11 Veröffentlichungsnummer:

0 259 763

A2

12

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 87112765.0

(5) Int. Cl.4: **H01C 17/06**, H01C 10/04, H01C 10/32

2 Anmeldetag: 02.09.87

3 Priorität: 12.09.86 DE 3631057

(43) Veröffentlichungstag der Anmeldung: 16.03.88 Patentblatt 88/11

Benannte Vertragsstaaten:
ES FR GB IT

Anmelder: PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. Postfach 1740 Schweinfurter Strasse 5 D-8740 Bad Neustadt/Saale(DE)

Erfinder: Griebel, Franz Ringstrasse 6 D-8740 Bad Neustadt/Saale(DE)

- S Verfahren zur Herstellung nichtlinearer Widerstandsbahnen und nach diesem Verfahren hergestelltes Drehpotentiometer.
- Ein Verfahren zur Herstellung von nichtlinearen Widerstandsbahnen auf einem Träger soll rationell so durchgeführt werden, daß sich stetige Übergänge zwischen den nichtlinearen Widerstandsteilbereichen ergeben. Es wird hierfür der Träger quer zur Längsrichtung der vorgesehenen Trägerstreifen unter einer Auftragsvorrichtung hindurchbewegt, die dicht nebeneinander mehrere Widerstandsmassestreifen naß auf den Träger aufbringt. Die Widerstandsmassen weisen dem vorgesehenen nichtlinearen Widerstandsverlauf entsprechend unterschiedliche Widerstandswerte auf. Die Trägerstreifen werden quer zur Bewegungsrichtung des Trägers aus diesem ausgeschnitten.

18 6 7 3 2 1

Fig: 🏖

Xerox Copy Centre

EP 0 259 763 A2

<u>Verfahren zur Herstellung nichtlinearer Widerstandsbahnen und nach diesem Verfahren hergestelltes</u> <u>Drenpotentiometer</u>

5

10

20

30

35

40

Die Erfindung betrifft ein Verfahren zur Herstellung von Widerstandsbahnen auf einem Träger, der in Trägerstreifen geschnitten wird, wobei der Verlauf des Widerstandswertes der Widerstandsbahn in Längsrichtung des Trägerstreifens nichtlinear ist.

1

Es ist bekannt, Widerstandsbahnen mit nichtlinearem Verlauf des Widerstandswertes in Siebdrucktechnik zu fertigen. Dabei entstehen scharfe Abgrenzungen zwischen den einzelnen Teilbereichen der Widerstandsbahn. Dies ist unerwünscht, da dann längs der Widerstandsbahn beträchtliche Sprünge des Widerstandswertes auftreten.

Ebenfalls bekannt ist das Herstellen nichtlinearer Widerstandsbahnen durch aufeinanderfolgendes Vernebeln und Niederschlagen der Widerstandsmassen. Dieses Verfahren belastet das Umfeld und ist im Ergebnis großen Streuungen des Widerstandes der Widerstandsbahn unterworfen. Außerdem sind die erforderlichen Schablonen ständig aufzubereiten.

Es ist auch bekannt, auf einem ausgestanzten Trägerstreifen eine Widerstandsbahn durch Aufträufeln von Widerstandstinte zu fertigen. Dieses Verfahren ist aufwendig und für eine Massenfertigung kaum geeignet.

In der EP-0 179 917 A1 ist ein Verfahren beschrieben, mit dem mittels einer einzigen Düse eine Widerstandsmasse auf einen Träger aufgebracht wird. Die Düse ist hierbei gegenüber dem Träger verfahrbar.

In der US PS 4 430 634 ist ein Drehpotentiometer beschrieben, bei dem ein Widerstand auf einem flexiblen Trägerstreifen längs der Umfangswand einer zylindrischen Kammer angeordnet ist.

Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art vorzuschlagen, durch das sich Widerstände mit nichtlinearem Verlauf des Widerstandswertes rationell und gleichmäßig mit stetigen Übergängen zwischen den Widerstandsteilbereichen herstellen lassen.

Erfindungsgemäß ist obige Aufgabe bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß der Träger quer zur Längsrichtung der vorgesehenen Trägerstreifen unter einer Auftragsvorrichtung für Widerstandsmassen hindurchbewegt wird, die dicht nebeneinander mehrere Widerstandsmassestreifen naß auf den Träger aufbringt, so daß deren Randzonen ineinander verfließen, wobei die Widerstandsmassestreifen bildenden Widerstandsmassen dem vorgesehenen nichtlinearen Widerstandsverlauf entsprechend unter-

schiedliche Widerstandswerte aufweisen, und daB die Trägerstreifen danach aus dem mit den Widerstandsmassen beschichteten Träger geschnitten werden.

