11 Veröffentlichungsnummer:

0 258 880 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 87112781.7

(51) Int. Cl.4: D02H 1/00

2 Anmeldetag: 02.09.87

Priorität: 03.09.86 DE 3629927

Veröffentlichungstag der Anmeldung: 09.03.88 Patentblatt 88/10

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

Anmelder: Norddeutsche Faserwerke GmbH
Tungendorfer Strasse 10
D-2350 Neumünster(DE)

2 Erfinder: Beitz, Jürgen Heinrich-Orbahn-Strasse 1 D-2350 Neumünster(DE) Erfinder: Erren, Karl-Heinz

Wiesengrund 2 D-2356 Aukrug-Homfeld(DE)

Erfinder: Mantz, Ekkehard

Hauptstrasse 7

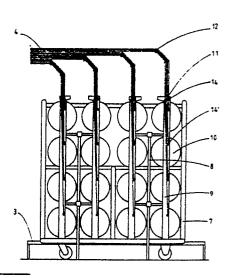
D-2351 Gross-Kummerfeld(DE)

Vertreter: Lindner, Wolfgang, Dr. Alexander-von-Humboldt-Strasse Postfach 20 10 45 D-4650 Gelsenkirchen(DE)

Schärgatter.

57)

I. Schärgatter


2.I Schärgatter, bei denen die Spulen der zuschärenden Fäden neben-und übereinander angeordnet sind, sollen eine ständige Zugänglichkeit jeder Spule auch während des Schärens ermöglichen. Insbesondere soll eine platzsparende Aufstellung des Gatters auch dann ermöglicht werden, wenn eine größere Zahl von Fäden geschärt werden soll.

2.1 Es werden Fadenführer (14, 14', 14") tragende Gattertüren (9) vorgesehen. Hinter den Gattertüren (9) befinden sich die zu schärenden Fadenwickel. Hierdurch wird Zugang zu den einzelnen Spulen (10) oder Gruppen von Spulen gegeben. Jeder Faden (4) wird zunächst vertikal über das Gatter und anschließend horizontal oberhalb des Gatters zur Schärmaschine (6) über Leitorgane (12)

2.3 Bei einer vorteilhaften Aufstellung des Gatters werden die Reihen der über-und nebeneinander angeordneten Spulen bzw. der Gatterpfosten und -türen beiderseits eines zur Schärmaschine

führenden Mittelganges senkrecht zu diesem angeordnet. So können auf einer Grundfläche von ca. 180 m² gleichzeitig 1280 Fäden bei einem Spulendurchmesser von 450 mm geschärt werden (Fig. 2).

Fig. 2

Schärgatter

15

20

25

40

45

Die vorliegende Erfindung betrifft Schärgatter, bei denen die Spulen der zu schärenden Fäden neben-und übereinander angeordnet sind. Sie ermöglicht eine ständige Zugänglichkeit jeder Spule auch während des Schärens.

1

Hierfür sieht die Erfindung Fadenführer tragende, ausschwenkbare Gattertüren vor, hinter denen sich die zu schärenden Fadenwickel befinden und durch das Ausschwenken der Gattertüren zugänglich werden. Weiterhin weist das erfindungsgemäße Gatter Fadenleitorgane auf, die jeden Faden zunächst senkrecht oder etwa senkrecht über das Gatter führen, dort in die Horizontale umlenken und zur Schärmaschine leiten. Durch diese Maßnahmen ist jede Spule auch während des Schärens zugänglich und kann, z. B. bei Garnfehlern einfach ausgewechselt werden.

Um zu gewährleisten, daß die Reibungswiderstände für alle Fäden etwa gleich sind, werden nach einer weiteren Ausbildung der Erfindung die Führungen und Leitorgane aller Fäden mit gleichen Umlenkungen ausgestattet. Zum Beispiel kann jeder etwa horizontal von der Spule abgezogene Faden durch Fadenführer um etwa 90° in die Vertikale geleitet werden. Der nun senkrecht aufsteigende Faden wird durch eine Umlenkung um etwa 90° in eine horizontale, zum Mittelgang führende Richtung umgelenkt. Am Mittelgang erfolgt dann eine weitere Umlenkung um etwa 90° in Richtung zur Schärmaschine. Jeder Faden erfährt somit dreimal eine Richtungsänderung um ca. 90°.

