(19) |
 |
|
(11) |
EP 0 261 119 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
27.11.1991 Bulletin 1991/48 |
(22) |
Date of filing: 27.05.1986 |
|
(86) |
International application number: |
|
PCT/GB8600/292 |
(87) |
International publication number: |
|
WO 8607/000 (04.12.1986 Gazette 1986/26) |
|
(54) |
EXPLOSIVE CUTTING MEANS
VERFAHREN UND VORRICHTUNG ZUM SCHNEIDEN MIT SPRENGSTOFFEN
ORGANE DE COUPE PAR EXPLOSION
|
(84) |
Designated Contracting States: |
|
AT BE DE FR GB IT LU NL SE |
(30) |
Priority: |
28.05.1985 GB 8513325
|
(43) |
Date of publication of application: |
|
30.03.1988 Bulletin 1988/13 |
(73) |
Proprietor: EXPLOSIVE DEVELOPMENTS LIMITED |
|
Leeds, LS25 5LA (GB) |
|
(72) |
Inventors: |
|
- ALFORD, Sidney, Christopher
Wiltshire SN13 OHX (GB)
- SHANN, Peter, Christian
Fulford,York Y01 4PL (GB)
|
(74) |
Representative: Oulton, Richard John |
|
R.J. OULTON & CO.,
First Floor,
Pearl Assurance Buildings,
Land of Green Ginger Hull,
Humberside HU1 2EA Hull,
Humberside HU1 2EA (GB) |
(56) |
References cited: :
EP-A- 0 043 215 FR-A- 1 215 794 US-A- 3 435 763
|
DE-A- 2 832 246 US-A- 3 076 408
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to explosive cutting means.
[0002] It is well known in the art to use explosives to cut a target, such as a metal sheet
or plate.
[0003] One well known method for explosive cutting is the so called "plaster" charge method
and wherein a strip of explosive material is applied directly to the target along
the intended line of cut and is detonated to generate fracture forces within the target
along the intended line of cut.
[0004] Another well known method for explosive cutting is the so called "shaped charge"
method and wherein a metal element, initially spaced from the target, is driven at
high speed against the target along the intended line of cut by detonation of an explosive
material. The metal element is deformed by the detonation and by passage through the
air to the target and a blade-like high speed jet of metal strikes the target to cut
the target.
[0005] Both the above methods of explosive cutting and their respective advantages and disadvantages
are very will known and extensively documented and no further description thereof
is required herein.
[0006] In more recent years it has been proposed that a target be cut along an intended
line by producing two shock wave fronts in the target, the two shock wave fronts first
entering the surface of the target simultaneously along two zones extending parallel
to the intended line of cut and spaced apart with the intended line of cut mid-way
between them. The two shock wave fronts pass into the target and meet along the intended
line of cut and the shock waves reflected from the undersurface of the target also
coincide along the intended line of cut.
[0007] It has been proposed that in such a method of cutting the shock waves first passing
through the material generate compression forces along the intended line of cut whilst
the reflected waves produce tension forces along the intended line of cut. In the
event a target can be cut along an intended line using far less explosive material
than conventional plaster charges.
[0008] For convenience the above described method of cutting by producing two spaced apart
wave fronts simultaneously in the surface of the target shall be referred to as "two-wave
explosive cutting" and means for producing two-wave explosive cutting shall hereinafter
be referred to as "two-wave explosive cutting means".
[0009] United States Patent No. 3,076,408 discloses two-wave explosive cutting means in
which a layer of explosive material is arranged in contact with the surface of a target
to be cut and extends across the intended line of cut. The explosive material is detonated
simultaneously at points on either side of the intended line of cut to produce the
two-wave explosive cutting. This document is the basis of the preamble of claim 1.
[0010] United States Patent No. 3,435,763 discloses the two-wave explosive cutting means
wherein an explosive strip is adapted to be arranged in contact with a surface of
a target on either side of an intended line of cut and said strip comprises means
for so controlling detonation of the material that a pair of converging re-entrant
detonation fronts proceed simultaneously and symmetrically inwards to generate a Mach
stem internally of the strip.
[0011] It is advantageous at this stage to differentiate between the terms "detonation front"
and "shock wave front" as those terms are known in the art.
[0012] A detonation front is a front which travels through an explosive mass, from the point
of initiation of the detonation, to continue the detonation of the explosive mass
and therefore a detonation front can exist only within an explosive mass.
[0013] A shock wave front is generated by a detonation front at a surface or surfaces of
a detonating mass and thus exists only outwardly of the explosive mass.
[0014] It should be noted that in all the prior art methods and means for two-wave explosive
cutting the two shock waves are produced by controlling the configuration of the detonation
fronts within the explosive material.
[0015] It will be appreciated that the speed at which the detonation front(s) pass through
the explosive material is very high as also is the speed at which the shock wave fronts
pass through the target. As the cut in the target is effected along the plane in which
the two shock wave fronts meet any minute variation in the time of entry of the shock
waves into the target, or any difference in the "balance" of the shock wave configurations,
will cause the cut to deviate from the intended line of cut.
[0016] Thus, any system which relies on detonating the explosive material at a plurality
of locations must be suspect in that any premature or delayed firing of any one of
the detonators will result in an undesired detonation configuration with deviation
from the intended line of cut. Any system which relies on barriers to periodically
re-establish side edge detonation and wherein the detonation effectively proceeds
independantly along the side edges of the explosive material must also be suspect.
It is for this reason that prior art two-wave cutting is rarely used on long cuts,
such as cuts in excess of ½ metre.
[0017] The object of the present invention is to provide a method and means for two-wave
explosive cutting which does not rely on controlling the configuration of the detonation
front through the explosive charge.
