Europdisches Patentamt

.0) European Patent Office (™ Publication number: 0 257 650

Office européen des brevets A2
® EUROPEAN PATENT APPLICATION
@) Application number: 87112494.7 @ Int. cl4 GO6F 9/30

@) Date of filing: 27.08.87

®) Priority: 27.08.86 JP 198871/86 @ Applicant: HITACHI, LTD.
‘6, Kanda Surugadai 4-chome e
@ Date of publication of application: Chiyoda-ku Tokyo 101(JP)

02.03.88 Bulletin 88/09
Applicant: HITACHI MICROCOMPUTER
Designated Contracting States: ENGINEERING LTD.

DEFRGBIT 1479, Josuihon-cho
Kodaira-shi Tokyo(JP)

Applicant: Sakamura, Ken
105, 12-30, Shiroganedai 3-chome Minato-ku
Tokyo(JP)

@ inventor: Sakamura, Ken
No. 105, 12-30, Shiroganedai 3-chome
Minato-ku Tokyo(JP)
inventor: Kawasaki, lkuya
Hitachiwakyouryou 459-2, Naka-machi
Kodaira-shi Tokyo(JP)
inventor: Hasegawa, Atsushi
No. 102, Kohpomine 20-22, Hon-cho 1-chome
Koganei-shi Tokyo(JP)
Inventor: Iwasaki, Kazuhiko
No. A203, Hitachikoyasudaiapahto 2-32
Koyasu-machi
Hachiohji-shi Tokyo(JP)
Inventor: Tonomura, Motonobu
B3-6 Hitachisuzukishindenshataku 1473
Josuihon-cho
Kodaira-shi Tokyo(JP)

Representative: Strehl, Schiibel-Hopf,
Groening, Schuiz
Widenmayerstrasse 17 Postfach 22 03 45
D-8000 Miinchen 22(DE)

50 A2
|

©@E) Microprocessor.

57

N@ A microprocessor is disclosed which includes instruction decoding means (4), instruction execution means
¢ (6) and information holding means (3), and includes a first step of storing the information obtained by execution

of a first instruction in the information holding means (3) and a second step of controlling the instruction
&execution means on the basis of the information when a second instruction is executed.

Xerox Copy Centre

0 257 650

FIG. 3

—\7
CACHE MEMORY
8
{ 3 4
{ !
EXTERNAL §
=T INSTRUCTION
MEMORY e g‘.‘.‘ DECODER
24
- {
MICRO ADDRESS
{
5
MICRO ROM ‘
—~—6
' EXECUTION UNIT

e e —————————ee e e

la.

@

10

15

20

30

35

50

0 257 650

MICROPROCESSOR

BACKGROUND OF THE INVENTION

Conventionally, microprocessors are equipped with various logical operation instructions such as logical
product (AND), logical sum (OR), exclusive-or (XOR), and the like in addition to arithmetical operation
instructions such as addition, subtraction, multiplication, division, comparison and the like.

In the instruction system of the conventional microprocessors, the kind of operation is designated by an
instruction (an operation code). In other words, an instruction is prepared for each operation, and the kind of
operation is fixed on a program and cannot be changed unlike data. Therefore, when the program is stored
in ROM (Read-Only Memory), it is not possible to change the operation.

SUMMARY OF THE INVENTION

When graphic processing such as so-called "smear-away" or "see-through” is carried out by making
logical operations of data in a bit field in the technical field such as a computer graphic, for example, a
program could be developed more easily if the kind of operation can be determined dynamically while
viewing a display surface.

However, in the conventional microprocessors wherein the instruction is determined in accordance with
the kind of operation, the operation instruction in a program must be re-writien in order to change the
content of the operation processing and the program does not have flexibility.

On the other hand, in order to determine a next operation or the kind of operation on the basis of result
obtained by execution of a certain preceding instruction, those instructions or operations which might be
executed next must be listed up. In other words, a program must be prepared in such a manner as to select
one instruction or-one operation among those listed up on the basis of the result obtained by execution of
the certain instruction. Therefore, in addition to low flexibility of program, another problem develops in that
instruction selection processing must be made and a high speed operation is limited when executing a
series of instructions.

It is therefore an object of the present invention to provide an instruction system which provides a
program in a microcomputer system with flexibility and which makes it possible to develop easily a program
for graphic processing, for example.

The above and other objects and novel features of the present invention will become more apparent
from the following description taken in conjunction with the accompanying drawings.

Among the inventions disclosed herein, the following will illustrate a typical exampie.

Namely, the present invention executes a desired operation by an instruction to which an operand
information for designating the kind of operation is added outside or into an operation designation portion
storing therein a common operation code of "operations" (broad sense of the word) which provides the kind
of operation as one of the operands.