Zur Führung der Fäden über das Gatter und oberhalb des Gatters können Leitorgane üblicher Art, z. B. Rechen oder Ösen eingesetzt werden. Bevorzugt wird die Verwendung von Führungsrohren als Fadenleitorgane. Sie schützen den Faden gegen Verschmutzung und gegen Beschädigung, zum Beispiel während des Stillstandes der Schäranlage.

Als zweckmäßig hat es sich erwiesen, die einzelnen geraden Teile der Führungsrohre durch Rohre aus Kunststoff, die ggf. entsprechend dem Umlenkwinkel gebogen sind und auf die geraden Rohrteile aufgeschoben werden, luftdicht zu verbinden. Diese Kunststoffsteckverbindungen ermöglichen durch den luftdichten Abschluß ein Ansaugen der Fäden mittels üblicher Injektoren.

Zum Ausgleich der Unterschiede in den Reibungswiderständen, die sich durch verschiedene Längen der Führungsrohre zwischen Gatter und Schärmaschine ergeben, kann nach einer weiteren Ausbildung der Erfindung für jeden Faden eine Ösenbremse vorgesehen werden. Durch Verschieben dieser Ösenbremse senkrecht zur Fadenlaufrichtung lassen sich unterschiedliche Reibungs-

widerstände aufbauen, die Unterschiede der längenbedingten Reibung in den Rohrleitungen ausgleichen. Diese Ösenbremsen können auch jeweils für eine Gruppe von Fäden, die etwa gleich lange Führungsrohre durchlaufen, gemeinsam verstellbar sein.

Auch sollte das Gatter eine Klemmbremse, insbesondere eine Tellerbremse für jeden Faden besitzen. Mit diesen Bremsen kann beim Halt oder langsamen Lauf der Schärmaschine die Spannung im Faden erhalten werden, während die Bremse beim schnellen Lauf der Schärmaschine geöffnet ist und so einen zusätzlichen Zug auf den Faden vermeidet. Um beim An-und Abfahren der Schärmaschine schnell die Bremswirkung der Tellerbremse zur Verfügung zu haben, haben sich Tellerbremsen als besonders geeignet erwiesen, die durch Gasdruck gegen Federkraft die Bremse öffnen oder schließen.

Die erwähnten Maßnahmen, insbesondere die Führung aller Fäden über dem Gatter ermöglichen eine platzsparende Aufstellung des Gatters auch dann, wenn eine größere Zahl von Fäden geschärt werden soll. Gemäß einer weiteren Ausbildung der Erfindung werden hierzu die neben-und übereinander geordneten Spulen in Reihen aufgestellt, die durch Laufgänge voneinander getrennt sind. Gatterpfosten und -türen können zu beiden Seiten der Gänge angeordnet sein, so daß jeweils 2 Spulenreihen von einem Gang aus bedient werden können.

Weiterhin ist es zweckmäßig, die Spulen auf insbesondere beidseitig bestückbaren Gatterwagen aufzuhängen und den Platz zwischen den Gängen als Stellplätze für diese Gatterwagen zu verwenden. So können, während die Fäden eines Spulensatzes geschärt werden, bereits die Schärwagen außerhalb des Gatters mit den Spulen des nächsten Satzes bestückt werden. Die Stillstandszeiten des Gatters zum Auswechseln der Spulensätze werden so wesentlich verringert.

Eine vorteilhafte Aufstellung des Gatters ergibt sich dadurch, daß die Reihen der über-und nebeneinander angeordneten Spulen bzw. der Gatterpfosten und -türen beiderseits eines zur Schärmaschine führenden Mittelganges senkrecht zu diesem angeordnet werden. Bei Verwendung von Schärwagen sollte die Breite des Mittelganges so bemessen werden, daß sie mindestens der Diagonal-Länge eines Schärwagens entspricht. Die Gatterreihen beider Seiten können so vom Mittelgang her beschickt werden.