[0018] According to the present invention there is provided a method for two-wave explosive
cutting of a target along an intended line of cut comprising the steps of locating
an explosive material to extend along the intended line of cut and on both sides of
the intended line of cut and detonating said explosive material, characterised by
the steps of supporting the mid-regions of the explosive material, in planes at right
angles to the intended line of cut, on a shock wave delay element, shaping the explosive
material to have a substantially uniform cross-section in planes at right angles to
the direction of the intended line of cut with the explosive material at the side
edges in each said cross-section closer to the target surface than the shock-wave
delay element-supported mid-regions thereof, and detonating said explosive material
to generate a detonation front in said explosive material travelling in the direction
of the intended line of cut.
[0019] In one embodiment in accordance with the invention the method is characterised by
the steps of shaping the cross-section of the shock wave delay element in planes at
right angles to the intended line of cut to control the progression of the shock waves
through said shock wave delay element to the target surface.
[0020] In one preferred embodiment the method comprises the steps of constructing the shock
wave delay element of different shock wave transmission materials to control the progress
of the shock waves through the shock wave delay element to the target surface.
[0021] Preferably the method comprises the steps of locating a metal element between the
target and the explosive material, said metal element extending along the length of
the intended line of cut and being spaced from the target surface, and providing a
void in the shock wave delay element between said metal insert and the target surface.
[0022] In another embodiment the method comprises the steps of forming a void, extending
in the direction of the intended line of cut, in the shock wave delay element to further
delay the progression of the mid-regions of the shock wave front, in planes at right
angles to the intended direction of cut, through the shock wave delay element to the
target surface.
[0023] The invention also envisages a two wave-explosive cutting means comprising an elongate
shock wave delay element of substantially uniform cross-section, intended to extend
in the length direction of an intended line of cut, and an explosive material having
its mid-regions, in planes at right angles to the intended line of cut, supported
on said element.
[0024] Preferably said cutting means has its said shock wave delay element presenting a
target-engaging surface and an explosive-supporting surface or surfaces facing away
from said target-engaging surface, said surfaces extending in the length direction
of said element.
[0025] In one embodiment the said shock wave delay element includes areas of different shock
wave transmission characteristics in each cross-section of said element at right angles
to the longitudinal direction of said element.
[0026] In one preferred embodiment the shock wave delay element has a greater thickness
at its mid-regions than at its side edges in planes at right angles to the longitudinal
direction of the said element.
[0027] Preferably the shock wave delay element is of generally triangular cross-section
in planes at right angles to the longitudinal direction of the element, one major
face of the element defines the target-engaging surface of the element and the other
two major faces of the element define explosive-supporting surfaces of the element.
[0028] In one preferred embodiment the cross-section of the shock wave delay element is
generally in the form of an isosceles triangle, with a high base to height ratio,
and the base surface of said triangle comprises the target-engaging surface.
[0029] In one embodiment the said shock wave delay element includes a recess in said target-engaging
surface extending along the length direction of the element and intended to straddle
the intended line of cut of a target.
[0030] In a preferred embodiment a metal insert is located in said recess to extend in the
length direction of the shock wave delay element and said insert is spaced from the
target-engaging face of the delay element and is intended to straddle the intended
line of cut.
[0031] In one embodiment, particularly suitable for cutting cylinders, the shock wave delay
element is curved, in its longitudinal direction, and its two ends are joined to form
a closed loop tightly embrace the target surface.
[0032] Preferably the shock wave delay element includes a magnetized element or elements.
[0033] The present invention also envisages a two-wave cutting means as defined above in
combination with an initiation means.
[0034] Preferably the initiation means include a detonator and a sheet of explosive material
located to detonate the explosive material on the shock wave delay element when the
detonator is fired, said sheet of explosive material when detonated being arranged
to detonate the explosive material on the shock wave delay element over a substantially
straight detonation front at right angles to the length direction of the shock wave
delay element.
[0035] The invention will now be described further by way of example with reference to the
accompanying drawings in which;
- Fig.1
- is a diagrammatic cross section through a two-wave cutting means according to the
invention,
- Figs 1A, 1B and 1C
- show cross sections through the cutting means illustrated in Fig 1, to the left of
the centre line CL, diagrammatically illustrating the progression of the shock wave
front.
- Fig 2
- is a diagrammatic cross section through a second two-wave cutting means.
- Fig 3
- is a view, similar to Fig 2, of a third two-wave cutting means
- Fig 4
- is a view, similar to Fig 2, showing a further two-wave cutting means according to
the invention
- Fig 5
- is a view, similar to Fig 2, of a fifth embodiment of two-wave cutting means
- Fig 6
- is a view, similar to Fig 2,of a still further embodiment in accordance with the invention
- Fig 7
- is a perspective view showing one initiation means for the two-wave cutting means
shown in Fig 2 and,
- Figs 8 & 9
- are plan views of two different embodiments of part of the initiation means shown
in Fig 7
[0036] In the embodiment illustrated in Fig 1 an elongate shock-wave delay element 11, of
rectangular cross section,rests on the surface 12
a of a target 12 and a strip of explosive material 13 rests on the surface of element
11 remote from surface 12
a. The element 11 has the mid-plane CL passing through its transverse cross section
in the plane of the intended line of cut 14, in the target so that, in its width direction,
the element 11 extends equally on either side of the line of cut 14.
[0037] The element 11 comprises, in cross section, an isosceles triangle 11
a of a first material and two equal right-angle triangles 11
b 11
c of a second material, the first and second materials being selected to have different
shock-wave transmission characteristics with the triangle 11
a having the slowest transmission characteristics.