Dadurch, daß die Widerstandsmassen in noch nassem Zustand ineinanderfließen, wobei sie sich vermischen, sind die Übergänge zwischen den einzelnen Widerstandswerten kontinuierlich. Es wird also eine gleichmäßige Kennlinie erreicht.

Dadurch, daß auf einen Träger die Widerstandsmassestreifen kontinuierlich aufgebracht werden, ist eine rationelle Fertigung möglich. Die nach dem Austrocknen der Widerstandsmassen ausgeschnittenen Trägerstreifen eignen sich insbesondere auch für die Herstellung sehr kleiner Potentiometer.

Beim beschriebenen Verfahren ist der Verbrauch an Widerstandsmasse vergleichsweise gering. Das Verfahren ist dadurch auch umweltfreundlich.

Ein mit einem nach dem beschriebenen Verfahren hergestellten Trägerstreifen arbeitendes Drehpotentiometer zeichnet sich dadurch aus, daß die Widerstandsmassestreifen auf einen flexiblen Träger aufgebracht sind und der geschnittene Trägerstreifen so um seine Längsrichtung gewölbt in einen zylindrischen Innenraum eines Gehäuses eingesetzt wird, daß er sich um den Umfang des Innenraums erstreckt, und daß in den Innenraum ein Abgriffsglied eingesetzt ist.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels.

In der Zeichnung zeigen:

Figur 1 eine Einrichtung zur Durchführung des Verfahrens schematisch,

Figur 2 die Einrichtung nach Figur 1 in der Seitenansicht

und

Figur 3 ein Drehpotentiometer mit einem nach dem Verfahren hergestellten Widerstand.

Es ist eine Auftragsvorrichtung (1) vorgesehen, die eine Mehrzahl von Kanülen (2) aufweist. Die Kanülen (2) sind dicht nebeneinander gestaffelt angeordnet, aus ihnen fließen die Widerstandsmassen (18) auf den Träger (3). Die Kanülen (2) sind mit Widerstandsmassen (18) versorgt, die unterschiedliche Widerstandswerte aufweisen.

Unter den Kanülen (2) wird eine flexible Trägerfolie (3) in Richtung des Pfeiles (P) hindurchgezogen. Die Trägerfolie (3) kann dabei von einer Rollë geliefert sein.

2

50

10

25

40

45

50

55

Die Kanülen (2) bringen auf die Trägerfolie (3) Widerstandsmassestreifen (4) naß auf. Diese fließen dabei an ihren parallelen Rändern (5) ineinander.

Im Anschluß hieran fährt die mit den Widerstandsmassestreifen (4) beschichtete Trägerfolie (3) durch einen Trockner (6). Hinter dem Trockner (6) kann die beschichtete Trägerfolie (3) auf einer weiteren Rolle aufgerollt werden und danach geschnitten werden.

Es werden aus der beschichteten Trägerfolie (3) in einer Schneidvorrichtung (7) Trägerstreifen (8) ausgestanzt. Die Längsrichtung des Trägerstreifens (8) erstreckt sich quer zur Transportrichtung (P) der Trägerfolie (3) bzw. deren Längsrichtung. Auf dem Trägerstreifen (8) liegen damit Widerstandsbereiche aus allen Widerstandsmassestreifen (4) unmittelbar nebeneinander gereiht.

Ein Drehpotentiometer (vgl. Figur 3) weist ein Gehäuse (9) mit einem zylindrischen Innenraum (10) auf. In den Innenraum (10) ist der Trägerstreifen (8) so gewölbt eingesetzt, daß er sich um den Umfang der Innenwand (11) des Innenraums (10) erstreckt. Der Trägerstreifen (8) ist dabei so eingesetzt, daß auf seiner Widerstandsbahn Schleifer (12) eines Abgriffsgliedes (13) aufstehen. Durch die Flexibilität des Trägerstreifens (8) ist dabei eine zur Drehachse des Abgriffsgliedes (13) konzentrische Widerstandsbahn geschaffen, auf der der Schleifer (12) in radialer Richtung aufliegt.

Durch diese Anordnung des Trägerstreifens (8) lassen sich sehr kleine Potentiometer aufbauen. Der Innenraum (10) kann beispielsweise einen Durchmesser von kleiner 7 mm aufweisen. Außerdem ist die Andruckkraft des Schleifers (12) auf die Widerstandsbahn unabhängig von der Einspannung des Abgriffsgliedes (13) in dem Gehäuse (9). Da die Äquipotentiallinien der Widerstandsbahn parallel zu der Drehachse des Abgriffsgliedes (13) und parallel zueinander liegen - also nicht radial zur Drehachse verlaufen - ist eine relativ hohe Strombelastbarkeit der Widerstandsbahn erreicht.