According to the means described above, the content of the operand for designating the kind of
operation on the basis of result of execution of a certain instruction is set in advance and the operation can
be executed by a next instruction in accordance with the content of the operand described above.
Therefore, the kind of operation can be changed dynamically in the program, and the above-mentioned
objects of providing flexibility to a program and developing easily a program for graphic processing can be
accomplished.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1 and 2 are explanatory views showing structural examples of inter-bit fields in bit field
operation insfructions to which the present invention is applied;

Fig. 3 is a block diagram showing a structural example of a microprocessor for executing the bit field
instruction in accordance with the present invention:

Fig. 4 is a biock diagram showing an internal structure of the execution unit shown in Fig. 3;

Figs. 5, 6A and BB are structural views of the arithmetic and logic unit ALU shown in Fig. 4;

10

15

20

25

30

35

50

55

0 257 650

Fig. 7 is a flowchart showing the execution sequence of the inter-bit field operation instruction to
which the present invention is applied;

Fig. 8 shows an execution sequence useful for explaining in more detail a step'St in Figr7; -

Figs. 9A and 9B shows examples of instruction formarts to which the present invention is applied;

and
Figs. 10 and 11 are explanatory views useful for explaining the operations in the execution sequence

shown in Fig. 8.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, an embodiment of the present invention which is applied to an instruction relating to
handling of data from an arbitrary bit to an arbiirary bit inside a memory called a "bit field" (hereinafter
referred to as a "bit field instruction™) will be described.

As shown in Figs. 1 and 2 of the accompanying drawings, the bit field instruction provides as operands

three values, that is, a base address BA, an offset Off from this base address and a field width WD
representing field length (bit number) and designates a desired field inside a memory in order to make
logical operation processing such as AND and OR. Incidentally, such a bit field instruction is already
prepared in microprocessors such as a Motorola MC6802. In this bit field instruction, the base address BA,
the offset Off and the field width WD are given by operands after the operation code.

This embodiment designates the kind of operation, too, by the operand. As a definite method of
designating the operation by the operand, the embodiment shown in Fig. 9A, for example, uses a register
direct addressing system having a register number. In other words, a. code represeniing the kind of
operations is put in advance into a predetermined register RS and the register number storing the code and
an addressing. mode are put into the operand. In the embodiment shown in Fig. 9B, on the other hand,
information to the effect that the kind of operation is to be determined on the basis of the content of the
register RS is added to the operation code. When the instruction shown in Fig. 9A or 9B is executed, the
code representing the kind of operation is in advance read out as data from the memory by a MOVE
instruction or the like and stored in the predstermined register RS.

Similarly, the values stored in predetermined registers are used for the base address BA, the offset Off
and the field width WD to execute an instruction.

The: instruction shown in Fig. 9A or 9B is, for example, the bit field instruction which is a so-calied
"inter-bit field operation” instruction which calculates logic between the data of a certain bit field (source
side) and the data of another bit field (destination- side) and puis the logic to the bit field on the destination
side. Execution of this instruction needs registers for storing the base address BAs, offset Offs and field
width WDs for designating the bit field on the source side, registers for storing the base address BAd, offset
OFFd and base width WDd for designating the bit field on the destination side and a.register for storing the
code for designating the kind of operation. However, in the instruction which calculates the logic betwesn
these two bit fields, the field width WD is essentially the same and for this reason, one register can be used
in common. : :

Table | shows one example of relation bstween the registers used for the inter-bit field operation
instruction and the data stored in the registers.

10

15

30

35

45

50

55

0 257 650

Table 1

RO

BA of bit field on source side

R1

Off of bit field on source side

R2

field width (WD)

R3

BA of bit field on destination side

R4

Off of bit field on destination side

RS

kind of operation

Symbol BA represents the base address and Off does the offset.
Table 2 illustrates the kinds of operations designated by the register R5 described above.

10

15

20

25

30

35

45

50

55

0 257 650

Table 2

Kind of operations Content
1 True 1 » dest
2 False 0 + dest
3 NotDest dest. + dest
4 Dest dest » dest
5 " NotSrc src - dest
6 Src src -+ dest
7 AND dest.and.src -+ dest
8 Or dest.or.src - dest
9 Xor dest.xor.src - dest
10 NotAnd dest.and.src - dest
11 NotOr dest.or.sec. -~ dest
12 AndNot dest.and.src + dest
13 ~ OrNot dest.or.src + dest
14 NotAndNot dest.and.src -+ dest
15 NotOrNot dest.or.src + dest
16 NotXor dest.xor.src - dest

In Table 2 above, the operation represented by True means the operation which makes all the bits "1"
in the bit field on the destination side and the operation False makes all the bits "0" in the bit field on the
destination side. The operation NofDest represents the operation which inverses the data of all the bits of
the bit field on the destination side and returns them into the original bit field and the operation Dest returns
the data in the bit field on the destination side to the original bit field. The operation Not inverses the data of
all the bits in the bit field on the source side and puis them into the bit field on the destination side and the
operation Src¢ puts the data in the bit field on the source side into the bit field on the destination side.

Furthermore, the operation AND calculaies the logical product between the data of the bit fields on the
source and destination sides and puis the result into the bit field on the destination side and the operation
Or calculates the logical sum between the data in the bit fields on the source and destination sides and puts
the result into the bit field on the destination side. The operation Xor calculates the exclusive-or between the
data in the bit fields on the source and destination sides and puts the result into the bit field on the
destination side. The operation NotAnd caiculates the logical product between the inversed value of the data
in the bit field on the destination side and the data in the bit field on the source side and puts the result into
the bit field on the destination side. The operation NotOr calculates the logical sum between the inversed
value of the data in the bit field on the destination side and the data in the bit field on the source side and’
puts the resuit into the bit field on the destination side, and the operation AndNot calculates the logical
product between the data in the bit field on the destination side and the inversed value of the data in the bit

10

15

20

25

30

35

50

55

0 257 650

field on the source side and puts the result into the bit field on the destination side. The operation OrNot
calculates the logical sum between the data in the bit field on the destination side and the inversed vaiue of
the data in the bit field on the source side and puts the result into the bit field on-the destination side, and
the operation NotAndNot calculates the logical product between the inversed values of the data in the bit
fields on the source and destination sides and puts the result into the bit field on the destination side, and
the operation NotOrNot calculates the logical sum between the inversed values of the data in the bit fields
on the source and destination sides and puts the results into the bit field on the destination side. The
operation NotXor calculates the exclusive-or between the inversed value of the data in the bit field on the
destination side and the data in the bit field on the source side and puts the result into the bit field on the
destination side.