[0038] Figs 1A, 1B and 1C show cross sections of the element 11 to the left of the mid-plane
CL and it will be appreciated that the shock wave fronts described with respect to
Figs 1A 1B and 1C are mirror images of the shock wave fronts as will be developed
in the cross section of the element 11 to the right of the plane CL.
[0039] In the embodiment shown in Fig 1A, and assuming that the first and second materials
are so selected that the speed at which a shock wave front travels through the first
material is one half of the speed through the second material, it will be noted that
at a time "t" after detonation of the explosive material 13.
[0040] The shock wave front 15
a travelling wholly through the triangle 11
b will have travelled a distance D and will be progressing parallel to the surface
11. The shock wave front travelling wholly through the triangle 11
a will have travelled

and
[0041] The shock wave front 15
b which has passed through the plane joining triangle 11
a to triangle 11
b will have travelled part way through triangle 11
b and part way through 11
a and will therefore be inclined to the plane of surface 12
a.
[0042] Fig 1B shows the position when the shock wave has travelled to the lower-most point
of triangle 11
b and one half the height of triangle 11
a at the mid-plane CL and it will be noted that the shock wave has a releatively straight
front 15.
[0043] Assuming that the target is a metal with good shock wave transmission characteristics,
Fig 1C shows the position wherein the shock wave front 15 has passed wholly into the
target 12 and the inclined part 15
c of said front is travelling towards the line of cut 14.
[0044] It will be appreciated that the sections and progressions of the shock wave fronts
shown in Figs 1A, 1B and 1C are mirror images of the sections and progression of the
shock wave fronts on the right hand side of the mid-plane CL and, when the explosive
material 13 is detonated on a straight front travelling in the length direction of
element 11, shock wave fronts will first enter the surface 12
a of target 12 from the lowest points of triangles 11
b and 11
c, as viewed in Fig 1, simultaneously and the inclined shock wave fronts 15
c will meet at the intended line of cut 14.
[0045] In the embodiment shown in Fig 2 a shock wave delay element 21 of elongate form,
has a transverse cross-section in the form of an isosceles triangle with a high base
to height ratio and the surface 21
a, defined by the base, comprises the target-engaging surface of the element 21. The
remaining major surfaces 21
b and 21
c of the element 21 comprise the explosive-supporting surfaces.
[0046] The element 21 is placed on a target 22 with its length direction extending in the
direction of the intended line of cut 23 and its target-engaging surface 21
a in contact with the surface 22
a of the target. The target-engaging surface 21
a extends equally on either side of the intended line of cut 23.
[0047] When the explosive material 24 on the explosive-supporting surfaces 21
b and 21
c of the element 21 is detonated so that a detonation front travels in the length direction
of the element 21, the shock wave front 25 generated by the explosive material 24
travels through the shock wave delay element 11 to the surface 22
a of target 22. Entry of the shock wave 25 into the target 22 is first at zones 22
b, 22
c where the explosive material 24 is closest to the target 22 and has the minimum delay
in travelling through the element 21 and, as the height of the element 21 increases
towards the plane of the intended cut 23, so the shock wave front 25 is delayed in
its passage to the target 22 by the increasing thickness of element 21.
[0048] Thus, the shock wave front 25 first enters the target 22 at the two zones or regions
22
b, 22
c, which are equally spaced apart from the intended plane of cut 23, and the inclined
shock wave fronts 25
a and 25
b passing through the element 21 parallel to surfaces 21
b, 21
c respectively travel towards one another to coincide at the plane of the intended
cut 23.
[0049] In Fig 2 the shock wave fronts 25 are shown passing into a target 22 having substantially
the same shock-wave transmission characteristics as the element 21.
[0050] Fig 3 shows a view similar to Fig 2, and using identical reference numerals for identical
parts, the essential difference from Fig 2 being that the shock wave transmission
speed for the element 21 is slower than for the target material whereby the angles
of the inclined shock wave fronts 25
a and 25
b within the target 22 are steeper (as viewed in Fig 3) than the angle of the shock
wave fronts 25
a, 25
b within the target 22 shown in Fig 2.
[0051] The shock wave delay element 11 of Fig 1 and the shock wave delay elements 21 of
Figs 2 and 3 may be constructed from any suitable materials having the desired shock
wave transmission speeds but preferably said element 11 of Fig 1 and the elements
21 of Figs 2 and 3 are constructed from rubber, synthetic rubber or plastics materials,
and have sufficient flexibility to allow the respective shock wave delay elements
11 or 21 to follow non-linear contours, such as the curved surfaces of pipes and tubes.
[0052] The elements 11 and 21 may also include a soft iron core element 26 (illustrated
only in Fig 2) on the mid-plane CL and extending in the length direction of the respective
delay element and which can assist in holding the shock wave element in a shape imparted
to follow a non-linear contour.
[0053] The elements 11 and 21 may also include magnetized material, such as magnetized particles
of barium ferrite, so that the respective element 11 or 21 can magnetically adhere
to the surface of a ferrous target.
[0054] The explosive material 13 of Fig 1 and 24 of Figs 2 and 3 may be secured to its respective
element 11 or 22 with an adhesive material, preferably not a water-soluble adhesive.
[0055] Fig 4 illustrate a modification which can be applied to the embodiments illustrated
in Figs 2 and 3. In this modification, in which like numerals have been used to designate
like parts, a strip of ferrous metal 27 is bonded to the base surface of the element
21 and a strip of magnetized material 28, such as a rubber or plastics material including
magnetized particles, is bonded to the metal 27 so that the composite element 11 can
adhere to ferrous targets without the inclusion of magnetized particles within the
element 21.
