE(R11)  +,  R1 

M0VE(R12)  +,  R2 
M0VE(R13)  +,  R3 
MOVE  (R14)  + .R4  
M0VE(R15)  +,  R5 

W  BVMPA 
SUB  LINE,  -1 
BNE  LOOP 

The  content  of  the  processing  of  the  program  described  above  is  to  execute  repeatedly  the  inter-bit 
field  operation  instruction  represented  by  BVMAP  by  changing  the  contents  of  the  registers  RO  to  R5  by 

is  post  increment  for  each  line.  For  example,  MOVE  (R10)  +1,  RO  is  an  instruction  which  updates  the  content 
of  the  register  R10  and  to  store  it  in  the  register  RO.  The  instruction  SUB  LINE,  -1  is  an  instruction  which 
substracts  1  from  the  total  line  number. 

Therefore,  in  the  program  described  above,  when  the  kind  of  operation  stored  in  the  register  R5  is 
executed  repeatedly  while  changing  it  every  time,  the  result  of  bit  field  processing  having  a  different 

w  operation  contnet  for  each  line  is  displayed  on  the  display  surface  as  a  picture. 
In  the  embodiment  described  above,  the  kind  of  operation  is  changed  by  changing  the  content  of  the 

register  R5  for  each  line.  However,  the  present  invention  is  not  particularly  limited  to  this  embodiment.  For 
example,  the  program  can  be  executed  without  updating  the  content  of  the  register  R5  by  storing  the  result 
obtained  by  a  program,  that  has  been  executed  before  the  program  described  above,  in  the  register  R5.  In 

5  this  manner,  the  kind  of  operation  can  be  changed  dynamically  during  executing  of  the  program. 
Fig.  7  shows  the  flowchart  of  the  inter-bit  field  operation  instruction  BVMAP.  The  bit  field  on  the  source 

side  is  fetched  by  use  of  the  contents  of  the  registers  RO,  R1  and  R2  at  step  S1.  Then,  the  bit  field  on  the 
destination  side  is  fetched  by  use  of  the  contents  of  the  registers  R2,  R3  and  R4  at  step  S2.  The  operation 
is  executed  at  step  3  by  use  of  the  content  of  the  register  R5.  The  end  condition  is  judged  at  step  S4. 

o  Namely,  if  the  end  condition  is  in  agreement,  the  instruction  is  finished  and  if  not,  the  flow  returns  to  the 
step  S1.  The  bit  number  of  the  data  that  can  be  fetched  once  is  determined  by  the  data  bus  length  of  the 
microprocessor.  Therefore,  in  order  to  fetch  all  the  bit  fields  and  to  make  calculation  on  the  basis  of  the  bit 
fields,  it  is  sometimes  necessary  to  carry  out  repeatedly  and  several  times  the  steps  S1  to  S3. 

5 



0  257  650 

In  the  embodiment  described  above,  the  instruction  relating  to  handling  of  mutual  data  of  the  two  bit 
fields  has  been  described,  by  way  of  example,  as  the"  bit  field  instruction.  However,  other  bit  field 
instructions  suitable  for  graphic  processing  include  an  instruction  for-storing  repeatedly  the  bit  patterns  of 
arbitrary  registers  for  the  bit  field  designated  by  the  base  address,  the  offset  and  the  field  width,  for 

5  example.  When  such  an  instruction  is  used,  a  kind  of  smear-away  operation  which  fills  up  an  arbitrary  area 
or  areas  on  the  picture  surface  by  arbitrary  patterns  (basic  figures  constituting  a  pattern)  can  be  conducted 
easily. 

Fig.  3  shows  ope  example  of  the  hardware  construction  of  the  microprocessor  operating  in  accordance 
with  the  instruction  system  having  the  bit  field  instruction  of  the  embodiment  described  above. 

io  The  microprocessor  of  this  embodiment  is  equipped  with  a  control  unit  of  a  micorprogram  control 
system.  In  other  words,  an  LSI  chip  1  constituting  the  microprocessor  includes  a  micro-ROM  (Read-Only 
Memory)  2  storing  therein  a  microprogram.  Access  to  this  microROM  2  is  made  by  a  micro  address 
generation  circuit  5  and  micro  instructions  constituting  the  micro  program  are  sequentially  outputted. 

A  signal  obtained  by  decoding  the  code  of  the  micro  instruction  fetched  to  an  instruction  register  3  by 
75  an  instruction  decoder  4  is  supplied  to  the  micro  address  generation  circuit  5.  The  micro  address 

generation  circuit  5  generates  the  corresponding  micro  address  on  the  basis  of  this  signal  and  supplies  it  to 
the  micro-ROM  2.  Accordingly,  the  first  instruction  of  a  series  of  micro  instruction  group  for  executing  the 
micro  instruction  is  read  out.  This  micro  instruction  code  generates  a  control  signal  for  an  execution  unit  6 
consisting  of  various  registers,  data  buffers  and  an  arithmetic-and-logic  unit.  The  general-purpose  registers 

20  RO  to  R15  used  in  the  embodiment  described  above  are  contained  in  this  execution  unit  6. 
The  read-out  operation  of  the  second  instruction  et  seq  of  the  series  of  micro  instruction  group 

corresponding  to  the  micro  instruction  is  effected  as  the  code  of  the  next  address  field  of  the  micro 
instruction  that  has  been  read  out  immediately  before  is  supplied  to  the  micro-ROM  2,  on  the  basis  of  the 
next  address  in  the  micro  instruction  immediately  before  and  the  address  from  the  micro  address 

25  generation  circuit  4.  In  this  manner,  the  series  of  micro  instructions  are  read  out  to  form  the  control  signal, 
which  then  controls  the  execution  unit  6  to  let  it  execute  the  micro  instruction. 