10

15

20

40

45

Die erfindungsgemäße Aufstellung des Gatters ermöglicht zum Beispiel, auf einer Grundfläche von ca. 180 m² gleichzeitig 1280 Fäden bei einem Spulendurchmesser von 450 mm zu schären. Selbst für die 2,5fache Zahl von Fäden genügt eine Aufstellfläche von weniger als 400 m².

In den zugehörigen Zeichnungen ist das erfindungsgemäße Gatter beispielhaft dargestellt. Fig. I zeigt die Aufstellung eines Gatters mit Stellplätzen 2 und 2' für 40- Gatterwagen in je I0 Reihen zu 2 Wagen beiderseits des Mittelganges I. Werden beidseitig mit je I6 Spulen bestückte Gatterwagen verwendet, können I280 Fäden geschärt werden.

Eine andere Möglichkeit ist die Aufstellung von je 3 Gatterwagen in einer Reihe, wodurch bei 16 Reihen auf jeder Seite des Mittelganges I und Gatterwagen der beschriebenen Art 3072 Fäden zur gleichen Zeit geschärt werden können. Die gleiche Anzahl kann auch mit je 12 Reihen beiderseits des Mittelganges und 4 Gatterwagen in einer Reihe erreicht werden. Auch ist es möglich, mehrere Schärmaschinen zur gleichen Zeit von diesem Gatter zu bedienen.

Zwischen den Stellplätzen 2 und 2' für Gatterwagen befinden sich die Laufstege 3 und 3', von denen die durch den Mittelgang I eingeschobenen Gatterwagen sowie die Leitvorrichtungen wie Ösenund Feststellbremsen zugänglich sind.

Mit 4 sind die horizontal vom Gatter zur Schärmaschine führenden Fäden bezeichnet. Dabei wurde wegen der besseren Übersichtlichkeit nur jede 4. Gruppe von Fäden gezeigt. Das skizzierte Gatter weist bei Verwendung der erwähnten beidseitig mit je 16 Spulen bestückten Gatterwagen insgesamt 80 Gruppen von jeweils 16 übereinander geführten Fäden auf.

Mit 6 ist die Schärmaschine und mit 5 sind die dazu gehörigen Überwachungs-und Hilfsapparaturen wie Flusendetektor, Fadenspeicher, Ölgerät bezeichnet.

In Figur 2 ist ein Teil des Gatters mit eingefahrenem Gatterwagen 7, in Schärrichtung gesehen, dargestellt. Das Gatter besteht aus den Gatterpfosten 8, an denen die Gattertüren 9 schwenkbar befestigt sind. Die Schwenkbarkeit der Gattertüren 9 ermöglicht einen Zugang zu den einzelnen Spulen 10 und zum Beispiel die Auswechslung einer Spule, wenn sich darauf ein schadhafter Faden befindet. Die Fäden 4 sind von den Gattertüren 9 zunächst etwa senkrecht aufwärts geführt und verlaufen nach zweimaliger Umlenkung um je 45° horizontal zum Mittelgang.

Figur 3 zeigt den oberen Teil einer Gattertür 9. Die Fäden 4 werden durch die Fadenführerösen 14' um 90° umgelenkt und gelangen senkrecht aufwärts zu den ebenfalls an der Gattertür 9 befestigten Fadenführern 14. Über diesen befinden sich Ösenbremsen II auf einem verschiebbaren Schlit-

ten. Die Größe der von den Ösenbremsen II ausgeübten Bremskraft wird durch Verschieben des Schlittens senkrecht zur Laufrichtung der Fäden und damit durch die Größe der Winkel bestimmt, um die die Fäden vom Geradeauslauf abgelenkt werden. Als Fadenleitorgane zur weiteren Führung der Fäden aufwärts dienen die Führungsrohre 12.