[0056] Referring now to Fig 5 it will be seen that the embodiment illustrated therein is
similar to the embodiments of Fig 2 and 3, like numerals again identify like parts,
with the exception that the apex of the shock wave delay element 21 is truncated and
the element 21 has a central triangular cavity 30 therein the apex of which is lower-most
(as viewed in Fig 5) and coincides with the intended line of cut 23 and the base of
which is covered by a plate 31, e.g., of metal. The plate 31 is covered by the explosive
material 24.
[0057] When the strip of explosive material 24 is detonated the plate 31 will be driven
downwardly and, guided by the side walls of the cavity 30, will form a high velocity
metal jet directed towards the intended line of cut 23. This jet will not cut the
target 22 but will indent or recess the surface of the target 22 along the intended
line of cut 23 to assist fracture of the target along said intended line of cut 23.
[0058] In the embodiment shown in Fig 6, again like parts are identified by like numerals,
the shock wave delay element 21 is provided with a triangular cavity 32 which extends
the length thereof and which has its base astride the intended line of cut. The cavity
32 may be metal lined if desired. It has been found in practice that the cavity 32
greatly assists focusing of the shock wave.
[0059] The shock wave delay elements 21 of Figs 5 and 6 may, in like manner to the embodiments
described with reference to Figs 2 and 3 be made of rubber, synthetic rubber or plastics
material so as to be flexible and said elements may include magnetized particles to
enable the elements 21 of Figs 5 and 6 to adhere to ferrous targets. The plate 31
of Fig 5 may also be magnetized to assist adhesion of the insert 23 to a ferrous target.
[0060] Fig 7 shows initiating means 35 suitable for use with the explosive cutting means
of any of the embodiments illustrated in Figs 2 to 6 inclusive.
[0061] The initiating means 35 comprise a support 36 of inert material shaped to conform
to the shape of the exposed main faces of the explosive material 24 and which is adapted
to be mounted thereon. The support 36 carries means 37 for supporting a detonator
38. The support 36 also carries on part of its surface remote from the explosive material
24, a layer of explosive material 39 which will be detonated when the detonator 38
is fired. The layer of explosive material 39 extends over one end of the support 36,
as shown at 40, so as to contact the explosive material 24 when the initiating means
is properly located on the explosive cutting means. The layer of explosive material
39 is substantially triangular in plan view and has incorporated therein barrier elements
41 which are so arranged that all paths from the detonator 38 to each point along
the edge 40 are of substantially the same length to ensure that detonation of the
explosive material 24 takes place substantially simultaneously at all points across
the width thereof.
[0062] Fig 8 illustrates an array of circular barrier elements 41, for the explosive layer
39 whilst Fig 9 illustrates an array of linear barrier elements 41, both of these
arrays being such as to achieve the desired object of ensuring that all paths between
the point of detonation of the layer of explosive material 39 and and the edge 40
which initiates the explosive material 24 are of substantially the same length.
[0063] It will be appreciated that in all the foregoing embodiments the shock wave delay
element focuses the shock wave generated by detonation of the explosive material to
produce entry of the shock wave into the target first at two zones or locations equally
spaced on either side of the intended line of cut whereby the classic "two-wave" cutting
is achieved when the shock waves progress from said two zones to coincide at the intended
line of cut.
[0064] If it is desired to cut or fracture a target along two or more intended lines of
cut which are parallel to one another then explosive cutting means according to the
present invention can be used in a side-by-side array or, alternatively, an explosive
cutting means may be formed which comprises, in effect, a plurality of cutting means
according to the present invention arranged side-by-side.
[0065] Thus, for example two-shock wave cutting means as shown in Fig 2, 3, 4, 5 or 6 could
be assembled in side-by-side relationship on a common sheet to form a series of side-by-side
corrugations extending across the width of a sheet, with each corrugation providing
a separate two-wave explosive cutting means according to the present invention but
with corrugations sharing a common sheet of explosive metal. The facility for providing
multiple fractures or cuts is particularly useful when removing a section of lining
from a bore or well, e.g., an oil well, since it enables the section of lining to
be cut into sufficiently small pieces for either easy removal or for falling with
little danger of blocking of the bore or well to the bottom of the bore or well.
[0066] In the embodiments illustrated in Figs 1 to 6 the elements 11, 21 have been described
as elongate but it will be appreciated that when said elements are flexible the two-wave
cutting means can be deflected to cut a target along lines other than straight lines.
[0067] The elongate shock wave delay elements described above may be easily made by conventional
extrusion processes and the explosive material 24 may also be extruded to the desired
cross section. Thus, the assembly of the cpmponent parts of the shock wave cutting
means is simplified.
[0068] Alternatively shock wave delay elements required for cuts which cannot be made by
flexing an elongate cutting means may be moulded to follow virtually any desired cut
configuration. By way of example the elements may be moulded in "closed" configuration,
such as a circular configuration to cut a disc from a target. Further, shapes for
a cut can be built up using elongate and curved delay elements to cut, for example,a
rectangular hole with curved corners.
[0069] In further embodiments the two-wave cutting means illustrated in Figs 1 to 6 inclusive
may be of conical configuration, defining solids of revolution about the mid-plane
(axis) CL, whereupon the shock waves will coincide at a core region passing through
the target.
[0070] The invention is further described with reference to the following examples.
EXAMPLE 1
[0071] A shock wave delay element of the kind shown in Fig 2 was constructed from a composite
magnetic material comprising 92.5% barium ferrite in a matrix of synthetic rubber
which is sold under the registered trade mark FEROBA. This element had a density of
3.6g/cc. The cross-section of the element was an isosceles triangle having a base
of 30mm and an apex of 130
o. The base of the element was magnetically adhered to a plate of mild steel 7.9mm
thick. To the remaining two sides of the element was applied a single strip of RDX-based
plastic explosive of the kind designated SX2. This strip was 32mm wide and 3mm thick.