The various operations described above can be 'distinguished, for example, by the lower four bits of the
register R5.

When the inter-bit field operation instruction described above is used, the kind of operation is given as
one of the operands so that the kind of operation can be changed dynamically during execution of the
program by merely changing the data in the memory or by changing the data loaded from the memory.
However, it is necessary to put the base address and the offset given in advance as the operands and the
code representing the kind of operations into the predetermined registers (Ro -Ts). :

Fig. 3 shows an example of a graphic display program using the inter-bit field operation instruction
(abbriviated "BVMAP™) described above.

Table 3

LOOP MOVE (R10) +, RO

MOVE (R11) +, R1

MOVE (R12) +, R2

MOVE (R13) +, R3

MOVE (R14) +, R4

MOVE (R15) +, RS

BVMPA

SUB LINE, -1

BNE LOOP

The content of the processing of the program described above is to execute repeatedly the inter-bit
field operation instruction represented by BVMAP by changing the contents of the registers RO to R5 by
post increment for each line. For example, MOVE (R10) +1, RO is an instruction which updates the content
of the register R10 and to store it in the register R0. The instruction SUB LINE, -1 is an instruction which
substracts 1 from the total line number.

Therefore, in the program described above, when the kind of operation stored in the register R5 is
executed repeatedly while changing it every time, the result of bit field processing having a different
operation contnet for each line is displayed on the display surface as a picture.

In the embodiment described above, the kind of operation is changed by changing the content of the
register RS for each line. However, the present invention is not particularly limited to this embodiment. For
example, the program can be executed without updating the content of the register R5 by storing the result
obtained by a program, that has been executed before the program described above, in the register R5. In
this manner, the kind of operation can be changed dynamically during executing of the program.

Fig. 7 shows the flowchart of the inter-bit field operation instruction BVMAP. The bit field on the source
side is fetched by use of the contents of the registers RO, R1 and R2 at step S1. Then, the bit field on the
destination side is fetched by use of the contents of the registers R2, R3 and R4 at step S2. The operation
is executed at step 3 by use of the content of the register R5. The end condition is judged at step S4.
Namely, if the end condition is in agreement, the instruction is finished and if not, the flow returns to the
step 1. The bit number of the data that can be fetched once is determined by the data bus iength of the
microprocessor. Therefore, in order to fetch all the bit fields and to make calculation on the basis of the bit
fields, it is sometimes necessary to carry out repeatedly and several times the steps S1 to S3.

70

15

25

3o

50

55

0 257 650

In the embodiment described above, the insiruction relating to handling of mutual data of the two bit
fields has been described, by way of example, as the"bit field instruction. However, other bit field
instructions suitable for graphic processing include an instruction for-stering repeatedly the bit patterns of
arbitrary registers for the- bit field designated by the base address, the offset and the field width, for
example. When such an instruction is used, a kind of smear-away operation which fills up an arbitrary area
or areas on the picture surface by arbitrary patterns (basic figures constituting a pattern) can be conducted
easily.

Fig. 3 shows one example of the hardware consiruction of the microprocessor operating in accordance
with the instruction system having the bit field instruction of the embodiment described above.

The microprocessor of this embodiment is equipped with a conirol unit of a micorprogram conirol
sysiem. In other words, an LSI chip 1 constituting the microprocessor includes a micro-ROM (Read-Only
Memory) 2 storing therein a microprogram. Access to this microROM 2 is made by a micro address
generation circuit 5 and micro instructions constituting the micro program are sequentially outputted.

A signal obtained by decoding the code of the micro instruction fetched to an instruction register 3 by
an instruction decoder 4 is supplied to the micro address generation circuit 5. The micro address
generation circuit 5§ generates the corresponding micro address on the basis of this signal and.supplies it to
the micro-ROM 2. Accordingly, the first instruction of a series of micro instruction group for executing the
micro instruction is read out. This micro insiruction code generates a control signal for an execution unit 8
consisting of various registers, data buffers and an arithmetic-and-logic unit. The general-purpose registers
RO to R15 used in the embodiment described above are contained in this execution unit 6.

The read-out operation of the second instruction et seq of the series of micro instruction group
corresponding to the micro instruction is effected as the code of the next address field of the micro
instruction that has been read out immediately before is supplied to the micro-ROM 2, on the basis of the
next address in the micro instruction immediately before and the address from the micro address
generation circuit 4. In this manner, the series of micro-instructions are read out to form the control signal,
which then controls the execution unit 6 fo let it execute the micro instruction.

Though' not' particularly limitative, this embodi ment employs the buffer memory sysitem. A CACHE
memory 7 is disposed in the micro processor LS! and program data having high access frequency among
the data inside an external memory 8 are registered to the CACHE memory 7 in order to improve the
acceptance speed of the program.

incidentally, the embodiment given above deals with the application of the invention to the bit fisld
instruction. suitable for graphic processing by way of example, but the apphcatlon to other calculation
instructions can be of course made.