Though  not  particularly  limitative,  this  embodi  ment  employs  the  buffer  memory  system.  A  CACHE 
memory  7  is  disposed  in  the  micro  processor  LSI  and  program  data  having  high  access  frequency  among 
the  data  inside  an  external  memory  8  are  registered  to  the  CACHE  memory  7  in  order  to  improve  the 

30  acceptance  speed  of  the  program- 
Incidentally,  the  embodiment  given  above  deals  with  the  application  of  the  invention  to  the  bit  field 

instruction  suitable  for  graphic  processing  by  way  of  example,  but  the  application  to  other  calculation 
instructions  can  be  of  course  made. 

In  the  embodiment  given  above,  the  kind  of  operation  designated  by  the  operand  is  limited  to  the 
35  logical  operation  such  as  AND  and  OR,  but  as  to  the  instructions  for  executing  the  arithmetic  operation,  it  is 

likewise  possible  to  make  the  operation  code  the  same  and  to  designate  the  kind  of  operation  by  the 
operand. 

Rg.  4  shows  the  internal  block  of  the  execution  unit  6  shown  in  Rg.  3. 
In  the  execution  unit  shown  in  Rg.  4,  circuit  symbol  CBS  represents  a  register  for  latching  extension 

40  data  such  as  the  offset  value,  the  field  width,  and  the  like;  DOR  is  a  data  output  register  for  latching  the  data 
to  be  stored  in  a  memory;  DIR  is  a  data  input  register  for  latching  the  data  read  out  from  the  memory;  and 
ALN  is  an  aligner  for  aligning  the  data  that  are  inputted  and  outputted.  This  aligner  ALN  is  connected  to 
external  data  buses  through  a  data  I/O  interface  (not  shown  in  the  drawing). 

Circuit  symbol  BSF  represents  a  barrel  shifter  which  extracts  arbitrary  32  bits  among  64-bit  data  that 
45  are  inputted  simultaneously  in  32-bit  units.  This  barrel  shifter  BSF  is  constructed  in  such  a  manner  that  a 

constant  such  as  0  can  be  directly  inputted.  BCNT  represents  a  barrel  shifter  counter  for  designating  the 
extraction  position  to  the  barrel  shifter  BSF  and  BSFO  is  a  register  for  latching  the  output  of  the  barrel 
shifter  BSF.  Symbol  FB  represents  a  function  block  for  masking  and  outputting  the  upper  27  bits  by 
inputting  the  data  and  FBO  is  a  register  for  latching  the  output  of  the  function  block  FB. 

so  Circuit  symbol  AU  represents  an  address  calculation  unit  for  calculating  the  effective  address.  This 
address  calculation  unit  AU  is  constructed  in  such  a  manner  that  a  constant  such  as  0  can  be  directly 
inputted.  Symbol  AUO  represents  a  register  for  latching  the  output  of  this  address  calculation  unit  AU,  SFT 
is  a  shifter  for  shifting  the  data  before  calculation  by  the  calculation  unit,.  AOT  is  a  latch  circuit  for 
temporarily  holding  the  value  of  the  register  AUO  storing  therein  the  result  of  calculation  when  that  value  is 

55  transferred  to  later-appearing  temporary  registers  DTEO  -  DTE3,  and  AOR  is  an  address  output  register  for 
temporarily  holding  the  address  value  of  the  register  AUO  when  the  address  value  is  outputted  to  outside. 
This  register  AOR  is  connected  to  the  external  address  bus  through  an  address  I/O  interface  (not  shown). 

7  



U  257  650 

un  me  omer  nana,  circuit  symooi  ALU  represents  an  arithmetic-and-logic  unit  for  executing  the 
fundamental  arithmetic  operation  such  as  addition,  subtraction,  etc.  and  the  logical  operation,  ALUO  is  a 
register  for  latching  the  result  of  calculation  by  the  arithmetic-and-logio-  unit  ALU  and  DTEO  -  DTE3  are 
register  groups  which  are  for  latching  the  temporary  values  and  cannot  be  seen  from  outside  (or  not  open 

5  to  users).  Symbols  Ro,  Ri  Ri5  represent  general-purpose  register  group  which  are  open  to  users.  The 
various  registers,  latch  circuits,  calculators,  and  the  like  described  above  are  connected  to  one  another 
through  four  kinds  of  buses  ECB,  BA,  BB  and  BC  and  operated  sequentially  by  the  control  signal  supplied 
from  the  control  unit  consisting  of  micro  ROM  to  execute  the  corresponding  micro  instruction. 

In  accordance  with  the  present  invention,  the  arithmetic-and-logic  unit  ALU  and  the  like  can  be 
w  controlled  by  the  content  of  the  general-purpose  register  such  as  the  register  R5. 