The strip of explosive material was initiated at a point on the longitudinal axis
thereof, at a distance of 40mm from the start of the intended line of cut so that
the detonation front would have time to develop prior to the start of the intended
line of cut. The plate was divided by a continuous and very straight fracture.
EXAMPLE 2
[0072] A shock wave delay element of the kind used in Example 1 was magnetically adhered
by its base to a mild steel plate 15.3mm thick. To the other two sides of the element
was applied two strips of SX2 plastic explosive, the strips each being 32mm wide and
3mm thick and being applied one upon the other to give a double thickness. When the
explosive material was initiated in the same manner as in Example 1 the plate was
fractured along a continuous and very straight edged line. A thick spall was projected
from the rear of the plate and this spall was itself divided neatly along the line
of intended cut. A particular feature of this Example was that the spall fragments
exhibited straight and square outer edges. Normally, when a strip of explosive material
is detonated in contact with a metal plate so as to cause a spall to be projected
from the opposite side thereof, the edges of the spall fragments are ragged and somewhat
tapered.
EXAMPLE 3
[0073] Two strips of SX2 plastic explosive 32mm wide and 3mm thick were folded along their
longitudinal centre line so that the two sides extended at an angle of 120
o to one another. The two strips were positioned one upon the other on a plate of mild
steel 12,5mm thick with two longitudinal side edges of the inner strip resting upon
the plate. The assembly was immersed in water so that the water filled cavity between
the inner strip of explosive material and the plate to provide a shock wave delay
element. The explosive was initiated centrally of one end thereof. The steel plate
was divided by a fracture which coincided with the longitudinal axis of the strips
of explosive material. A narrow spall approximately 11mm wide and 5mm thick was detached
from the surface of the steel plate opposite to which the explosive was applied. The
plate was not deformed to any visible extent beyond the fracture on that surface to
which the explosive material was applied and beyond the spall on the other side. Thus
the zone of visible damage did not extend laterally beyond about 5.5mm from the centre
line of the fracture. This is a much narrower damage zone than usually occurs with
known fracturing or cutting charges of comparable severing power.
1. A method for two-wave explosive cutting of a target along an intended line of cut
comprising the steps of locating an explosive material to extend along the intended
line of cut and on both sides of the intended line of cut and detonating said explosive
material, characterised by the steps of supporting the mid-regions of the explosive
material(13,24), in planes at right angles to the intended line of cut, on a shock
wave delay element(11,21), shaping the explosive material, (13, 24) to have a substantially
uniform cross-section in planes at right angles to the direction of the intended line
of cut (14, 23) with the explosive material (13, 24) at the side edges in each said
cross-section closer to the target surface (12a, 22a) than the shock wave delay element(11,21)-supported mid-regions thereof, and detonating
said explosive material (13, 24) to generate a detonation front in said explosive
material (13, 24) travelling in the direction of the intended line of cut (14, 23).
2. A method as claimed in claim 1 characterised by the steps of shaping the cross-section
of the shock wave delay element (11, 21), in planes at right angles to the intended
line of cut (14, 23), to control the progression of the shock waves (15a, 15b, 25a, 25b) through said shock wave delay element (11, 21) to the target surface (12a, 22a).
3. A method as claimed in claim 1 or 2, characterised by the steps of constructing the
shock wave delay element (11) of different shock wave transmission materials (11a, 11b, 11c) to control the progress of the shock waves through the shock wave delay element
(11) to the target surface (12a).
4. A method as claimed in any preceding claim characterised by the steps of locating
a metal element (31) between the target (11, 21) and the explosive material (13, 24),
said metal element (31) extending along the length of the intended line of cut (14,
23) and being spaced from the target surface (12a, 22a) and providing a void (30) in the shock wave delay element (11, 21) between said
metal insert (31) and the target surface (12a, 22a).
5. A method as claimed in any preceding claim, characterised by the step of forming a
void (32), extending in the direction of the intended line of cut (14, 23) in the
shock wave delay element (11, 21) to further delay the progression of the mid-regions
of the shock wave front, in planes at right angles to the intended direction of cut
(14, 23), through the shock wave delay element (11, 21) to the target surface (12a, 22a).
6. A two-wave explosive cutting means comprising an elongate shock wave delay element
(11, 21), of substantially uniform cross-section intended to extend in the length
direction of an intended line of cut, and an explosive material (13, 24) having its
mid-regions, in planes at right angles to the intended line of cut, supported on said
element (11, 21).
7. A two-wave explosive cutting means as claimed in claim 6 characterised in that said
shock wave delay element (11, 12) presents a target-engaging surface (21a) and an explosive-supporting surface or surfaces (21b, 21c) facing away from said target-engaging surface, said surfaces (21a, 21b and 21c) extending in the length direction of said element (11, 21).
8. A two-wave explosive cutting means as claimed in claim 6 or 7, characterised in that
said shock wave delay element (11) includes areas (11a, 11b, 11c) of different shock wave transmission characteristics in each cross-section of said
element (11) at right angles to the longitudinal direction of said element (11).
9. A two-wave explosive cutting means as claimed in claims 6,7, or 8, characterised in
that the shock wave delay element (21) has a greater thickness at its mid-regions
than at its side edges in planes at right angles to the longitudinal direction of
the said element.
10. A two-wave explosive cutting means as claimed in claim 7, 8 or 9, characterised in
that the shock wave delay element (21) is of generally triangular cross section in
planes at right angles to the longitudinal direction of the element (21) and one major
face (21a) of the element (21) defines the target-engaging surface of the element and the other
two major faces (21b, 21c) of the element define explosive-supporting surfaces of the element (21).