In the embodiment given above, the. kind of operation designated by the operand is limited to the
logical operation such as AND and OR, but as to the instructions for executing the arithmetic operation, it is
likewise possible to make the operation code the same and to designate the kind of operation by the
operand.

Fig. 4 shows the internal block of the execution unit 6 shown in Fig. 3.

In the execution unit shown in Fig. 4, circuit symbol CBS represents a register for latching extension
data such as the offset value, the field width, and the like; DOR.is a data output register for latching the daia
1o be stored in @ memory; DIR is a data input register for latching the data read out from the memory; and
ALN is an aligner for aligning the data that are-inputted and outputted. This aligner ALN is connected io
external data buses through a data I/0 interface (not shown in the drawing). .

Circuit symbol BSF represents a barrel shifter which extracts arbitrary 32 bits among 64-bit data that
are inputted simultansously in 32-bit units. This barrei shifter BSF is constructed in such a manner that a
constant such as 0 can be directly inputted. BCNT representis a barrel shifter counter for designating the
extraction position to the barrel shifter BSF and BSFO is a register for laiching the output of the barrel
shifter BSF. Symbol FB represents a function block for masking and outputting the upper 27 bits by
inputting the data and FBO is a register for latching. the output of the function block FB.

Circuit symbol AU represents an address calculation unit for calculating the effective address. This
address calculation unit AU.is constructed in such a manner that a constant such as 0 can be directly
inputted. Symbol AUO represents a register for latching the output of this address calculation unit AU, SFT
is a shifter for shifting the data before calculation by the calculation unit, AOT is a laich circuit for
temporarily holding the value of the register AUQ storing therein the result of calculation when that value is
transferred fo later-appearing temporary registers DTEQ - DTE3, and AOR is an address output register for
temporarily holding the address value of the register AUO when the address value is outputted to outside.
This register AOR is connected to the external address bus through an address VO interface (not shown).

10

15

20

25

a0

35

50

55

0 257 650

On the other hand, circuit symbol ALU represents an arithmetic-and-logic unit for executing the
fundamental arithmetic operation such as addition, subtraction, etc. and the logical operation, ALUO is a
register for latching the result of calculation by-the arithmetic-and-logic- unit ALU and DTEO - DTE3 are
register groups which are for laiching the temporary values and cannot be seen from outside (or not open
to users). Symbols Ro, Ry, ..., Ris represent general-purpose register group which are open to users. The
various registers, laich circuits, calculators, and the like described above are connected to one another
through four kinds of buses ECB, BA, BB and BC and operated sequentially by the control signal supplied
from the control unit consisting of micro ROM to execute the corresponding micro instruction.

In accordance with the present invention, the arithmetic-and-logic unit ALU and the like can be
controlied by the content of the general-purpose register such as the register R5.

Fig. & shows the relationship between the arithmetic-and-logic unit ALU shown in Fig. 4 and the register
RS for controlling the former. Though not particularly limitative, the content of the general-purpose register
is once stored in another register IFR, which outputs the control signals 11 to I5. Though not shown in Fig.
4, this register INFR is the same kind of register as the temporary registers DTEQ and the like and is
disposed inside the execution unit. The control signal 1 is a signal for selecting the data on the BB BUS or
one of the all-zero (0) data. The conirol signal 12 is a signal for controlling the operation of the inverter
circuit INV and for making selection whether the input signal is outputted after inversion or without inversion.
The control signal I3 selects the arithmetic functions of the arithmetic-and-logic unit ALU. This unit ALU has
the arithmetic functions such as logical product (AND), the logical sum (OR) and the exclusive-or (XOR),
and any one of these operations is selected by the conirol signal 13. The control signal 15 selects whether
the data latched by the register ALUO is to be delivered to BC BUS or be-fed back to the input side of the
arithmetic-and-logic unit ALU. The control signal 14 selects the data fed back to the input side or one of the
all-zero (0). The data selected by the control signal |1 is used as one of the input data of the arithmetic-and-
logic unit ALU through the inverter circuit INV, and the data selected by the control signal 14 is used as the
other input data to the arithmetic-and-logic unit ALU. The operation of this arithmetic-and-logic unit is.
divided into two stages. For example, when each of the operations listed in foregoing Table 2 is carried out,
the first stage operation state is shown in Fig. 6A and the second stage operation state is shown in Fig. 6B.

10

15

20

25

30

35

45

50

55

0 257 650

Table 4
Selection Seiection Selection
by I by I, bz_l3,

1 0 NOT INVERSION OR

2 0 NCT INVERSION OR

3 0 NOT INVERSION OR

4 0 NOT INVERSION OR

5 src INVERSION OR

6 src NOT INVERSION OR

7 src NOT INVERSION OR

8 src NOT INVERSION OR

9 src NOT INVERSION OR 7
10 src NOT INVERSION OR
11 src NOT INVERSION OR
12 src INVERSION OR
13 src INVERSION OR
14 src INVERSION OR
15 src INVERSION OR
16 src NOT INVERSION OR

10

15

20

25

3a

35

45

50

55

0 257 650

Table 5
Selection Selection Selection
by Il by I, by 13
1 0 INVERSION . OR
2 0 NOT INVERSION OR
3 dest INVERSION ' OR
4 dest NOT INVERSION OR
5 0 NOT INVERSION OR
6 0 NOT INVERSION OR
7 dest NOT INVERSION AND
8 dest NOT INVERSION OR
9 dest NOT INVERSION XOR
10 dest INVERSION AND
11 dest INVERSION OR
12 dest NOT INVERSION AND
13 dest NOT INVERSION OR
14 dest INVERSION AND
15 dest INVERSION_ OR
16 dest INVERSION ‘ XOR