An der Innenwand (11) ist ein weiterer Trägerstreifen (14) angeordnet. Dieser ist mit einer Leitschicht versehen. Auf ihm stehen Schleifer (15) auf, die mit den Schleifern (12) verbunden sind. Die Leitbahn und die Widerstandsbahn sind an ihren Enden mit elektrischen Anschlüssen (16) versehen. Ein Deckel (17) des Gehäuses (9) hält das Abgriffsglied (13) im Gehäuse (9).

Bezugszeichenliste 10/86 Pt.

- 1 Auftragsvorrichtung
- 2 Kanülen
- 3 Träger, -folie
- 4 Widerstandsmassestreifen
- 5 Ränder
- 6 Trockner
- 7 Schneidvorrichtung
- 8 Trägerstreifen
- 9 Gehäuse
- 10 Innenraum
- 11 Innenwand
- 12 Schleifer
- 13 Abgriffsglied
- 14 weiterer Trägerstreifen
- 15 Schleifer
- 16 Anschlüsse
- 17 Deckel
- 18 Widerstandsmasse
- P Pfeil

Ansprüche

1. Verfahren zur Herstellung von Widerstandsbahnen auf einem Träger, der in Trägerstreifen geschnitten wird, wobei der Verlauf des Widerstandswertes der Widerstandsbahn in Längsrichtung des Trägerstreifens nichtlinear ist,

dadurch gekennzeichnet,

daß der Träger quer zur Längsrichtung der vorgesehenen Trägerstreifen unter einer Auftragsvorrichtung für Widerstandsmassen hindurchbewegt wird, die dicht nebeneinander mehrere Widerstandsmassestreifen naß auf den Träger aufbringt, so daß deren Randzonen ineinander verfließen, wobei die die Widerstandsmassestreifen bildenden Widerstandsmassen dem vorgesehenen nichtlinearen Widerstandsverlauf entsprechend unterschiedliche Widerstandswerte aufweisen, und daß die Trägerstreifen dariach aus dem mit den Widerstandsmassen beschichteten Träger geschnitten werden.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Auftragsvorrichtung mehrere gestaffelt nebeneinander angeordnete Kanülen aufweist.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Träger nach dem Aufbringen der Widerstandsmassestreifen und dem Verfließen deren Randzonen durch einen Trockner hindurchtransportiert wird
- 4. Drehpotentiometer mit einem nach einem der vorhergehenden Ansprüche hergestellten Trägerstreifen, dadurch gekennzeichnet,

daß die Widerstandsmassestreifen (4) auf eine flexible Trägerfolie (3) aufgebracht sind und der Trägerstreifen (8) so um seine Längsrichtung gewölbt in einen zylindrischen Innenraum (10) eines Gehäuses (9) eingesetzt wird, daB er sich um den Umfang der Innenwand (11) erstreckt, und daß in den Innenraum (10) ein Abgriffsglied (13) eingesetzt ist.

10

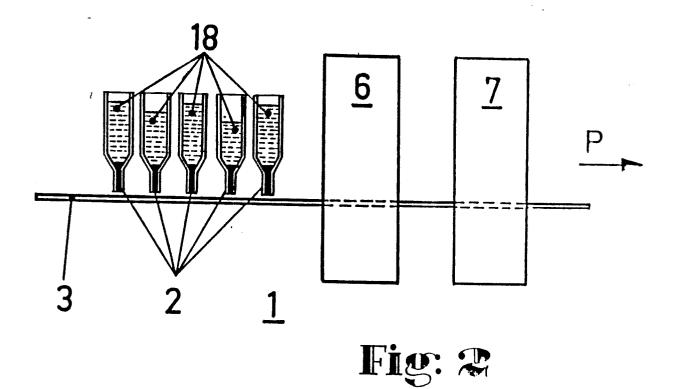
15

20

25

30

35


40

45

50

55

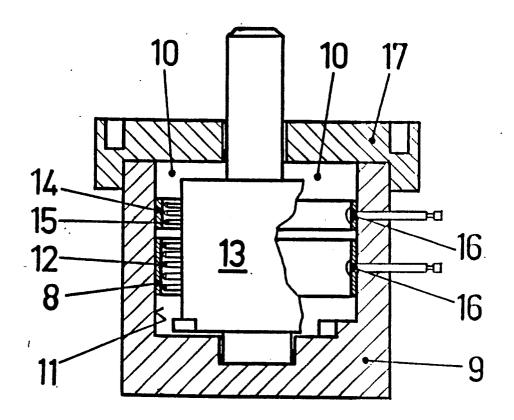


Fig: 3