11. A two-wave explosive cutting means as claimed in claim 10 and wherein, the triangular
cross section of the element (21) is generally in the form of an isosceles triangle,
with a high base to height ratio, and the base surface of said triangle comprises
the target-engaging surface (21a).
12. A two-wave explosive cutting means as claimed in claim 6, 7, 8, 9, 10 or 11 characterised
in that said shock wave delay element (11, 21) includes a recess (30 or 32) in said
target-engaging surface (21a) extending along the length direction of the element (11, 21) and intended to straddle
the intended line of cut (14, 23) of a target (14, 23).
13. A two-wave explosive cutting means as claimed in claim 12, characterised in that a
metal insert (31) is located in said recess (30) to extend in the length direction
of the shock wave delay element (11, 21) and said insert (31) is spaced from the target-engaging
face of the delay element (11, 21) and is intended to straddle the intended line of
cut (14, 23).
14. A two-wave explosive cutting means as claimed in any one of claims 6 to 13 inclusive,
in which the shock wave delay element (11, 21) is curved, in its longitudinal direction,
and its two ends are joined to form a closed loop.
15. A two-wave explosive cutting means as claimed in any one of claims 6 to 14 inclusive
characterised in that the shock wave delay element includes a magnetized element (28)
or elements.
16. A two-wave explosive cutting means as claimed in any one of claims 6 to 15, in combination
with an initiation means (35 to 41).
17. A two-wave cutting means as claimed in claim 16 and characterised in that the initiation
means include a detonator (38) and a sheet of explosive material (40) located to detonate
the explosive material on the shock wave delay element (11, 21) when the detonator
is fired, said sheet of explosive material (40) when detonated being arranged to detonate
the explosive material (13, 24) on the shock wave delay element (11, 21) over a substantially
straight detonation front at right angles to the length direction of the shock wave
delay element (11, 21).
1. Procédé de coupe par explosion à deux ondes d'une cible selon une ligne de coupe prévue
comportant les étapes consistant à placer une matière explosive le long de la ligne
de coupe prévue et sur les deux côtés de la ligne de coupe prévue et à faire exploser
ladite matière explosive, caractérisé par les étapes consistant à supporter les régions
médianes de la matière explosive (13,24), dans des plans perpendiculaires à la ligne
de coupe prévue, sur un élément (11,21) retardateur d'onde de choc, à conformer la
matière explosive (13,24) de façon à avoir une section transversale sensiblement uniforme
dans des plans perpendiculaires à la direction de la ligne de coupe (14,23), la matière
explosive (13,24) étant sur ses bords latéraux dons chaque section transversale plus
proche de la surface (12a,22a) de la cible que les régions médianes supportées par
l'élément (11,21) retardateur d'onde de choc, et à faire exploser ladite matière explosive
(13,24) de façon à engendrer un front d'explosion dans ladite matière explosive (13,24)
se déplaçant dans la direction de la ligne de coupe prévue (14,23).
2. Procédé selon la revendication 1, caractérisé par les étapes consistant à conformer
la section transversale de l'élément (11,21) retardateur d'onde de choc dans des plans
perpendiculaires à la ligne de coupe prévue (14,23) de façon à commander la progression
des ondes de choc (15a,15b,25a,25b) à travers ledit élément retardateur d'onde de
choc (11,21) jusqu'à la surface de cible (12a,22a).
3. Procédé selon la revendication 1 ou 2, caractérisé par les étapes consistant à construire
l'élément (11) retardateur d'onde de choc dans différentes matières (11a,11b, 11c)
de transmission d'onde de choc de manière à commander la progression dos ondes de
choc à travers l'élément (11) retardateur d'onde de choc jusqu'à la surface de cible
(12a).
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par les
étapes consistant à placer un élément de métal (31) entre la cible (12,22) et la matière
explosive (13,24), ledit élément de métal (31) s'étendant sur la longueur de la ligne
de coupe prévue (11,23) et étant espacé de la surface de cible (12a,22a) et à prévoir
un vide (30) dans l'élément (11, 21) retardateur d'onde de choc entre ledit insert
de métal (31) et la surface de cible (12a,22a).
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé par l'étape
consistant à former un vide (32) s'étendant dans la direction de la ligne de coupe
prévue (14,23) dans l'élément (11,21) retardateur d'onde de choc de façon à encore
retarder la progression des régions médianes du front d'onde de choc, dans des plans
perpendiculaires à la direction de coupe prévue (14,23), à travers l'élément (11,21)
retardateur d'onde de choc jusqu'à la surface de cible (12a,22a).
6. Dispositif de coupe par explosion à deux ondes, comprenant un élément allongé (11,21)
retardateur d'onde de choc, ayant une section transversale sensiblement uniforme destinée
à s'étendre dans la direction longitudinale d'une ligne de coupe prévue, et une matière
explosive (13,24) ayant ses régions médianes, dans des plans perpendiculaires à la
ligne de coupe prévue, supportées sur ledit élément (11,21).
7. Dispositif de coupe par explosion à deux ondes selon la revendication 6, caractérisé
en ce que ledit élément retardateur d'onde de choc (11,21) présente une surface (21a)
de contact de cible et une surface ou des surfaces (21b,21c) de support d'explosif
dirigées à l'opposé de ladite surface de contact de cible, lesdites surfaces (21a,21b
et 21c) s'étendent dans la direction longitudinale dudit élément (11,21).
8. Dispositif de coupe par explosion à deux ondes, selon la revendication 6 ou 7, caractérisé
en ce que ledit élément (11) retardateur d'onde de choc comprend des zones (11a,11b,11c)
ayant des caractéristiques de transmission d'onde de choc différentes dans chaque
section transversale dudit élément (11) perpendiculaire à la direction longitudinale
dudit élément (11).