Rg.  5  shows  the  relationship  between  the  arithmetic-and-logic  unit  ALU  shown  in  Rg.  4  and  the  register 
R5  for  controlling  the  former.  Though  not  particularly  limitative,  the  content  of  the  general-purpose  register 
is  once  stored  in  another  register  IFR,  which  outputs  the  control  signals  11  to  15.  Though  not  shown  in  Fig. 
4,  this  register  INFR  is  the  same  kind  of  register  as  the  temporary  registers  DTEO  and  the  like  and  is 

75  disposed  inside  the  execution  unit.  The  control  signal  11  is  a  signal  for  selecting  the  data  on  the  BB  BUS  or 
one  of  the  all-zero  (0)  data.  The  control  signal  12  is  a  signal  for  controlling  the  operation  of  the  inverter 
circuit  INV  and  for  making  selection  whether  the  input  signal  is  outputted  after  inversion  or  without  inversion. 
The  control  signal  13  selects  the  arithmetic  functions  of  the  arithmetic-and-logic  unit  ALU.  This  unit  ALU  has 
the  arithmetic  functions  such  as  logical  product  (AND),  the  logical  sum  (OR)  and  the  exclusive^  (XOR), 

20  and  any  one  of  these  operations  is  selected  by  the  control  signal  13.  The  control  signal  15  selects  whether 
the  data  latched  by  the  register  ALUO  is  to  be  delivered  to  BC  BUS  or  be"fed  back  to  the  input  side  of  the 
arithmetic-and-logic  unit  ALU.  The  control  signal  14  selects  the  data  fed  back  to  the  input  side  or  one  of  the 
all-zero  (0).  The  data  selected  by  the  control  signal  11  is  used  as  one  of  the  input  data  of  the  arithmetic-and- 
logic  unit  ALU  through  the  inverter  circuit  INV,  and  the  data  selected  by  the  control  signal  14  is  used  as  the 

35  other  input  data  to  the  arithmetic-and-logic  unit  ALU.  The  operation  of  this  arithmetic-and-logic  unit  is 
divided  into  two  stages.  For  example,  when  each  of  the  operations  listed  in  foregoing  Table  2  is  carried  out, 
the  first  stage  operation  state  is  shown  in  Rg.  6A  and  the  second  stage  operation  state  is  shown  in  Rg.  6B. 



0  257  650 

10 
T a b l e   4 

S e l e c t i o n   S e l e c t i o n   S e l e c t i o n  
75  ^   Ix  by  I2  b y j ^  

1  0  NOT  INVERSION  OR 

2  0  NOT  INVERSION  OR 
20 

3  0  NOT  INVERSION  OR 

4  0  NOT  INVERSION  OR 

25  5  s r c   INVERSION  OR 

6  s r c   NOT  INVERSION  OR 

7  s r c   NOT  INVERSION  OR 
30 

8  s r c   NOT  INVERSION  OR 

9  s r c   NOT  INVERSION  OR 

35  10  s r c   NOT  INVERSION  OR 

11  s r c   NOT  INVERSION  OR 

12  s r c   INVERSION  OR 
40 

13  s r c   INVERSION  OR 

14  s r c   INVERSION  OR 

45  15  s r c   INVERSION  OR 

16  s r c   NOT  INVERSION  OR 

50 

g 



U  257  650 

T a b l e   b 

5  S e l e c t i o n   S e l e c t i o n   S e l e c t i o n  
by  11  by  i2  by  i ?  

1  0  INVERSION  .  OR 

10  2  0  NOT  INVERSION  OR 

3  d e s t   INVERSION  OR 

r5  
4  d e s t   NOT  INVERSION  OR 

5  0  NOT  INVERSION  OR 

6  0  NOT  INVERSION  OR 
W  7  d e s t   NOT  INVERSION  AND 

8  d e s t   NOT  INVERSION  OR 

,5  .  
9  d e s t   NOT  INVERSION  XOR 

10  d e s t   INVERSION  AND 

11  d e s t   INVERSION  OR 
m  ~   l  T ~ ~  12  d e s t   NOT  INVERSION  AND 

13  d e s t   NOT  INVERSION  OR 

5  14  d e s t   INVERSION  AND 

15  d e s t   INVERSION  OR 

16  d e s t   INVERSION  XOR 
io  —  —  —  — 

lauies   ̂ aim  o  musiraie  m  aetan  tne  operation  conditions  shown  in  Figs.  6A  and  6B,  respectively. 
When,  for  example,  the  first  calculation  1  —  dest  shown  in  Table  2  is  made,  the  control  described  in  the 
first  row  of  Table  4  is  effected  in  Fig.  6A.  In  other  words,  the  control  signal  11  selects  all-zero  (0),  which  is 
used  as  one  of  the  input  data  to  the  arithmetic-and-logic  unit  ALU  without  inversion.  The  other  input  data  to 

s  the  arithmetic-and-logic  unit  ALU  is  all-zero  (0).  The  calculation  function  of  this  arithmetic-and-logic  unit  ALU 
is  set  to  logical  sum  (OR)  by  the  control  signal  13  and  the  result  of  calculation  is  all-zero  (0).  Next,  the 
control  in  the  first  row  of  Table  5  is  made  in  Fig.  6B.  In  other  words,  all-zero  (0)  is  selected  by  the  control 
signal  11,  then  inversed  to  all-one  (1)  by  the  inverter  circuit  INV  and  used  as  one  of  the  input  data  to  the 
arithmetic-and-logic  unit.  The  other  input  data  to  the  arithmetic-and-logic  unit  ALU  is  the  result  of  calculation 

3  described  above  (all-zero).  Since  the  calculation  function  of  the  arithmetic-and-logic  unit  ALU  is  set  to  the 
logical  sum  (OR)  by  the  control  signal  13,  the  result  of  calculation  is  all-one  (1).  When  this  data  is  stored  in 
the  bit  field  on  the  destination  side,  the  execution  of  the  calculation  1  —  dest  is  complete. 

