11 Veröffentlichungsnummer:

0 259 646

A1

(12)

4

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87111833.7

(1) Int. Cl.4: H05B 41/29

2 Anmeldetag: 14.08.87

(3) Priorität: 19.08.86 DE 3628013

Veröffentlichungstag der Anmeldung: 16.03.88 Patentblatt 88/11

Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL SE Anmelder: Siemens Aktiengesellschaft Berlin und München
 Wittelsbacherplatz 2
 D-8000 München 2(DE)

Erfinder: Kröning, Armin, Dipl.-Ing.
 Dorfplatz 21 a
 D-8221 Nussdorf(DE)

- Verfahren und Anordnung zum Betreiben einer Gasentladungslampe.
- Für den Betrieb von Warmstart-Gasentladungslampen unter Verwendung eines elektronischen Vorschaltgerätes, bei dem die Gasentladungslampe parallel zur Kapazität (C) eines Serienresonanzkreises (36) liegt und mit ihren Heizwendeln in diesen Serienresonanzkreis einbezogen ist, wird vorgeschlagen, in Reihe zur wirksamen Kapazität (C) einen Trennschalter (S) vorzusehen, der den Nebenschluß zur Lampe (G) und damit auch den Heizwendelstrom unterbricht, sobald die Lampe gezündet hat. Auf diese Weise wird sichergestellt, daß der ansonstsen eine Verlustleistung darstellende im Nebenschluß zur Lampe (G) fließende Strom unterbunden wird. Besondere Bedeutung kommt dieser Maßnahme dann zu, wenn die wirksame Kapazität (C) des Serienresonanzkreises (L, C) mit Hilfe von temperaturabhängigen Widerständen oder mit Hilfe verlustbehafteter elektronischer Schalter zur Steuerung der Lampenspannung (UI) während der Startintervallphase veränderbar ausgeführt ist.

FIG 1

Xerox Copy Centre

Verfahren und Anordnung zum Betreiben einer Gasentladungslampe

20

25

35

40

45

50

Technisches Gebiet

Die Erfindung bezieht sich auf ein Verfahren sowie Anordnungen zum Betreiben einer mit Heizwendeln versehenen Gasentladungslampe, insbesondere Leuchtstofflampe, bei dem aus einer Gleichspannung, die gegebenenfalls von einer Netzwechselspannung durch Gleichrichtung abgeleitet wird, mit einem Wechselrichter eine hochfrequente Wechselspannung zum Betreiben der Lampe erzeugt wird, die hierbei parallel zur Kapazität eines aus einer Kapazität und einer Induktivität gebildeten, die Heizwendeln der Lampe einschließenden Serienresonanzkreises angeordnet ist und bei dem während des Aufheizvorganges der Heizwendeln (Startintervallphase) zwischen dem Einschalten der Stromversorgung und dem Zünden der Lampe die an ihr anliegende Spannung auf einen Wert unterhalb ihrer Zündspannung begrenzt wird.

1

Stand der Technik

Einen Warmstart erfordernde Gasentladungslampen, die unter Verwendung eines elektronischen Vorschaltgerätes mit der hochfrequenten Ausgangsspannung eines Wechselrichters betrieben werden, sind allgemein bekannt. Hierbei ist es wichtig, daß beim Einschalten der Stromversorgung die an der Lampe auftretende Spannung den Zündspannungswert erst erreicht, wenn die Heizwendeln der Lampe ausreichend aufgeheizt sind.

Durch die Literaturstelle EP O O59 064 ist beispielsweise eine solche Warmstart-Gasentladungslampe bekannt, bei der die Frequenz des Wechselrichters unter Zuhilfenahme von Steuermitteln beim Einschalten der Spannungsversorgung zunächst mit einer Frequenz oberhalb der Resonanzfrequenz des Serienresonanzkreises arbeitet und zum Ende der Startintervallphase hin die Arbeitsfrequenz des Wechselrichters in Richtung auf die Resonanz des Serienresonanzkreises derart verringert wird, daß die dabei ansteigende Spannung an der Lampe die Lampe zündet.

Offenbarung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, die Betriebseigenschaften einer Warmstart-Gasentladungslampe der einleitend beschriebenen Art hinsichtlich des benötigten Energiebedarfs zu verbessern.