Tables 4 and 5 illustrate in detail the operation conditions shown in Figs. 6A and 6B, respectively.
When, for example, the first calculation 1 ~ dest shown in Table 2 is made, the control described in the
first row of Table 4 is effected in Fig. 6A. In other words, the control signal 11 selects all-zero (0), which is
used as one of the input data to the arithmetic-and-logic unit ALU without inversion. The other input data to
the arithmetic-and-logic unit ALU is all-zero (0). The calculation function of this arithmetic-and-logic unit ALU
is set to logical sum (OR) by the control signal 13 and the result of calculation is all-zero (0). Next, the
control in the first row of Table 5 is made in Fig. 6B. In other words, all-zero (0) is selected by the control
signal 11, then inversed to all-one (1) by the inverter circuit INV and used as one of the input data to the
arithmetic-and-logic unit. The other input data to the arithmetic-and-logic unit ALU is the result of calculation
described above (all-zero). Since the calculation function of the arithmetic-and-logic unit ALU is set to the
logical sum (OR) by the control signal 13, the result of calculation is all-one (1). When this data is siored in
the bit field on the destination side, the execution of the calculation 1 — dest is complete.

Similarly, the tenth operation dest .AND.src —dest is executed in the following way. The control
in the 10th row of Table 4 is effected in Fig. 8A. In other words, the control signal 11 selects the data on BB
BUS (in this case, the value of the bit field on the source side) src and this data is used as one of the input‘
data to the arithmetic-and-logic unit ALU without inversion. The other input data to the arithmetic-and-logic
unit ALU is all-zero (0). Since the calculation function of this arithmetic-and-logic unit ALU is set to the
logical sum (OR), for example, by the control signal I3, the result of calculation is the value of the bit field

10

10

15

20

25

30

35

45

50

55

0 257 650

on the source side (src). Next, the control in the 10th row of Table 5 is effected in Fig. 6B. In other words,
the control signal 11 selects the data on BB BUS (in this case, the value of the bit field on the destination
side) dest, and this data is inversed by the inverter circuit-INV (io dest --)} and used as one of the
input data of the arithmetic-and-logic unit ALU. The result of calculation described above (src) is used as
the other input data. Since the calculation function of the arithmetjc-and-logic unit ALU is set to the logical
product (AND) by the control signal I3, the result of calculation is dest AND src. When this data is
stored in the bit field on the destination side, the execution of dest AND src is complete.

In this embodiment, the arithmetic-and-logic unit ALU and the like are direcily conirolled by the content
of the register R5, but the present invention is not particularly limited to this embodiment. For example, the
arithmetic-and-logic unit ALU, eic. may be controlled indirectly by the content of the general-purpose
register R5. For instance, the content of the regisier R5 is supplied to the insiruction decoder 4 or the like
to obtain the control signals H1-fo 15 from the micro ROM 2. In the embodiment described above, the control
signal 11 is the selection signal for selecting the data on BB BUS or not, but it is not particularly limited
thereto. For example, a supply source for supplying the data to the BB bus and the like may be conirolled
by this control signal 11. incidentally, the vaiue src of the bit field on the source side or the value dest of the
bit field on the destination side is sent to BB BUS by the output latch register BSFO of the barrel shifier
BSFO.

Fig. 8 shows in further detail the execution sequence of the step Sl in the flowchart shown in Fig. 7.
This step S1 consists of steps S01 o S12.

Incidentally, among the general-purpose registers Ro to R shown in Fig. 4, those with symbols Ra, Rb,
Rx and Ry are registers for sioring the source base address, ihe destination address, the offset value
address and the bit field width, respectively. lt is possible to designate the arbitrary number of the general-
purpose registers Ro to Ris and to use them as these registers Ra, Rb, Rx and Ry.

At the first step S01, the value of the registier Rx, that is, the address representing the storage position
of the offset value is inputted to the address calculation unit AU through the bus BA or BB and 0 is also
inputted to the unit AU by the constant input function, and the result of addition is stored in the register
AUO. : .

At the second step S02, the address value (the ofiset value address) stored in the register AUO at the
first step SO1 is transferred to the register AOR and at the same time, a request instruction is given to the
IO interface so as to feich the data on the external data bus. Accordingly, the address value in the register
AOR is outputted to the exiernal address bus through the I/O interface and access is made to the exiernal
memory so that the content of the memory is outputted to the data bus. Then, the data read out from the
memory, that is, the offset value Off, is feiched by the I/O interface.

At the step 803, whether or not the data fetched is determined is confirmed on the basis of the signal
outputted from the /O interface. Thus, the daia is taken into the data input register DIR. At the same time,
at the step SO03, the value of the register Ra, that is, the source base address BAD, is inputted io the
address calculation unit AU through the bus BA or BB and 0 is also inputted to the unit AU by the constant
input function and the result of addition is stored in the register AUO.

Next, at the fourth step S04, the value of the register AUO described above (source base address) is
transferred o the register AOR and further to the temporary register DTEO through the bus BC.