Similarly,  the  tenth  operation  dest  .AND.src  -dest  is  executed  in  the  following  way.  The  control 
in  the  10th  row  of  Table  4  is  effected  in  Fig.  6A.  In  other  words,  the  control  signal  11  selects  the  data  on  BB 

5  BUS  (in  this  case,  the  value  of  the  bit  field  on  the  source  side)  src  and  this  data  is  used  as  one  of  the  input 
data  to  the  arithmetic-and-logic  unit  ALU  without  inversion.  The  other  input  data  to  the  arithmetic-and-logic  

"* 
unit  ALU  is  all-zero  (0).  Since  the  calculation  function  of  this  arithmetic-and-logic  unit  ALU  is  set  to  the 
logical  sum  (OR),  for  example,  by  the  control  signal  13,  the  result  of  calculation  is  the  value  of  the  bit  field 

10 



0  257  650 

on  the  source  side  (src).  Next,  the  control  in  the  10th  row  of  Table  5  is  effected  in  Fig.  6B.  In  other  words, 
the  control  signal  11  selects  the  data  on  BB  BUS  (in  this  case,  the  value  of  the  bit  field  on  the  destination 
side)  dest,  and  this  data  is  inversed  by  the  inverter  circuiWNV  (to  d e s t   -  )  and  used  as  one  of  the 
input  data  of  the  arithmetic-and-logic  unit  ALU.  The  result  of  calculation  described  above  (src)  is  used  as 

5  the  other  input  data.  Since  the  calculation  function  of  the  arithmetic-and-logic  unit  ALU  is  set  to  the  logical 
product  (AND)  by  the  control  signal  13,  the  result  of  calculation  is  d e s t   AND  src.  When  this  data  is 
stored  in  the  bit  field  on  the  destination  side,  the  execution  of  d  e  st  AND  src  is  complete. 

In  this  embodiment,  the  arithmetic-and-logic  unit  ALU  and  the  like  are  directly  controlled  by  the  content 
of  the  register  R5,  but  the  present  invention  is  not  particularly  limited  to  this  embodiment.  For  example,  the 

ro  arithmetic-and-logic  unit  ALU,  etc.  may  be  controlled  indirectly  by  the  content  of  the  general-purpose 
register  R5.  For  instance,  the  content  of  the  register  R5  is  supplied  to  the  instruction  decoder  4  or  the  like 
to  obtain  the  control  signals  11  to  15  from  the  micro  ROM  2.  In  the  embodiment  described  above,  the  control 
signal  11  is  the  selection  signal  for  selecting  the  data  on  BB  BUS  or  not,  but  it  is  not  particularly  limited 
thereto.  For  example,  a  supply  source  for  supplying  the  data  to  the  BB  bus  and  the  like  may  be  controlled 

75  by  this  control  signal  11  .  Incidentally,  the  value  src  of  the  bit  field  on  the  source  side  or  the  value  dest  of  the 
bit  field  on  the  destination  side  is  sent  to  BB  BUS  by  the  output  latch  register  BSFO  of  the  barrel  shifter 
BSFO. 

Fig.  8  shows  in  further  detail  the  execution  sequence  of  the  step  SI  in  the  flowchart  shown  in  Fig.  7. 
This  step  S1  consists  of  steps  S01  to  S12. 

20  Incidentally,  among  the  general-purpose  registers  Ro  to  R15  shown  in  Rg.  4,  those  with  symbols  Ra,  Rb, 
Rx  and  Ry  are  registers  for  storing  the  source  base  address,  the  destination  address,  the  offset  value 
address  and  the  bit  field  width,  respectively.  It  is  possible  to  designate  the  arbitrary  number  of  the  general- 
purpose  registers  Ro  to  R15  and  to  use  them  as  these  registers  Ra,  Rb,  Rx  and  Ry. 

At  the  first  step  S01  ,  the  value  of  the  register  Rx,  that  is,  the  address  representing  the  storage  position 
25  of  the  offset  value  is  inputted  to  the  address  calculation  unit  AU  through  the  bus  BA  or  BB  and  0  is  also 

inputted  to  the  unit  AU  by  the  constant  input  function,  and  the  result  of  addition  is  stored  in  the  register 
AUO. 

At  the  second  step  S02,  the  address  value  (the  offset  value  address)  stored  in  the  register  AUO  at  the 
first  step  S01  is  transferred  to  the  register  AOR  and  at  the  same  time,  a  request  instruction  is  given  to  the 

30  I/O  interface  so  as  to  fetch  the  data  on  the  external  data  bus.  Accordingly,  the  address  value  in  the  register 
AOR  is  outputted  to  the  external  address  bus  through  the  I/O  interface  and  access  is  made  to  the  external 
memory  so  that  the  content  of  the  memory  is  outputted  to  the  data  bus.  Then,  the  data  read  out  from  the 
memory,  that  is,  the  offset  value  Off,  is  fetched  by  the  I/O  interface. 

At  the  step  S03,  whether  or  not  the  data  fetched  is  determined  is  confirmed  on  the  basis  of  the  signal 
35  outputted  from  the  I/O  interface.  Thus,  the  data  is  taken  into  the  data  input  register  DIR.  At  the  same  time, 

at  the  step  S03,  the  value  of  the  register  Ra,  that  is,  the  source  base  address  BAD,  is  inputted  to  the 
address  calculation  unit  AU  through  the  bus  BA  or  BB  and  0  is  also  inputted  to  the  unit  AU  by  the  constant 
input  function  and  the  result  of  addition  is  stored  in  the  register  AUO. 