Diese Aufgabe wird ausgehend von einem Verfahren zum Betreiben einer Gasentladungslampe der einleitend beschriebenen Art gemäß der Erfindung durch die im Patentanspruch 1 angegebenen Merkmale gelöst.

Der Erfindung liegt die Erkenntnis zugrunde, daß nach dem Zünden der Lampe der Serienresonanzkreis für die sich in Betrieb befindliche Lampe keine Bedeutung mehr hat und auch durch die einen Nebenschluß zur Kapazität darstellende Brennstrecke der Lampe praktisch unwirksam ist. Somit kann im Betriebszustand der Lampe auch der die Kapazität enthaltende Stromzweig aufgetrennt werden. Dadurch wird der Verlustleistung in den Heizwendeln der Lampe bewirkende über die Kapazität fließende Stromanteil unterbrochen und der Betriebswirkungsgrad der Lampenschaltung in vorteilhafter Weise verbessert.

Eine zweckmäßige Ausgestaltung des Verfahrens nach dem Patentanspruch 1 ist im weiteren Patentansprüchen 2 angegeben.

Wie die Literaturstelle DE 34 41 992 A1 bereits als bekannt nachweist, kann die Begrenzung der Lampenspannung auf einen Wert unterhalb der Zündspannung während der Startintervallphase auch dadurch herbeigeführt werden, daß bei fest vorgegebener Frequenz des Wechselrichters durch Verändern der wirksamen Kapazität des Serienresonanzkreises dessen Resonanzkurve über der Frequenz so verschoben wird, daß die Lampenspannung die Zündspannung erst am Ende der Startintervallphase erreicht. Hierbei kommt der Möglichkeit, den die Kapazität aufweisenden Stromzweig parallel zur Lampe zu unterbrechen, insbesondere dann eine besondere Bedeutung zu, wenn die Veränderung der wirksamen Kapazität mit Hilfe von temperaturabhängigen Widerständen oder aber mit Hilfe verlustbehafteter elektronischer Schalter vorgenommen wird.

Zweckmäßige Anordnungen zur Durchführung des Verfahrens nach den Patentansprüchen 1 und 2 sind ferner in den weiteren Patentansprüchen 3 bis 7 angegeben.

Kurze Beschreibung der Zeichnung

In der Zeichnung bedeuten die der näheren Erläuterung der Erfindung dienenden Figuren

Fig. 1 das Prinzipschaltbild einer von einem elektronischen Vorschaltgerät Gebrauch machenden Warmstart-Gasentladungslampe parallel zur Reihenschaltung eines Trennschalters mit der wirksamen Kapazität eines Serienresonanzkreises,

5

20

25

40

Fig. 2 eine erste bevorzugte Ausführungsform einer variablen wirksamen Kapazität in Reihe mit einem Trennschalter bei einer Schaltungsanordnung nach Fig. 1,

Fig. 3 eine Variante der variablen wirksamen Kapazität in Reihe mit einem Trennschalter entsprechend Fig. 2,

Fig. 4 ein die Resonanzkurvenverschiebung bei Verwendung von variablen wirksamen Kapazitäten entsprechend den Figuren 2 und 3 näher erläuterndes Frequenz-Spannungsdiagramm,

Fig. 5 eine weitere bevorzugte Ausführungsform einer variablen wirksamen Kapazität in Reihe mit einem Trennschalter bei einer Schaltungsanordnung nach Fig. 1,

Fig. 6 eine Variante der variablen wirksamen Kapazität in Reihe mit einem Trennschalter entsprechend Fig. 5,

Fig. 7 ein die Resonanzkurvenverschiebung bei Verwendung variabler wirksamer Kapazitäten nach den Figuren 5 und 6 näher erläuterndes Frequenz-Spannungsdiagramm.

Bester Weg zur Ausführung der Erfindung

Das Prinzipschaltbild nach Fig. 1 für eine mit einem elektronischen Vorschaltgerät arbeitende Gasentladungslampe weist netzspannungsseitig zunächst eine Gleichrichterschaltung GL auf, deren ausgangsseitig gleichgerichtetete und geglättete Netzwechselspannung dem sich hieran anschließenden Wechselrichter WR als Betriebsgleichspannung dient. Die hochfrequente Wechselspannung des Wechselrichters WR wird ihrerseits über einen Koppelkondensator Co zum Betreiben der Lampe G der Lampenschaltung LS zugeführt.