9. Dispositif de coupe par explosion à deux ondes, selon l'une des revendications 6,
7 ou a, caractérisé en ce que l'élément (21) retardateur d'onde de choc présente une
épaisseur supérieure dans ses régions médianes que sur ses bords latéraux, dans des
plans perpendiculaires à la direction longitudinale dudit élément.
10. Dispositif de coupe par explosion à deux ondes, selon les revendications 7, 8 ou 9,
caractérisé en ce que l'élément (21) retardateur d'onde de choc est de section transversale
globalement triangulaire, dans des plans perpendiculaires à la direction longitudinale
de l'élément (21), et en ce qu'une grande face (21a) de l'élément (21) définit la
surface de contact de cible de l'élément tandis que les deux autres grandes faces
(21b,21c) de l'élément définissent les surfaces de support d'explosif de l'élément
(21).
11. Dispositif de coupe par explosion à deux ondes, selon le revendication 10, et dans
lequel la section transversale triangulaire de l'élément (21) est globalement en forme
de triangle isocèle avec un rapport élevé de la base à la hauteur, la surface de base
dudit triangle comprenant la surface (21a) de contact de cible.
12. Dispositif de coupe par explosion à deux ondes, selon les revendications 6, 7, 8,
9, 10 ou 11, caractérisé en ce que ledit élément (11,21) retardateur d'onde de choc
comporte une cavité (30 ou 32) dans ladite surface (21a) de contact de cible s'étendant
dans la direction longitudinale de l'élément (11,21) et destinée à chevaucher la ligne
de coupe prévue (14,23) d'une cible (12,22).
13. Dispositif de coupe par explosion à deux ondes, selon la revendication 12, caractérisé
en ce qu'un insert métallique (31) est placé dans ladite cavité (30) pour s'étendre
dans la direction longitudinale de l'élément (11,21) retardateur d'onde de choc et
en ce que ledit insert (31) est à une certaine distance de la face de contact de cible
de l'élément de retard (11,21) et est destiné à chevaucher la ligne de coupe prévue
(14,23).
14. Dispositif de coupe par explosion à deux ondes, selon l'une quelconque des revendications
6 à 13, dans lequel l'élément (11,21) retardateur d'onde de choc est courbe, dans
sa direction longitudinale, ses deux extrémités étant reliées pour former une boucle
fermée.
15. Dispositif de coupe par explosion à deux ondes, selon l'une quelconque des revendications
6 à 14, caractérisé en ce que l'élément d'onde de choc comprend un ou des éléments
(28) magnétisés.
16. Dispositif de coupe par explosion à deux ondes, selon l'une quelconque des revendications
6 à 15, en combinaison avec un dispositif d'amorçage (35 à 41).
17. Dispositif de coupe à deux ondes, selon la revendication 16, et caractérisé en ce
que le dispositif d'amorçage comprend un détonateur (38) et une feuille de matière
explosive (40) placée de manière à faire exploser la matière explosive sur l'élément
retardateur d'onde de choc (11,21) quand le détonateur est actionné, ladite feuille
de matière explosive (40) lorsqu'elle explose étant agencée pour faire exploser la
matière explosive (13,24) sur l'élément (11,21) retardateur d'onde de choc sur un
front de détonation sensiblement rectiligne perpendiculaire à la direction longitudinale
de l'élément (11,21) retardateur d'onde de choc.
1. Verfahren zum Zweiwellen-Explosionsschneiden eines Gegenstands entlang einer gewünschten
Trennlinie, umfassend die folgenden Schritte: Anordnen eines Sprengstoffes, so daß
er entlang der gewünschten Trennlinie und zu beiden Seiten der Trennlinie verläuft,
und Detonieren dieses Sprengstoffes, gekennzeichnet durch die folgenden Schritte:
Haltern der Mittenbereiche des Sprengstoffs (13, 24) in rechtwinklig zu der gewünschten
Trennlinie verlaufenden Ebenen auf einem Stoßwellenverzögerungselement (11, 21), Formen
des Sprengstoffs (13, 24) derart, daß sein Querschnitt in rechtwinklig zu der Richtung
der gewünschten Trennlinie (14, 23) verlaufenden Ebenen im wesentlichen gleichförmig
ist, wobei der Sprengstoff (13, 24) an den Seitenrändern in jedem Querschnitt näher
an der Oberfläche (12a, 22a) des Gegenstands liegt als seine von dem Stoßwellenverzögerungselement
(11, 21) gehalterten Mittenbereiche, und
Detonieren des Sprengstoffs (13, 24) zur Erzeugung einer Detonationsfront in dem Sprengstoff
(13, 24), die sich in Richtung der gewünschten Trennlinie (14, 23) fortbewegt.
2. Verfahren nach Anspruch 1,
gekennzeichnet durch den Schritt der Formung des Querschnitts des Stoßwellenverzögerungselements
(11, 21) in rechtwinklig zu der gewünschten Trennlinie (14, 23) verlaufenden Ebenen,
um die Ausbreitung der Stoßwellen (15a, 15b, 25a, 25b) durch das Stoßwellenverzögerungselement
(11, 21) zur Oberfläche (12a, 22a) des Gegenstands zu kontrollieren.
3. Verfahren nach Anspruch 1 oder 2,
gekennzeichnet durch den Schritt des Aufbaus des Stoßwellenverzögerungselements (11)
aus verschiedenen Stoßwellendurchlaßmaterialien (11a, 11b, 11c), um die Ausbreitung
der Stoßwellen durch das Stoßwellenverzögerungselement (11) zur Oberfläche (12a) des
Gegenstands zu kontrollieren.
4. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch die folgenden Schritte: Anordnen eines Metallteiles (31) zwischen
dem Gegenstand (11, 21) und dem Sprengstoff (13, 24), wobei sich das Metallteil (31)
entlang der Länge der gewünschten Trennlinie (14, 23) erstreckt und von der Oberfläche
(12a, 22a) des Gegenstands beabstandet ist, und Vorsehen eines Hohlraumes (30) in
dem Stoßwellenverzögerungselement (11, 21) zwischen dem Metallteil (31) und der Oberfläche
(12a, 22a) des Gegenstands.
5. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch den Schritt der Formung eines Hohlraumes (30) in dem Stoßwellenverzögerungselement
(11, 21), der in Richtung der gewünschten Trennlinie (14, 23) verläuft, um die Ausbreitung
der Mittenbereiche der Stoßwellenfront in rechtwinklig zu der gewünschten Trennrichtung
(14, 23) verlaufenden Ebenen durch das Stoßwellenverzögerungselement (11, 21) zur
Oberfläche (12a, 22a) des Gegenstands weiter zu verzögern.
6. Zweiwellen-Explosionsschneidvorrichtung,
umfassend ein langgestrecktes Stoßwellenverzögerungselement (11, 21) mit im wesentlichen
gleichförmigem Querschnitt, das sich in Längsrichtung einer gewünschten Trennlinie
erstreckt, und einen Sprengstoff (13, 24), dessen Mittenbereiche in rechtwinklig zu
der gewünschten Trennlinie verlaufenden Ebenen auf dem Stoßwellenverzögerungselement
(11, 21) abgestützt sind.
7. Zweiwellen-Explosionsschneidvorrichtung nach Anspruch 6,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement (11, 21) eine Gegenstands-Anlagefläche
(21a) und eine Sprengstofftragfläche oder -flächen (21b, 21c) aufweist, die von der
Gegenstands-Anlagefläche (21a) weg gerichtet sind, wobei diese Flächen (21a, 21b und
21c) in Längsrichtung des Stoßwellenverzögerungselements (11, 21) verlaufen.
8. Zweiwellen-Explosionsschneidvorrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement (11) Bereiche (11a,
11b, 11c) mit unterschiedlichen Stoßwellendurchlaßcharakteristiken in jedem Querschnitt
des Stoßwellenverzögerungselements (11) unter rechten Winkeln zu der Längsrichtung
des Elementes (11) aufweist.
9. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 6, 7 oder 8,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement (21) in unter rechten
Winkeln zu seiner Längsrichtung verlaufenden Ebenen, in seinen Mittenbereichen dicker
als an seinen Seitenrändern ist.
10. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 7, 8 oder 9,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement (21) in rechtwinklig
zu seiner Längsrichtung verlaufenden Ebenen im allgemeinen Dreiecksquerschnitt hat
und daß eine Hauptfläche (21a) des Stoßwellenverzögerungselements (21) seine Gegenstands-Anlagefläche
bildet und die beiden anderen Hauptflächen (21b, 21c) des Elementes (21) Sprengstofftragflächen
des Stoßwellenverzögerungselements (21) bilden.
11. Zweiwellen-Explosionsschneidvorrichtung nach Anspruch 10, wobei der Dreiecksquerschnitt
des Stoßwellenverzögerungselements (21) im allgemeinen die Form eines gleichschenkligen
Dreiecks mit einem großen Verhältnis von Grundlinie zu Höhe hat und daß die Grundfläche
des Dreiecks die Gegenstands-Anlagefläche (21a) aufweist.
12. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 6, 7, 8, 9, 10 oder
11,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement (11, 21) in der Gegenstands-Anlagefläche
(21a) eine Ausnehmung (30 oder 32) hat, die entlang der Längsrichtung des Stoßwellenverzögerungselements
(11, 21) verläuft und die gewünschte Trennlinie (14, 23) eines Gegenstands übergreifen
soll.
13. Zweiwellen-Explosionsschneidvorrichtung nach Anspruch 12, dadurch gekennzeichnet,
daß in der Ausnehmung (30) ein Metalleinsatz (31) so angeordnet ist, daß er in Längsrichtung
des Stoßwellenverzögerungselements (11, 21) verläuft, und daß der Einsatz (31) von
der Gegenstands-Anlagefläche des Stoßwellenverzögerungselements (11, 21) beabstandet
ist und die gewünschte Trennlinie (14, 23) übergreifen soll.
14. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 6 bis 13 einschließlich,
bei der das Stoßwellenverzögerungselement (11, 21) in seiner Längsrichtung gebogen
ist und seine beiden Enden zur Bildung einer geschlossenen Schleife verbunden sind.
15. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 6 bis 14 einschließlich,
dadurch gekennzeichnet, daß das Stoßwellenverzögerungselement ein magnetisiertes Element
(28) oder magnetisierte Elemente enthält.
16. Zweiwellen-Explosionsschneidvorrichtung nach einem der Ansprüche 6 bis 15, in Kombination
mit einer Zündeinrichtung (35-41).
17. Zweiwellen-Explosionsschneidvorrichtung nach Anspruch 16, dadurch gekennzeichnet,
daß die Zündeinrichtung einen Detonator (38) und einen Sprengstoff-Flächenkörper (40)
aufweist, der so positioniert ist, daß er den Sprengstoff auf dem Stoßwellenverzögerungselement
(11, 21) zur Detonation bringt, wenn der Detonator gezündet wird, wobei der Sprengstoff-Flächenkörper
(40) bei der Detonation so angeordnet ist, daß er den Sprengstoff (13, 24) auf dem
Stoßwellenverzögerungselement (11, 21) über eine im wesentlichen geradlinige Detonationsfront
rechtwinklig zur Längsrichtung des Stoßwellenverzögerungselementes (11, 21) detoniert.