Next,  at  the  fourth  step  S04,  the  value  of  the  register  AUO  described  above  (source  base  address)  is 
40  transferred  to  the  register  AOR  and  further  to  the  temporary  register  DTEO  through  the  bus  BC. 

When  the  result  of  calculation  of  the  address  calculation  unit  is  transferred  from  the  register  AUO  to 
AOR  in  connection  with  other  processings,  it  is  also  transferred  automatically  to  the  register  AOT.  Here, 
transfer  of  the  result  to  the  register  AOT  has  not  specific  meaning  at  all.  In  parallel  with  the  operation 
described  above,  0  is  inputted  to  the  address  calculation  unit  AU  by  the  constant  input  function  and  the 

45  content  of  the  data  input  register  DIR  (the  offset  value)  is  inputted  after  code  expansion  through  the  buss 
BB  and  the  result  of  calculation  is  stored  in  the  register  AUO.  Furthermore,  the  holding  value,  that  is,  the  bit 
field  width  WB,  is  supplied  from  the  register  Ry  to  the  function  block  FB  through  the  bus  BA,  and  the 
function  block  FB  masks  the  upper  27  bits  other  than  the  lower  bits,  with  the  result  being  stored  in  the 
register  FBO.  When  expressed  mathematically,  extraction  of  only  the  lower  five  bits  of  the  bit  field  width  is 

50  equivalent  to  determination  of  the  remainder  of  division  of  the  bit  field  width  by  "32".  Hereinafter,  the  lower 
five  bits  of  the  bit  field  width  will  be  called  the  "end  number  WD*".  Here,  the  end  number  WD*  is 
determined  in  order  to  judge  boundary  crossing  at  the  later-appearing  step  S09. 

Next,  at  the  step  S06,  the  value  of  the  register  AUO,  that  is,  the  offset  value  Off,  is  transferred  to  the 
temporary  register  DTE1  through  the  bus  BC.  At  the  same  time,  the  value  of  the  register  AUO  (the  offset 

55  value)  and  the  value  of  the  temporary  register  DTEO,  that  is,  the  value  obtained  by  shifting  the  source  base 
address  BAD  to  the  upper  order  side  by  three  bits  by  the  shifter  SFT,  are  supplied  to  the  address 
calculation  unit  AU,  and  the  result  of  addition  is  stored  in  the  register  AUO.  The  reason  why  the  source  base 
address  BAD  is  shifted  by  three  bits  to  the  upper  order  side  is  to  expand  the  base  address  BAD,  which  is 

11 



0  257  650 

orrcuiyBo  in  &ucn  a  manner  max  me  memory  space  can  be  divided  and  designated  in  a  byte  unit,  is 
expanded  so  that  the  position  inside  the  memory  space  can  be  designated  in  the  bit  unit.  Therefore,  what  is 
stored  in  the  register  AUO  at  this  time  is  the  distance  expressed  by  the  bit  number  from  the  address  0  of 
the  bit  field  to  be  determined.  This  distance  will  be  called  "L". 

5  At  the  step  S06,  the  value  of  the  register  AUO  described  above,  that  is,  the  sum  of  the  offset  value  Off 
and  the  value  obtained  by  shifting  the  base  address  to  the  upper  order  side  by  three  bits,  is  transferred  to 
the  register  AOT.  On  the  other  hand,  the  source  base  address  BAD  is  inputted  from  the  temporary  register 
DTEO  to  the  address  calculation  unit  AU  through  the  bus  BA,  and  the  value  obtained  by  shifting  the  offset 
value  Off  transferred  from  the  temporary  register  DTE1  through  the  bus  BB  to  the  lower  order  side  by  three 

io  bits  by  the  shifter  SET  is  inputted  and  added  to  the  source  base  address  BAD,  and  the  value  obtained  by 
masking  the  lower  two  bits  of  the  result  of  addition  is  stored  in  the  register  AUO.  At  the  same  time,  the 
value  WD*  in  the  register  FBO,  that  is,  the  lower  five  bits  of  the  bit  field  width,  are  transferred  to  the 
temporary  register  DTE3  through  the  bus  BC. 

In  the  above-mentioned  case,  the  address  calcula  tion  unit  AU  calculates  the  addition  between  the  base 
75  address  and  the  value  obtained  by  shifting  the  offset  value  by  three  bits  to  the  lower  order  side  in  order  to 

determine  the  execution  address  of  the  byte  unit  which  is  the  nearest  to  the  start  of  the  bit  field  as  the 
object.  The  reason  why  the  lower  two  bits  of  the  result  of  addition  are  masked  in  the  address  calculation 
unit  AU  is  to  obtain  the  address  of  the  bit  field  as  the  object  as  a  whole  or  a  32-bit  word  containing  its 
leading  portion. 