When the result of calculation of the address calculation- unit is fransferred from the register AUO to
AOR in connection with other processings, it is also transferred -automatically to the register AOT. Here,
transfer of the result to the register AOT has not specific meaning at all. In parallel with the operation
described above, 0 is inputied to the address calculation unit AU by the constant input function and the
content of the data input register DIR (the offset value) is inputted after code expansion through the buss
BB and the result of calculation is stored in the register AUO. Furthermore, the holding value, that is, the bit
field width WB, is supplied from the register Ry fo the function block FB through the bus BA, and the
function block FB masks the upper 27 bits other than the lower bits, with the resuit being stored in the
register FBO. When expressed mathematically, extraction of only the lower five bits of the bit field widih is
equivalent to determination of the remainder of division of the bit field width by "32". Hereinafter, the lower
five bits of the bit field width will be called the "end number WD™. Here, the end number WD* is
determined in order to judge boundary crossing at the later-appearing step S09.

Next, at the step S08, the vaiue of the register AUO, that is, the offset value Off, is transferred to the
temporary register DTE1 through the bus BC. At the same time, the value of the register AUO (the offset
value) and the value of the temporary regisier DTEQ, that is, the value obtained by shifting the source base
address BAD to the upper order side by three bits by the shifter SFT, are supplied to the address
calculation unit AU, and the result of addition is stored in the register AUO. The reason why the source base
address BAD is shifted by three bits to the upper order side is fo expand the base address BAD, which is

1

10

15

20

50

55

0 257 650

arranged in such a manner that the memory space can be divided and designated in a byte unit, is
expanded so that the position inside the memory space can be designated in the bit unit. Therefore, what is
stored in the register AUO at this time is the distance expressed by the bit number from the address 0 of
the bit field to be determined. This distance will be called "L".

At the step S06, the value of the register AUO described above, that is, the sum of the offset value Off
and the value obtained by shifting the base address to the upper order side by three bits, is transferred to
the register AOT. On the other hand, the source base address BAD is inputted from the temporary register
DTED to the address calculation unit AU through the bus BA, and the value obtained by shifting the offset
value Off transferred from the temporary register DTE1 through the bus BB to the lower order side by three
bits by the shifter SET is inputted and added to the source base address BAD, and the value obtained by
masking the lower two bits of the result of addition is stored in the register AUO. At the same time, the
value WD" in the register FBO, that is, the lower five bits of the bit field width, are transferred to the
temporary register DTE3 through the bus BC.

In the above-mentioned case, the address caicula tion unit AU calculates the addition between the base
address and the value obtained by shifting the offset value by three bits to the lower order side in order to
determine the execution address of the byte unit which is the nearest to the start of the bit field as the
object. The reason why the lower two bits of the result of addition are masked in the address calculation
unit AU is to obtain the address of the bit field as the object as a whole or a 32-bit word containing its
leading portion.

At the seventh step-S07, the word address in the register AUO obtained in the manner described above
is transferred to the address output register AOR and outputted to outside through the /O interface. At the
same time, an instruction requesting fetch of the data on the external data bus is given to the I/O interface.
Therefore, fetch of the word containing the leading portion of the bit field to be determined is started. In
parallel therewith, the address held by the register AUO is transferred to the temporary register DTE2
through the bus BC. The value L representing the bit position from the address 0 of the bit field obtained at
the step S05 is supplied to the function block FB from the register AOT through the bus BA and the result
is stored in the register FBO. Accordingly, the leading position Off* of the bit field (which is one of the offset
values amd will be- hereinafter called a "secondary offset”) from the word address containing the leading
portion of the bit field obtained at the step S06 (which is in agreement with the base address when offset is
below 31) is held by the register FBO.

Subsequently, at the step S08, the value Off* (secondary offset) in the register FBO described above is
transferred to the temporary register DTE2 through the bus BC, and at the same time, the value WD" (the
lower five bits of the bit field width) in the temporary register DTES is supplied to and added by the
arithmetic-and-logic unit ALU through the buses BA and BB and the result of addition is stored in the
register ALUO. Then, the constant "33" is set from the side of the control unit to the register CSB. The
number "33" is the sum of the bit number "32" of one word and the number "1". Also, whether or not the
data fefched, that is, the content of the bit field to be determined, is determined is confirmed on the basis of
the signal from the /O interface. If the data is determined, that data is taken into the data input register DIR.

At the next step S08, the value fetched from the I/O interface is transferred from the data input register
DIR to the temporary register DTE2 through the bus BC. in parallel with this operation, the arithmetic-and-
logic unit ALU subtracts the value "33" of the register CBS from the value of the register ALUO (Off* +
WD) and its result is stored in the register ALUO. Here, if the resuit of subtraction is positive, it means that
the bit field bridges over two words and if the result is negative, it means that the bit field falls within one
word.

At the step S09, the shifting direction and the shifting quantity of the bit shift processing to be carried
out in the barrel shifter BSF at the next step are designated. More definitely, the instruction in the rightward
direction is given to the barrel shifter counter BCNT and the value Off* in the register FBO is supplied as
the shifting quantity to the barrel shift counter BCNT through the bus BA.

At the step $10, the value of the temporary register DTE2, that is, the content of the bit field fetched
from the memory, is supplied to the barrel shift BSF through the bus BB and at the same time, 0 is inputted
by the constant input function so taht the barrel shift counter BCNT executs the shift operation in
accordance with the instruction and the resuit is stored in the register BSFO. Accordingly, the content of the
bit field fetched is stored in the 32-bit register BSFO while being packed to the left or under the packed
state from the upper bit side of the register in sequence as shown in Fig. 8. In parallel with this operation,
the instruction of the shifting direction and shifting quantity to be executed at the next step in the barrel
shifter BSF is given at this step S10. In other words, the instruction of the right shift is given to the barrel
shifter counter BCNT and the bit field width WD* in the temhorary register DTE3 is supplied as the shifting
quantity through the bus BA.