Die Lampenschaltung LS weist neben der Lampe G einen Serienresonanzkreis mit der variablen wirksamen Kapazität C und der eine Drossel darstellenden Induktivität L auf. In diesen Serienresonanzkreis sind die Heizwendeln HW der Lampe G mit einbezogen. Die Lampe G liegt dabei parallel zur wirksamen Kapazität C des Serienresonanzkreises. Gemäß der Erfindung ist der Lampe G die Reihenschaltung aus der wirksamen Kapazität C mit einem Trennschalter S parallel geschaltet, der geöffnet und damit die wirksame Kapazität abgeschaltet wird, sobald die Lampe gezündet hat.

In Fig. 1 ist in unterbrochener Line eine Steuerspannung für die wirksame Kapazität C angedeutet, die hierbei die gleichgerichtete geglättete Wechselspannung am Ausgang des Gleichrichters GL ist. Die unterbrochen gezeichnete Steuerleitung I deutet an, daß dies eine von mehreren Mögichkeiten

ist, die in diesem Falle veränderbar ausgeführte wirksame Kapazität zu steuern. Hierauf wird im Zusammenhang mit der Beschreibung der folgenden Figuren noch näher eingegangen.

Bei der ersten bevorzugten Ausführungsform einer mit einer veränderbaren wirksamen Kapazität C in Reihe mit einem Trennschalter S nach Fig. 2 bei einer Lampenschaltung LS nach Fig. 1 ist die veränderbare wirksame Kapazität C durch die Reihenschaltung des Kondensators C1 mit der Parallelschaltung aus dem Kondensator C2 und dem positiv temperaturabhängigen Widerstand TWI verwirklicht. Bei Verwendung dieser Lampenschaltung LS ist die Frequenz fz des Wechselrichters, bezogen auf den Verschiebungsbereich der Resonanzkurve des Serienresonanzkreises, so festgelegt, daß die Frequenz fz stets oberhalb der Resonanzfrequenz des Serienresonanzkreises liegt.

Anhand des Frequenz-Spannungsdiagramms nach Fig. 4 soll nunmehr die Funktion der Lampenschaltung LS mit einer veränderbaren wirksamen Kapazität nach Fig. 2 näher beschrieben werden. Beim Einschalten der Stromversorgung kann in erster Näherung davon ausgegangen werden, daß die Resonanzfrequenz des Serienresonanzkreises im wesentlichen durch den Kondensator Cl und die Induktivität L bestimmt ist. Die über der Frequenz f aufgetragene Lampenspannung ul ergibt bei Einschalten der Stromversorgung eine Resonanzkurve des Serienresonanzkreises mit der Frequenz fr1. Die Lampenspannung ul weist hier die Lampenstartspannung uo auf, da die Frequenz fz des Wechselrichters relativ weit unten auf dem oberen Ast der Resonanzkurve mit der Resonanzfrequenz fr1 zu liegen kommt. Der Kondensator C2 ist beim Einschalten der Stromversorgung praktisch durch den einen Kaltleiter darstellenden positiv temperaturabhängigen Widerstand TW1 kurzgeschlossen.

Durch den beim Einschalten über den Serienresonanzkreis und die Heizwendeln HW der Lampe G fließenden Strom werden die Heizwendeln HW aufgeheizt. Gleichzeitig wird auch der positiv temperaturabhängige Widerstand TW1 aufgeheizt, so daß sein Widerstandswert ständig zunimmt. Dies hat zur Folge, daß mit zunehmendem Widerstandswert des Kaltleiters auch der Kondensator C2 in Reihe mit dem Kondensator C1 mehr und mehr die Resonanz des Resonanzkreises mitbestimmt. Dies bewirkt ein Verschieben der Resonanzkurve im Diagramm nach Fig. 4 nach rechts wie der angegebene Pfeil andeutet. Die Folge davon ist, daß die Lampenspannung ul zunimmt, weil sich der Schnittpunkt der Frequenz fz auf dem oberen Ast der Resonanzkurve mehr und mehr nach oben verschiebt, bis schließlich die Lampenspannung ul die Lampenzündspannung uz erreicht, bei der die

5

10

25

30

40

45

50

55

Lampe G zündet. In diesem Zeitpunkt ist die Resonanzkurve mit der Resonanzfrequenz fr1 in die Resonanzkurve mit der Resonanzfrequenz fr2 übergegangen.