20  At  the  seventh  step  S07,  the  word  address  in  the  register  AUO  obtained  in  the  manner  described  above 
is  transferred  to  the  address  output  register  AOR  and  outputted  to  outside  through  the  I/O  interface.  At  the 
same  time,  an  instruction  requesting  fetch  of  the  data  on  the  external  data  bus  is  given  to  the  I/O  interface. 
Therefore,  fetch  of  the  word  containing  the  leading  portion  of  the  bit  field  to  be  determined  is  started.  In 
parallel  therewith,  the  address  held  by  the  register  AUO  is  transferred  to  the  temporary  register  DTE2 

>s  through  the  bus  BC.  The  value  L  representing  the  bit  position  from  the  address  0  of  the  bit  field  obtained  at 
the  step  S05  is  supplied  to  the  function  block  FB  from  the  register  AOT  through  the  bus  BA  and  the  result 
is  stored  in  the  register  FBO.  Accordingly,  the  leading  position  Off  of  the  bit  field  (which  is  one  of  the  offset 
vaiues  anxt  will  be  hereinafter  caHed  a  "secondary  offset")  from  the  word  address  containing  the  leading 
portion  of  the  bit  field  obtained  at  the  step  S06  (which  is  in  agreement  with  the  base  address  when  offset  is 

»  below  31)  is  held  by  the  register  FBO. 
Subsequently,  at  the  step  S08,  the  value  Off*  (secondary  offset)  in  the  register  FBO  described  above  is 

transferred  to  the  temporary  register  DTE2  through  the  bus  BC,  and  at  the  same  time,  the  value  WD*  (the 
lower  five  bits  of  the  bit  field  width)  in  the  temporary  register  DTE3  is  supplied  to  and  added  by  the 
arithmetic-and-logic  unit  ALU  through  the  buses  BA  and  BB  and  the  result  of  addition  is  stored  in  the 

is  register  ALUO.  Then,  the  constant  "33"  is  set  from  the  side  of  the  control  unit  to  the  register  CSB.  The 
number  "33"  is  the  sum  of  the  bit  number  "32"  of  one  word  and  the  number  "1  ".  Also,  whether  or  not  the 
data  fetched,  that  is,  the  content  of  the  bit  field  to  be  determined,  is  determined  is  confirmed  on  the  basis  of 
the  signal  from  the  I/O  interface.  If  the  data  is  determined,  that  data  is  taken  into  the  data  input  register  DIR. 

At  the  next  step  S09,  the  value  fetched  from  the  I/O  interface  is  transferred  from  the  data  input  register 
v  DIR  to  the  temporary  register  DTE2  through  the  bus  BC.  In  parallel  with  this  operation,  the  arithmetic-and- 

logic  unit  ALU  subtracts  the  value  "33"  of  the  register  CBS  from  the  value  of  the  register  ALUO  (Off  + 
WD*)  and  its  result  is  stored  in  the  register  ALUO.  Here,  if  the  result  of  subtraction  is  positive,  it  means  that 
the  bit  field  bridges  over  two  words  and  if  the  result  is  negative,  it  means  that  the  bit  field  falls  within  one 
word. 

s  At  the  step  S09,  the  shifting  direction  and  the  shifting  quantity  of  the  bit  shift  processing  to  be  carried 
out  in  the  barrel  shifter  BSF  at  the  next  step  are  designated.  More  definitely,  the  instruction  in  the  rightward 
direction  is  given  to  the  barrel  shifter  counter  BCNT  and  the  value  Off  in  the  register  FBO  is  supplied  as 
the  shifting  quantity  to  the  barrel  shift  counter  BCNT  through  the  bus  BA. 

At  the  step  S10,  the  value  of  the  temporary  register  DTE2,  that  is,  the  content  of  the  bit  field  fetched 
o  from  the  memory,  is  supplied  to  the  barrel  shift  BSF  through  the  bus  BB  and  at  the  same  time,  0  is  inputted 

by  the  constant  input  function  so  taht  the  barrel  shift  counter  BCNT  executs  the  shift  operation  in 
accordance  with  the  instruction  and  the  result  is  stored  in  the  register  BSFO.  Accordingly,  the  content  of  the 
bit  field  fetched  is  stored  in  the  32-bit  register  BSFO  while  being  packed  to  the  left  or  under  the  packed 
state  from  the  upper  bit  side  of  the  register  in  sequence  as  shown  in  Rg.  8.  In  parallel  with  this  operation, 

5  the  instruction  of  the  shifting  direction  and  shifting  quantity  to  be  executed  at  the  next  step  in  the  barrel 
shifter  BSF  is  given  at  this  step  S10.  In  other  words,  the  instruction  of  the  right  shift  is  given  to  the  barrel 
shifter  counter  BCNT  and  the  bit  field  width  WD*  in  the  temporary  register  DTE3  is  supplied  as  the  shifting 
quantity  through  the  bus  BA. 

12 



0  257  650 

At  the  step  S11,  the  value  of  the  register  BSFO  and  "0"  are  inputted  to  the  barrel  shifter  BSF,  the  shift 
operation  is  carried  out  in  the  designated  direction  and  shift  quantity  and  the  result  is  stored  in  the  register 
BFSO.  When  the  content  of  the  bit  field  stored  in  tfie  register  BSFO  is  shifted  rightward  by  a  distance 
corresponding  to  the  field  width  WD*,  the  content  of  the  bit  field  fetched  is  packed  to  the  right  end  in  the 

5  32-bit  register  BSFO,  or  under  the  desired  packed  state  from  the  lower  order  side  of  the  register  in 
sequence. 

The  content  of  the  bit  field  thus  obtained  is  stored  at  the  next  step  S12  in  one  of  the  general-purpose 
registers  Rb  from  the  register  BSFO  through  the  bus  BC. 

Furthermore,  when  it  is  judged  at  the  step  S09  that  the  result,  of  subtraction  between  the  sum  of  Off 
70  and  WD*  and  the  constant  "33"  is  positive  and  the  bit  field  crosses  over  the  boundary,  the  flow  returns 

again  to  the  step  S08  from  the  step  S12  and  the  procedures  described  above  are  repeated  so  that  all  the 
contents  of  the  bit  field  crossing  over  a  plurality  of  words  are  read  out. 