12

70

15

20

25

30

35

45

50

55

0 257 650

At the step S11, the value of the register BSFO and "0" are inputted to the barrel shifter BSF, the shift
operation is carried out in the designated direction and shift quantity and the result is stored in the register
BFSO. When the content of the bit field stored in the register BSFO is shifted rightward by a distance
corresponding to the field width WD*, the content of the bit field fetched is packed to the right end in the
32-bit register BSFO, or under the desired packed state from the lower order side of the register in
sequence.

The content of the bit field thus obtained is stored at the next step S12 in one of the general-purpose
registers Rb from the register BSFO through the bus BC.

Furthermore, when it is judged at the step S09 that the result, of subtraction between the sum of Off*
and WD" and the constant "33" is positive and the bit field crosses over the boundary, the flow returns
again to the siep S08 from the step S12 and the procedures described above are repeated so that all the
contents of the bit field crossing over a plurality of words are read out.

Fig. 10 shows the relationship between the offset value Off and the bit field width WD and the
secondary ofiset Off* and the end number WD* in the micro-flow described above.

Incidentally, in the execution sequence of the bit field instruction without limitation in accordance with
the micro-flow shown in Fig. 8, boundary crossing is judged depending upon whether the result of
subtraction of the number "33" from the sum of the secondary offset Off* and the end number WD” of the
bit field is positive or negative. Originally, judgement of boundary crossing should be made from the
primary offset Off and the bit field width WD and the description of such a micro-flow can be made.
However, it is obvious from Fig. 7, too, that the same result can be obtained when judgement of boundary
crossing is made depending upon whether or not the sum of the secondary offset Off* and the end number
WD* of the bit field exceeds the number "32" as in the embodiment described above as when judgement is
made by adding the bit field width WD o the primary offset and then dividing the sum by 32 bits from the
base address BAD.

Though the present invention has thus been described definitely with reference to the preferred
embodiment thereof, the invention is not particularly limited thereto but can of course be changed or
modified in various manners without departing from the-scope and spirit thereof. For example, in the
embodiment given above, the base address, offset and field width of the bit field and the kind of operation
are given by the operands, but they may be given by an effective address unit in place of the operands.

The operation insiruction of the present invention which designaies the kind of operations by the
operand may be disposed either in place of the conventional fixed operations or in combination with the
latter.

Though the description given above primarily deals with the appiication of the invention to the
instruction system of the microprocessor which constitutes the background and is the field of utilization of
the invention, the present invention is not particularly limited thereto but can be applied to instruction
systems of data processing systems in general such as computers and mini-computers of a program
control system.

The effect brought forth by the typical example of the present invention is as follows.

Namely, the present invention can provide flexibility to the program and can easily develop a program
for graphic processing, for example.

Claims -

1. A microprocessor including:

instruction decoding means (4);

instruction execution means (6); and

information hoiding means (3);
said microprocessor including a first step of storing the information obtained by execution of a first
instruction in said information holding means, and a second step of controlling said instruction execution
means on the basis of said information when a second instruction is executed.

2. A microprocessor according to ciaim 1, wherein said instruction execution means includes an
arithmetic-and-logic unit (ALU) and the calculation function of said arithmetic-and-logic unit is controlled on
the basis of said information. .

3. A microprocessor according to claim 2, wherein said information hoiding means is a general-purpose
register.

13

10

15

20

25

30

35

45

50

55

0 257 650

4. A microprocessor comprising:

instruction decoding means (4); and

instruction execution means (6);
wherein the operation code of the instruction decoded by said instruction decoding means contains an
information for executing control of at least part of said instruction execution means on the basis of the
information stored in rewritable information holding means,

5. A microprocessor according to claim 4, wherein an address information for designating the address
inside said information holding means for storing said information is contained in said operation code.

6. A microprocessor according to claim 4, wherein the address information for designating the address
inside said information holding means for storing said information is contained in an operand area.

7. A microprocessor according to claim 4, wherein said rewritable information holding means is a
register inside a microprocessor.

8. A microprocessor according to claim 7, wherein said instruction execution means includes an
arithmetic-and-logic unit, and the calculation function of said arithmetic-and-logic unit is controlled on the
basis of the content of said register.

8. A microprocessor according to claim 8, wherein the kind of operation of said arithmetic-and-logic unit
is selected in according with the content of said register.

10. A microprocessor according to claim 9, wherein the instruction decoded by said instruction
decoding means is an instruction relating to handling of data in an area from an arbitrary bit to another
arbitrary bit inside a memory.