Sobald die Lampe G gezündet hat, kommt dem Serienresonanzkreis für die weitere Betriebsfunktion im allgemeinen keine Bedeutung mehr zu. Gemäß der Erfindung wird dieser Sachverhalt zum Abschalten des die änderbare wirksame Kapazität C enthaltenden Stromzweigs parallel zur Lampe G im Anschluß an das Zünden der Lampe durch Öffnen des Trennschalters S ausgenutzt und damit die durch den ansonsten über diesen Stromzweig während der Betriebsdauer fließenden Strom bedingte Verlustleistung unterbunden.

Die in Fig. 3 angegebene Variante für eine veränderbare wirksame Kapazität C in Reihe mit einem Trennschalter S unterscheidet sich von der Ausführungsform nach Fig. 2 dadurch, daß hier der positive temperaturabhängige Widerstand TW1 durch den Schwellwertschalter SW ersetzt ist. Dem Schwellwertschalter SW ist steuereingangsseitig Zeitkonstantenglied τ vorgeschaltet. Die Steuerspannung kann dem Schwellwertschalter SW über das Zeitkonstantenglied τ entsprechend Fig. 1 über die dort dargestellte unterbrochen gezeichnete Steuerleitung I in Form der gleichgerichteten Wechselspannung am Ausgang der Gleichrichteranordnung GL zugeführt werden. Beim Einschalten der Spannungsversorgung wird die Gleichspannung über das Zeitkonstantenglied au so weit zeitverzögert am Steuereingang des Schwellwertschalters SW wirksam, daß der Schwellwertschalter SW erst öffnet und damit den Kondensator C2 unwirksam macht, wenn die Heizwendeln HW der Lampe G im Sinne der Gewährleistung des Warmstartes ausreichend aufgeheizt sind. Der einzige Unterschied besteht hier darin, daß das Verschieben der Resonanzkurve des Serienresonanzkreises von der Resonanzkurve mit der Resonanzfrequenz fr1 in die Resonanzkurve mit der Resonanzfrequenz fr2 nicht kontinuierlich sondern entsprechend dem Schaltvorgang sprungartig erfolgt.

Während bei den Ausführungsbeispielen der veränderbaren wirksamen Kapazität C nach den Figuren 2 und 3, wie das das Frequenz-Spannungsdiagramm nach Fig. 4 zeigt, die Frequenz fz des Wechselrichters stets oberhalb der Resonanzfrequenz des Serienresonanzkreises liegt, ist dies bei den Ausführungsbeispielen nach den Fig. 5 und 6 gerade umgekehrt. Hier liegt die Frequenz fz des Wechselrichters stets unterhalb der Resonanzfrequenz des Serienresonanzkreises.

Die veränderbare wirksame Kapazität nach Fig. 5 unterscheidet sich von der veränderbaren wirksamen Kapazität C nach Fig. 2 lediglich dadurch, daß nunmehr die Kondensatoren C1 und C2 nicht mehr

in Reihe sondern einander parallel geschaltet sind und der temperaturabhängige Widerstand, der hier in Reihe zum Kondensator C1 liegt, ein negativ temperaturabhängiger Widerstand TW2 ist.

Beim Einschalten der Stromversorgung wird zunächst einmal durch den hohen Widerstand des negativ temperaturabhängigen Widerstandes TW2 in erster Näherung nur der Kondensator C2 wirksam. Die zugehörige Resonanzkurve mit der Resonanzfrequenz fr3 ist im Frequenz-Spannungsdiagramm nach Fig. 7 dargestellt. Durch den nunmehr fließenden Strom werden neben den Heizwendeln HW auch der negativ temperaturabhängige Widerstand TW2 aufgeheizt, wodurch sein Widerstandswert mit zunehmender Temperatur immer kleiner wird. Dies hat zur Folge, daß der Kondensator C1 parallel zum Kondensator C2 für die Resonanzfrequenz des Serienresonanzkreises mehr und mehr mitbestimmend wird. Die Resonanzkurve mit der Resonanzfrequenz fr3 verschiebt sich in Richtung des in Fig. 7 angegebenen Pfeiles zu tieferen Frequenzen und läßt hierdurch die durch die Wechselspannung mit der Frequenz fz an der Lampe wirksame Spannung von der Lampenstartspannung uo zur Lampenzündspannung uz ansteigen. Die Resonanzkurve in Fig. 7 hat bei Erreichen der Lampenzündspannung uz die Resonanzfrequenz fr4. Sobald die Lampe G gezündet hat, wird der Trennschalter S geöffnet und damit der Nebenschluß zur Lampe G im Betrieb der Lampe aufgehoben.