Rg.  10  shows  the  relationship  between  the  offset  value  Off  and  the  bit  field  width  WD  and  the 
secondary  offset  Off  and  the  end  number  WD*  in  the  micro-flow  described  above. 

75  Incidentally,  in  the  execution  sequence  of  the  bit  field  instruction  without  limitation  in  accordance  with 
the  micro-flow  shown  in  Rg.  8,  boundary  crossing  is  judged  depending  upon  whether  the  result  of 
subtraction  of  the  number  "33"  from  the  sum  of  the  secondary  offset  Off  and  the  end  number  WD*  of  the 
bit  field  is  positive  or  negative.  Originally,  judgement  of  boundary  crossing  should  be  made  from  the 
primary  offset  Off  and  the  bit  field  width  WD  and  the  description  of  such  a  micro-flow  can  be  made. 

20  However,  it  is  obvious  from  Fig.  7,  too,  that  the  same  result  can  be  obtained  when  judgement  of  boundary 
crossing  is  made  depending  upon  whether  or  not  the  sum  of  the  secondary  offset  Off  and  the  end  number 
WD*  of  the  bit  field  exceeds  the  number  "32"  as  in  the  embodiment  described  above  as  when  judgement  is 
made  by  adding  the  bit  field  width  WD  to  the  primary  offset  and  then  dividing  the  sum  by  32  bits  from  the 
base  address  BAD. 

25  Though  the  present  invention  has  thus  been  described  definitely  with  reference  to  the  preferred 
embodiment  thereof,  the  invention  is  not  particularly  limited  thereto  but  can  of  course  be  changed  or 
modified  in  various  manners  without  departing  from  the  scope  and  spirit  thereof.  For  example,  in  the 
embodiment  given  above,  the  base  address,  offset  and  field  width  of  the  bit  field  and  the  kind  of  operation 
are  given  by  the  operands,  but  they  may  be  given  by  an  effective  address  unit  in  place  of  the  operands. 

30  The  operation  instruction  of  the  present  invention  which  designates  the  kind  of  operations  by  the 
operand  may  be  disposed  either  in  place  of  the  conventional  fixed  operations  or  in  combination  with  the 
latter. 

Though  the  description  given  above  primarily  deals  with  the  application  of  the  invention  to  the 
instruction  system  of  the  microprocessor  which  constitutes  the  background  and  is  the  field  of  utilization  of 

35  the  invention,  the  present  invention  is  not  particularly  limited  thereto  but  can  be  applied  to  instruction 
systems  of  data  processing  systems  in  general  such  as  computers  and  mini-computers  of  a  program 
control  system. 

The  effect  brought  forth  by  the  typical  example  of  the  present  invention  is  as  follows. 
Namely,  the  present  invention  can  provide  flexibility  to  the  program  and  can  easily  develop  a  program 

40  for  graphic  processing,  for  example. 

Claims 

45  1  .  A  microprocessor  including: 
instruction  decoding  means  (4); 
instruction  execution  means  (6);  and 
information  holding  means  (3); 

said  microprocessor  including  a  first  step  of  storing  the  information  obtained  by  execution  of  a  first 
50  instruction  in  said  information  holding  means,  and  a  second  step  of  controlling  said  instruction  execution 

means  on  the  basis  of  said  information  when  a  second  instruction  is  executed. 
2.  A  microprocessor  according  to  claim  1,  wherein  said  instruction  execution  means  includes  an 

arithmetic-and-logic  unit  (ALU)  and  the  calculation  function  of  said  arithmetic-and-logic  unit  is  controlled  on 
the  basis  of  said  information.. 

55  3.  A  microprocessor  according  to  claim  2,  wherein  said  information  holding  means  is  a  general-purpose 
register. 

13 



instruction  decoding  means  (4);  and 
instruction  execution  means  (6); 

wherein  the  operation  code  of  the  instruction  decoded  by  said  instruction  decoding  means  contains  an 5  information  for  executing  control  of  at  least  part  of  said  instruction  execution  means  on  the  basis  of  the information  stored  in  rewritable  information  holding  means. 
5.  A  microprocessor  according  to  claim  4,  wherein  an  address  information  for  designating  the  address inside  said  information  holding  means  for  storing  said  information  is  contained  in  said  operation  code. 6.  A  microprocessor  according  to  claim  4,  wherein  the  address  information  for  designating  the  address 

w  inside  said  information  holding  means  for  storing  said  information  is  contained  in  an  operand  area. 7.  A  microprocessor  according  to  claim  4,  wherein  said  rewritable  information  holding  means  is  a register  inside  a  microprocessor. 
8.  A  microprocessor  according  to  claim  7,  wherein  said  instruction  execution  means  includes  an 

arithmetic-and-logic  unit,  and  the  calculation  function  of  said  arithmetic-and-logic  unit  is  controlled  on  the 
f5  basis  of  the  content  of  said  register. 

9.  A  microprocessor  according  to  claim  8,  wherein  the  kind  of  operation  of  said  arithmetic-and-logic  unit is  selected  in  according  with  the  content  of  said  register. 
10.  A  microprocessor  according  to  claim  9,  wherein  the  instruction  decoded  by  said  instruction 

decoding  means  is  an  instruction  relating  to  handling  of  data  in  an  area  from  an  arbitrary  bit  to  another :o  arbitrary  bit  inside  a  memory. 