In Figur 4 ist das Gatter mit einem eingefahrenen Gatterwagen 7, in Blickrichtung senkrecht zum Mittelgang, dargestellt. Der Gatterwagen 7 ist beidseitig mit Spulen I0 bestückt, die Gatterorgane sind jedoch nur an einer Seite des Wagens 7 bzw. des Laufsteges 3 dargestellt. Die Fäden 4 werden über die an der Gattertür 9 befestigten Fadenführer I4", Klemmbremsen I3, Fadenführer I4' und I4 sowie Ösenbremse II nach oben und dort, wie zu Figur 2 beschrieben, in waagerechter Richtung zum Mittelgang und zur Schärmaschine geführt.

Ansprüche

- I. Schärgatter mit neben-und übereinander angeordneten Spulen der zu schärenden Fäden, gekennzeichnet durch Fadenführer (I4, I4', I4") tragende, ausschwenkbare und hierbei Zugang zu den einzelnen Spulen (I0) oder Gruppen von Spulen gebende Gattertüren (9) sowie zunächst vertikal über das Gatter, später horizontal oberhalb des Gatters zur Schärmaschine (6) führende Leitorgane (I2) für jeden Faden (4).
- 2. Schärgatter nach Anspruch I, gekennzeichnet durch gleiche Umlenkungen jedes Fadens (4) bewirkende Fadenführer (I4, I4', I4") und Leitorgane (I2).
- 3. Schärgatter nach Anspruch I oder 2, gekennzeichnet durch Führungsrohre als Fadenleitorgane (I2).
- 4. Schärgatter nach Anspruch 3, gekennzeichnet durch luftdichte Verbindungen der einzelnen geraden Teile jedes Führungsrohres durch Kunststoffsteckverbindungen.
- 5. Schärgatter nach einem der Ansprüche I bis 4, gekennzeichnet durch eine Ösenbremse (II) für jeden Faden (4).
- 6. Schärgatter nach einem der Ansprüche I bis 5, gekennzeichnet durch eine Klemmbremse (I3) für jeden Faden (4).
- 7. Schärgatter nach Anspruch 6, gekennzeichnet durch die Verwendung von Tellerbremsen als Klemmbremsen (I3).
- 8. Schärgatter nach Anspruch 7, gekennzeichnet durch pneumatisch gegen Federkraft schließende Tellerbremsen (I3).
- 9. Schärgatter nach einem der Ansprüche I bis 8, gekennzeichnet durch von Gängen (3, 3') getrennte Reihen (2, 2') von Spulen (10).

I0. Schärgatter nach Anspruch 9, gekennzeichnet durch Anbringung der Spulen (I0) auf Gatterwagen (7) und Ausbildung der Gatterreihen (2, 2') zwischen den Gängen (3, 3') als Stellplätze für die Gatterwagen (7).

II. Schärgatter nach Anspruch 9 oder I0, gekennzeichnet durch beiderseits eines Mittelganges (I) senkrecht zu diesem angeordnete, von Gängen (3, 3') getrennte Reihen (2, 2') von Spulen (I0).

I2. Schärgatter nach Anspruch II, gekennzeichnet durch eine mindestens der Diagonal-Länge eines Gatterwagens (7) entsprechende Breite des Mittelganges (I).

.