Die Variante der variablen wirksamen Kapazität C nach Fig. 6 unterscheidet sich von der in Fig. 5 angegebenen Ausführungsform wiederum lediglich dadurch, daß hier der negativ temperaturabhängige Widerstand TW2 durch den Schwellwertschalter SW mit dem seinem Steuereingang vorgeschalteten Zeitkonstantenglied τ ersetzt ist, der zum Umschalten der Resonanzkurve geschlossen wird.

Der Trennschalter S läßt sich auf verschiedene Weise verwirklichen.

Eine besonders vorteilhafte Ausführung besteht in einer Vierschichtdiode, die hinsichtlich ihrer Durchbruchsspannung so bemessen ist, daß sie sich im Zeitraum zwischen dem Einschalten der Stromversorgung und dem Zünden der Lampe G im leitenden und im Brennzustand der Lampe G im gesperrten Zustand befindet.

Es ist auch denkbar, die Steuerung des Trennschalters S abhängig davon zu machen, ob die Lampe G Licht aussendet oder nicht.

Der Trennschalter würde in diesem Fall aus einer von einem optoelektronischen Halbleiterwandler gesteuerten Schaltungsanordnung bestehen, beispielsweise aus der Kombination eines Foto-und eines Schalttransistors.

25

30

35

45

50

55

Gewerbliche Verwertbarkeit

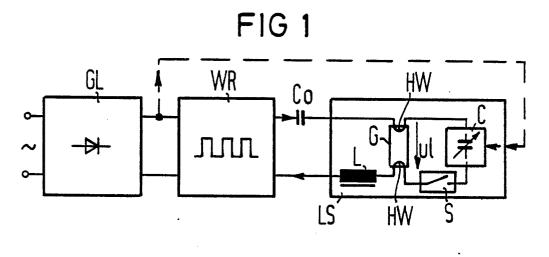
Das angegebene Verfahren zum Betreiben einer Gasentladungslampe einschließlich der hierfür angegebenen speziellen Lampenschaltungen lassen sich mit Vorteil bei allen Warmstart-Niederdruckgasentladungslampen zur Anwendung bringen.

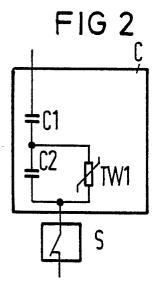
Ansprüche

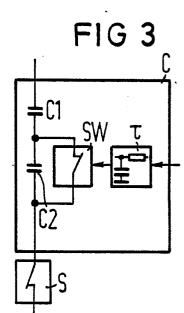
1. Verfahren zum Betreiben einer mit Heizwendeln versehenen Gasentladungslampe, insbesondere Leuchtstofflampe, bei dem aus einer Gleichtspannung, die gegebenenfalls von einer Netzwechselspannung durch Gleichrichtung abgeleitet wird, mit einem Wechselrichter eine hochfrequente Wechselspannung zum Betreiben der Lampe erzeugt wird, die hierbei parallel zur Kapazität eines aus einer Kapazität und einer Induktivität gebildeten, die Heizwendeln der Lampe einschließenden Serienresonanzkreises angeordnet ist und bei dem während des Aufheizvorgangs der Heizwendeln (Startintervallphase) zwischen dem Einschalten der Stromversorgung und dem Zünden der Lampe die an ihr anliegende Spannung auf einen Wert unterhalb ihrer Zündspannung begrenzt wird,

dadurch gekennzeichnet, daß der Serienresonanzkreis im Anschluß an das Zünden der Lampe (G) durch Unterbrechen des die wirksame Kapazität (C) aufweisenden, der Lampe parallel liegenden Stromzweigs mittels eines Frequenzschalters (S) unwirksam gemacht wird und unwirksam bleibt, solange die Lampe in Betrieb ist.