14

0 257 650

(G4) 3A0D0 NOLYY3dO

g6 9/4
anetld | 3000 Nowveado
V6 9l
sy
- HLOIM Q131 135440+
7885087777 | Nowvniigs
¢ 94
ss3i0
- HLOIM @731 -

13S440 IA

m\\\\\\\ hE

L

1877

34IS
@ 324N0S

[

Ol

0 257 650

FIG 3

EXTERNAL
MEMORY

CACHE MEMORY

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

- MICRO ADDRESS

MICRO ROM

EXECUTION UNIT

S
5

0 257 650

O/1 SS34aav ol

|

v
sng o8 0/1 <._.=o oL

> _
= ony 0454
D
m—N_ O—Jl_q 1
m iS4
!]
_ nv >
_ (W)
il L L 0! O o] el |z HNvD
>~n—:\ Nm > N >
X441 o 1310 ; ol 14S g4 rt
DY 0y 0310 35 —
| .
T
:o-o
‘ —
sSng m\m v
se 103713S L3IHS g Ve

V Q\h\ SNg 903

0 257 650

FIG. 5
—e—— BB BUS
“O" “O”
3 4% 4oy
¢l INV ey
) J
V ,
ALU 3 L IN:R
(AND/OR/EOR) { I_ RS
ALUO 2R
|
—7Y __BC BUS
FIG. 6A FIG. 6B
"0" SYC | "0” dest
INV 12 l INV 12
Y ¥
—\/ \/
ALU 13 ALU 13
ALUO | ALUO
|

0 257 650

FIG. 7

(smarr)

o~

FETCH BIT FIELD [~/
ON SOURCE SIDE

FETCH BIT FIELD ON |~
DESTINATION SIDE

A
CALCULATE ON THE BASIS OF /\§3

CONTENT OF REGISTER R5

END CONDITION
ESTABLISHED?

- 0 257 650

FIG. 8

INPUT THE Rx VALUE AND O TO AU AND STORE RESULT IN AUO.

~SO01

I

TRANSFER THE VALUE OF AUO TO AOR AND INSTRUCT I/0 TO FETCH REQUEST AT THE

~S02

SAME TIME.
|

CONFIRM IF DATA FETCHED TO I/O IS DETERMINED. ADD Ra AND 0 BY AU AND STORE

~S03

THE RESULT IN AUO.

TRANSFER THE AUO VALUE TO AOR AND AOT AND FURTHER TO DTEQ THROUGH BC BUS.
INPUT O AND DiR VALUE TO AU THROUGH BB BUS AND AT THE SAME TIME, CODE-EXPAND
AND ADD THE VALUES AND STORE RESULT IN AUQ. INPUT Ry VALUE TO FB THROUGH
BA BUS, WHERE UPPER BITS ARE MASKED SO THAT ONLY LOWER FIVE BITS CAN BE SEEN.

~S04

STORE RESULT IN FBO.

TRANSFER AUC VALUE TO DTE? THROUGH SC BUS. ADD SUO AND VALUE OBTAINED BY
SHIFTING TO LEFT THE DTEO VALUE BY THREE BITS BY AU AND STORE RESULT IN AUO.

-S05

I

TRANSFER THE AUO VALUE TO AOT. ADD THE DTEC VALUE INPUTTED THROUGH BA BUS
AND THE VALUE OBTAINED BY SHIFTING TO RIGHT BY THREE BITS THE DTE1 VALUE
INPUTTED THROUGH BB BUS, AND STORE THE VALUE OBTAINED BY MASKING THE LOWER
TWO BITS OF THE RESULT IN AUO. TRANSFER THE FBO VALUE TO DTE3 THROUGH BC BUS.

~S06

TRANSFER THE AUO VALUE TO AOR AND AT THE SAME TIME, INSTRUCT FETCH REQUEST
TO I/0. FURTHER, TRANSFER THE AUO VALUE TO DTE2 THROUGH BC BUS. INPUT THE
ACT VALUE TO FB THROUGH BA BUS, AND MASK THE UPPER BITS SO THAT ONLY LOWER
FIVE BITS CAN BE SEEN. STORE THE RESULT IN FBO.

~S07

TRANSFER THE FBO VALUE TO DTE1 THROUGH BC BUS. ADD THE DTE3 VALUE INPUTTED
THROUGH BA BUS AND THE FBO VALUE INPUTTED THROUGH BB BUS BY ALU AND STORE
THE RESULT IN ALUO. SET CONSTANT “33" TO OBS. CONFIRM IF DATA FETCHED TO
I/0 IS CONFIRMED.

~S08

TRANSFER THE DiR VALUE DETERMINED BY MEMORY FETCH TO DTE2 THROUGH BC BUS.
SUBTRACT THE ALUQ VALUE AND CONSTANT VALUE OF CBS INPUTTED THROUGH ECB
BUS AND-STORE RESULT IN ALUO. INSTRUCT RIGHTWARD DIRECTION TO BCNT AND
INPUT THE FBO VALUE THROUGH BA BUS.

~S09

INPUT THE DTE2 VALUE AND O TO BSF THROUGH BB BUS AND STORE RESULT IN BSFO.
INSTRUCT RIGHTWARD DIRECTION TO BCNT AND INPUT THE DTE3 VALUE THROUGH BA

~S10

BUS.
I

INPUT O AND THE BSFO VALUE TO BSF TO MAKE TEST AND STORE RESULT IN BSFO.

S11

STORE THE BSFO VALUE IN Rb THROUGH BC BUS.

512

0 257 650

0d4ss u\s\\\\\\\\\\\

.@ E_IM 2y
058 7 m..HH_.HHH...,,.........H..M

@ e——am—r+

_~{dIHS
odsg—{ \\\\\\\\\\\\ ‘
f—— oM ——y 440 —+
Il 914
ave .0, SS3daav
Al sligze lv.l sL1g2€ l+| slig lev_Alm:m leé) F

W72z 7773 _ K

q ;\WL.I sLgze llvrl sLugze lv_un* “_n_oL
*

ettt
—‘ _‘ gt

ol 9/4

	bibliography
	description
	claims
	drawings