10

15

20

25

30

35

40

45

50

55

Fig. 1

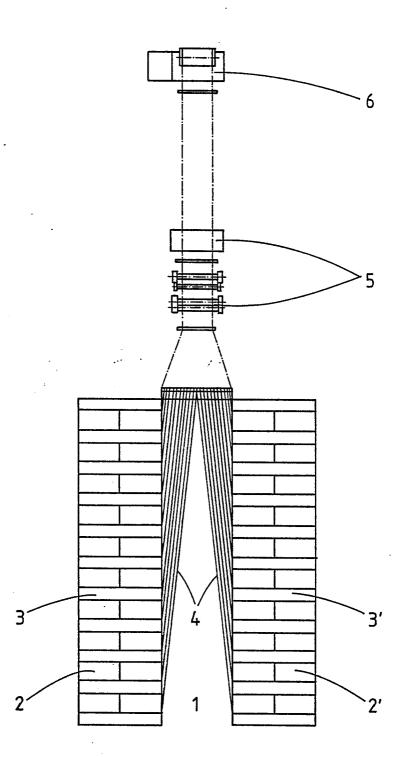


Fig. 2

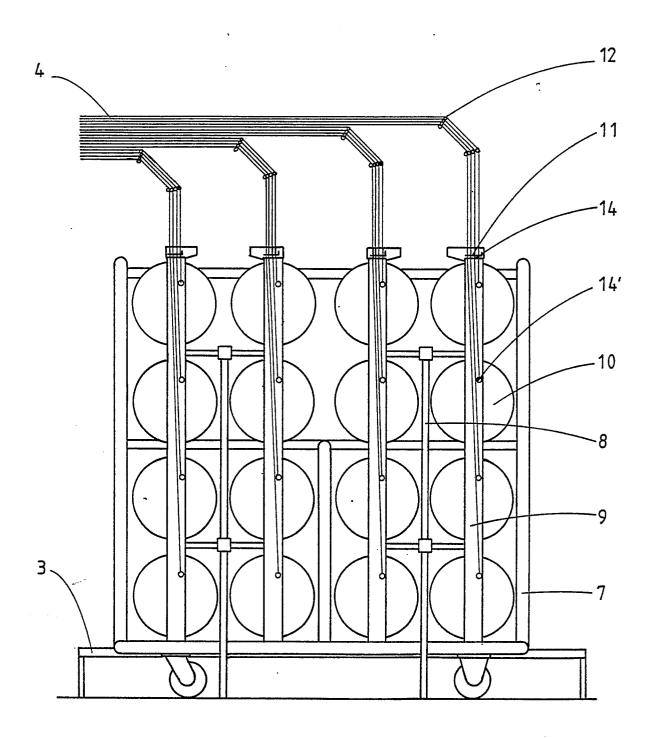


Fig. 3

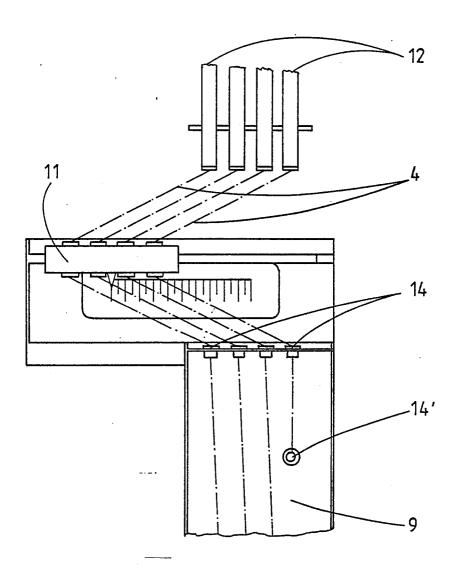
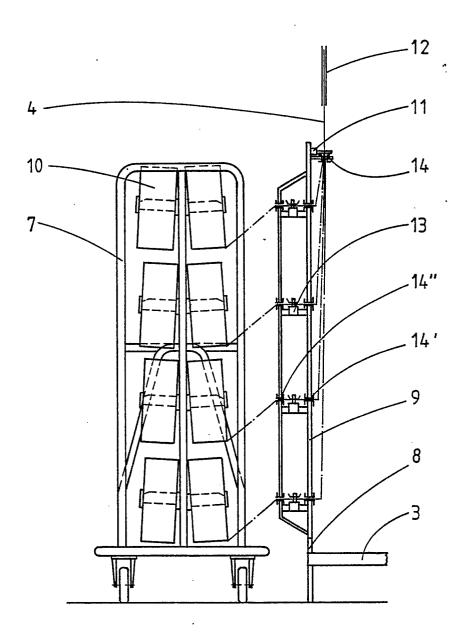



Fig. 4