I 
X  
r -  I— 
Q  

.  ^   I °  
I  i"  IS. 

k   1 5   I  u .  
u  I 



U  257  650 

F I G .   3  

N5TRU.CTI0N 
DECODER 

'IICRO  ADDRESS 

la  tLU  (  IUN  UNIT 



or  or  or  or 



U  £OI  OOU 

F I G .   5  

U 
i 

V  

ALU 

i  i r  
I  l 

3b  B U S  

I N F R  

3 5  

B U S  

= 7 G .   6 B  



U  257  650 

F I G .   7  

START 

FETCH  BIT  F I E L D  
ON  SOURCE  S I D E  

FETCH  BIT  FIELD  ON  - 
DESTINATION  S I D E  

51 

5 2  

CALCULATE  UN  THE  BASIS  OF 
CONTENT  OF  REGISTER  R5 

r 



F I G .   8  

INPUT  THE  Rx  VALUE  AND  0  TO  AU  AND  STORE  RESULT  IN  AUO.  J- 

TRANSFER  THE  VALUE  OF  AUO  TO  AOR  AND  INSTRUCT  I/O  TO  FETCH  REOUEST  AT  THF SAME  TIME. 

CONFIRM  IF  DATA  FETCHED  TO  I/O  IS  DETERMINED.  ADD  Ra  AND  0  BY  AU  AND  STORE THE  RESULT  IN  AUO. 

S 0 1  

S 0 2  

S 0 3  

5 0 A  Tn̂ wt,  j.v/  ruiu  nui  niiu  ruKiruiK  TU  Lriav  THKOUGH  BC  BUS CNPUT  0  AND  DiR  VALUE  TO  AU  THROUGH  BB  BUS  AND  AT  THE  SAME  TIME  CODE-EXPAND WD  ADD  THE  VALUES  AND  STORE  RESULT  IN  AUO.  INPUT  Ry  VALUE  TO  FB  THROUGH 3A  BUS,  WHERE  UPPER  BITS  ARE  MASKED  SO  THAT  ONLY  LOWER  FIVE  BITS  CAN  BE  SEEN 3  TORE  RESULT  IN  FBO. 

1 
TRANSFER  AUO  VALUE  TO  DTE1  THROUGH  SC  BUS.  ADD  SUO  AND  VALUE  OBTAINED  BY  h  
SHIFTING  TO  LEFT  THE  DTEO  VALUE  BY  THREE  BITS  BY  AU  AND  STORE  RESULT  IN  AUO  | 

- 5 0 5  

5 0 6  @•*««•"-  ^   "vj..  aw  inc.  ulckj  vhl,uh  lwrUTTillJ  THKUUGH  BA  BUS ND  THE  VALUE  OBTAINED  BY  SHIFTING  TO  RIGHT  BY  THREE  BITS  THE  DTE1  VALUE NPUTTED  THROUGH  BB  BUS,  AND  STORE  THE  VALUE  OBTAINED  BY  MASKING  THE  LOWER 'WO  BITS  OF  THE  RESULT  IN  AUO.  TRANSFER  THE  FBO  VALUE  TO  DTE3  THROUGH  BC  BUS 

5 0 7  ,"uu"  iu  ™r  "J-  -tnc  aHwc,  xirai,  iMoTKUCT  FETCH  REQUEST O  I/O.  FURTHER,  TRANSFER  THE  AUO  VALUE  TO  DTE  2  THROUGH  BC  BUS  INPUT  THE OT  VALUE  TO  FB  THROUGH  BA  BUS,  AND  MASK  THE  UPPER  BITS  SO  THAT  ONLY  LOWER IVE  BITS  CAN  BE  SEEN.  STORE  THE  RESULT  IN  FBO. 

5 0 8  .  umuuun  ov-  duo.  nuu  1MB,  UTEJ  VALUE  INPUTTED HROUGH  BA  BUS  AND  THE  FBO  VALUE  INPUTTED  THROUGH  BB  BUS  BY  ALU  AND  STORE HE  RESULT  IN  ALUO.  SET  CONSTANT  "33"  TO  OBS.  CONFIRM  IF  DATA  FETCHED  TO /O  IS  CONFIRMED. 

> 0 9  -  ^ ^ i u u u b u   di  iwwri  rcivn  TU  intLZ  THKUUGH  BC  BUS JBTRACT  THE  ALUO  VALUE  AND  CONSTANT  VALUE  OF  CBS  INPUTTED  THROUGH  ECB JS  AND-  STORE  RESULT  IN  ALUO.  INSTRUCT  RIGHTWARD  DIRECTION  TO  BCNT  AND VPUT  THE  FBO  VALUE  THROUGH  BA  BUS. 

1 
Nf  UT  THE  DTE2  VALUE  AND  0  TO  BSF  THROUGH  BB  BUS  AND  STORE  RESULT  IN  BSFO NSTRUCT  RIGHTWARD  DIRECTION  TO  BCNT  AND  INPUT  THE  DTE  3  VALUE  THROUGH  BA US  > 

NPUT  0  AND  THE  BSFO  VALUE  TO  BSF  TO  MAKE  TEST  AND  STORE  RESULT  IN  BSFO  |~! 

TORE  THE  BSFO  VALUE  IN  Rb  THROUGH  BC  BUS.  J^J 

n o  

.11 

.12 



Dl 
CO 
CD 

I  

I  

/ /  


	bibliography
	description
	claims
	drawings