- 2. Verfahren, bei dem der Wechselrichter mit einer festen Frequenz arbeitet, nach Anspruch 1, dadurch gekennzeichnet, daß die wirksame Kapazität (C) zu Beginn einer Startintervallphase einen Wert aufweist, bei dem die Frequenzdifferenz aus der Resonanzfrequenz (fr) des Serienresonanzkreises (L, C) und der Frequenz (fz) des Wechselrichters (WR) die gewünschte Begrenzung der Lampenspannung (ui) unter die Zündspannung (uz) sicher gewährleistet und daß die wirksame Kapazität (C) im Sinne einer Verringerung der genannten Frequenzdifferenz bzw. einer Erhöhung Lampenspannung (ul) bis zur penzündspannung (uz) entweder während der Startintervallphase kontinuierlich oder aber am Ende der Startintervallphase diskontinuierlich verändert wird.
- 3. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 und 2,


dadurch gekennzeichnet, daß der die veränderbare wirksame Kapazität (C) in Reihe mit dem Trennschalter (S) darstellende Stromzweig aus der Reihenschaltung eines ersten Kondensators (C1) mit der Parallelschaltung aus einem zweiten Kondensator (C2) und einem positiv temperaturabhängigen Widerstand (TW1) besteht.


4. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 und 2,


dadurch gekennzeichnet, daß der die veränderbare wirksame Kapazität (C) in Reihe mit dem Trennschalter (S) darstellende Stromzweig aus der Parallelschaltung der Reihenschaltung eines ersten Kondensators (C1) und eines negativ temperaturabhängigen Widerstandes (TW2) mit einem zweiten Kondensator (C2) besteht.

- 5. Anordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der temperaturabhängige Widerstand (TW1,2) durch einen in seinem Ansprechverhalten zeitverzögerten Schalter (SW/ τ) erseizt ist.
- 6. Anordnung nach einem der Ansprüche 3 bis 5 dadurch gekennzeichnet, daß der Trennschalter (S) eine Vierschichtdiode (Sidac) mit einer Durchbruchspannung ist, deren Wert so festgelegt ist, daß sich die Vierschichtdiode im Zeitraum zwischen dem Einschalten der Stromversorgung und dem Zünden der Lampe (G) im leitenden und im Brennzustand der Lampe (G) im gesperrten Zustand befindet.
- 7. Anordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Trennschalter (S) eine vom Lampenlicht über einen optoelektrischen Halbleiterwandler gesteuerte Schaltanordnung ist.

5

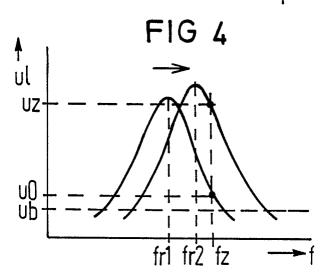
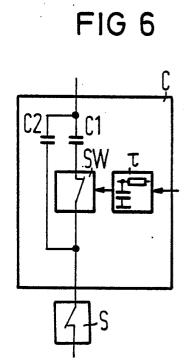
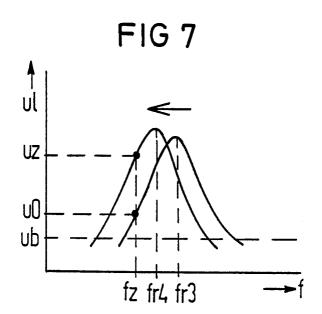




FIG 5

87 11 1833

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokuments mit der maßgeblichen Tei	Angabe, soweit erforderlich, le	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Α	DE-A-3 441 992 (PATENT * Seite 5, Zeile 31 - Se 30; Figur 1 *	TREUHAND) eite 6, Zeile	1,2	H 05 B 41/29
A	US-A-2 231 999 (GUSTIN) * Seite 1, Zeilen 4-10;	Figur 1 *	1	
A	FR-A-2 520 575 (DEUTSCH THOMSON-BRANDT) * Seite 3, Zeile 19 - Se 30; Figur 1 *		1	
	-	į	_	RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				H 05 B 41/00
7,124,114				
Der voi	rliegende Recherchenbericht wurde für all	Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prufer
DEN HAAG		14-12-1987	DUCHI	EYNE R.C.L.

EPO FORM 1503 03.82 (P0403)

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenharung
 P: Zwischenliteratur

- E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument