(19)
(11) EP 0 265 526 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 158(3) EPC

(43) Date of publication:
04.05.1988 Bulletin 1988/18

(21) Application number: 87902699.5

(22) Date of filing: 01.04.1987
(51) International Patent Classification (IPC)4F02D 41/40, F02D 41/04, F02D 29/02
(86) International application number:
PCT/JP1987/000204
(87) International publication number:
WO 1987/005968 (08.10.1987 Gazette 1987/22)
(84) Designated Contracting States:
DE

(30) Priority: 01.04.1986 JP 7512986

(71) Applicant: KABUSHIKI KAISHA KOMATSU SEISAKUSHO
Minato-ku Tokyo 107 (JP)

(72) Inventors:
  • KUBOTA, Yasuhiko
    Kawagoe-shi Saitama-ken 350 (JP)
  • TATE, Shigeyuki
    Kawagoe-shi Saitama-ken 350 (JP)

(74) Representative: Selting, Günther et al
Patentanwälte von Kreisler Selting Werner Postfach 10 22 41
50462 Köln
50462 Köln (DE)

   


(54) APPARATUS FOR CONTROLLING THE ENGINE OF WHEELED CONSTRUCTION MACHINE


(57) In this apparatus, first and second torque characteristics that adapt to the construction machine when it is working and is running are set respectively. When the construction machine is working or is running, the output torque of the engine is controlled in compliance with the first torque characteristics or the second torque characteristics. Therefore, the control apparatus improves both the working and the running performances of the wheeled construction machine over those of the construction machines in which the engine is controlled in compliance with a single kind of torque characteristics.




Description

TECHNICAL FIELD



[0001] The present invention relates to an apparatus for controlling an engine mounted on a wheeled type construction machine and more particularly to an apparatus for controlling an output torque of the engine in accordance with a plurality of torque characteristics.

BACKGROUND ART



[0002] With respect to an engine mounted on a wheeled type construction machine, a high torque is required at a time of working and a high rotational speed is required at a time of moving.

[0003] However, when a rated output of the engine is taken into account, it is difficult to set an engine torque performance which can met each of the aforesaid requirements. Heretofore, the aforesaid torque performance is established on the base of a compromise between the aforesaid requirements. For the reason, sufficient working performance and moving performance can not be given to the construction machine.

[0004] Incidentally, since an engine output is determined by torque and rotational speed of the engine, it follows that the aforesaid torque performance determines an engine output performance.

[0005] An object of the presenbt invention is to provide an engine controlling apparatus which can impart sufficient working performance and moving performance to a wheeled type construction machine.

DISCLOSURE OF THE INVENTION



[0006] An engine controlling apparatus according to the present invention includes torque performance setting means for establishing first and second torque performances conformable to a time of working and a time of moving of a wheeled type construction machine as engine torque performance, discriminating means for discriminating whether the aforesaid wheeled type construction machine is kept in a working state or in a moving state, and controlling means for controlling the engine in accordance with the first torque performance when it is discriminated that the construction machine is kept in a working state and controlling the engine in accordance with the second torque performance when it is discriminated that the construction machine is kept in a moving state.

[0007] Since the engine controlling apparatus of the invention is constructed in the above-described manner, the first torque performance conformable to working and the second torque performance conformable to moving are set when a wheeled type construction machine carries out working and moving.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] Fig. 1 is a block diagram illustrating an engine controlling apparatus in accordance with an embodiment of the present invention. Fig.2 is a block diagram illustrating an example of construction of a discriminating circuit. Fig. 3 is a graph for the purpose of explaining a function of a target injection volume calculating circuit. Fig. 4 is a graph for the purpose of explaining a function of a maximum injection volume calculating circuit. Fig. 5 is a graph illustrating other example of setting a torque performance.

BEST MODE FOR CARRYING OUT THE INVENTION



[0009] Now, the present invention will be described in a greater detail hereunder with reference to the accompanying drawings.

[0010] Fig. 1 illustrates by way of a block diagram an engine control apparatus for a wheeled type construction machine in accordance with an embodiment of the present invention.

[0011] In the drawing an acceleration pedal position detecting sensor 2 outputs a signal corresponding to the position of depressing of an acceleration pedal 1 (an amount of actuation), that is, a signal representative of a target engine rotational speed.

[0012] A target injection volume calculating circuit 3 calculates a target injection volume with reference to a signal indicative of a target engine rotational speed transmitted from the acceleration pedal position detecting sensor 2 and a rotational speed signal indicative of an actual rotational speed of the engine transmitted from an engine rotational speed sensor 4, and outputs a signal indicative of the target injection volume.

[0013] Namely, this target injection volume calculating circuit 3 stores a plurality of regulation lines ℓ1, ℓ2, --- as shown in Fig. 3 in a memory which is not shown in the drawing. An output from the aforesaid sensor 2 selects a required regulation line in response to the signal so that a target injection volume at the existent engine rotational speed is calculated with reference to the selected regulation line and an output signal from the aforesaid sensor 4.

[0014] For instance, in the case where a signal indicative of a target engine rotational speed N4 is outputted from a sensor 2, a regulation line is selected. And, in the case where the actual engine rotational speed detected by the sensor 4 is N , a target injection volume Qa is calculated and in the case where the actual engine rotational speed detected by the sensor 4 is Nb, a target injection volume Qb is calculated.

[0015] Incidentally, for instance, in the case where the target rotational speed is intermediate between N3 and N4, a regulation line for the aforesaid intermediate target rotational speed is interpolated with reference to the regulation lines ℓ3 and ℓ4 for N3 and N4.

[0016] A signal indicative of the target injection volume calculated in that way is transmitted to a small signal preference circuit 6 via PID compensating circuit 5.

[0017] The small signal preference circuit 6 has another input into which a signal indicative of the maximum injection volume obtainable from a maximum injection volume calculating circuit 7 is introduced.

[0018] The maximum injection volume calculating circuit 7 is such that, for instance, two kinds of allowable maximum torque characteristics A and B as shown in Fig. 4 are stored in a memory which is not shown in the drawing. It should be noted that since a torque of the engine is determined by a fuel injection volume, these characteristics A and B are practically indicative of an allowable maximum injection volume for individual engine rotational speed. Further, since an engine output is determined by a combination of the rotational speed and the torque of the engine, the aforesaid characteristics A and B become an element for determining the maximum output of the engine, respectively.

[0019] As is apparent from the fact that a torque value relative to the characteristic A is larger than that relative to the characteristic B, the characteristic A is so set that it conforms to the case where a high torque is required, that is, the case where a construction machine works. Further, as is apparent from the fact that the characteristic B extends to an area of an engine rotational speed higher than that of the characteristic A, the characteristic B is so set that it conforms to movement at a high speed.

[0020] The aforesaid maximum injection volume calculating circuit 7 selects either one of the aforesaid characterisctics A and B in accordance with a selection signal transmitted from a discriminating circuit 20 which discriminates whether the wheeled type construction machine is kept in a working state or in a moving state at present. Then, a signal indicative of an engine rotational speed to be transmitted from the engine rotational speed sensor 4 and a signal indicative of an allowable maximum injection volume employable at the existent engine rotational speed with reference to the aforesaid selected characteristics are outputted. Incidentally, the discriminating circuit 20 will be described in more details later.

[0021] The small signal preference circuit 6 compairs a signal indicative of a target injection volume to be outputted from the circuit 3 with a signal indicative of an allowable maximum injection volume to be outputted from the circuit 7 and then outputs the smaller one of the above-mentioned signals by preference.

[0022] Namely, for instance, in the case where the target injection volume Q as shown in Fig. 3 is calculated with the use of the circuit 3 and the characteristic A is selected with the use of the circuit 7, a signal indicative of Q a is outputted from the small signal preference circuit 6. Further, in the case where the target injection volume Qb is calculated with the use of the circuit 3 and the characteristic A is selected with the use of the circuit 7, a signal indicative of the injection volume Qc is outputted from the small signal preference circuit 6 due to the fact that Qb is larger than the injection volume Qc on the characteristic A at the actual engine rotational speed Nb.

[0023] An output signal from the small signal preference circuit 6 is transmitted to a rack position conversion circuit 8. This rack position conversion circuit 8 converts an input signal indicative of a fuel injection volume into a signal indicative of a target position of a control rack 12 and this rack target position signal is transmitted to an addition point 9. Incidentally, this control rack 12 functions to vary a fuel injection volume of a fuel injection pump 14 in dependence .on variation of the position of the control rack 12 as seen in the leftward and rightward directions.

[0024] The addition poiont 9 has another input into which a signal indicative of the position of the rack is introduced from a rack position sensor 13 as a feedback signal. Accordingly, a signal indicative of deviation of the aforesaid feedback signal from the aforesaid rack target position signal is outputted from this addition point 9 and this signal is transmitted to a linear solenoid 11 via a drive circuit 10. This causes the control rack 12 to be driven by the linear solenoid 11 in order that the position of the control rack 12 becomes a target position.

[0025] Next, description will be made below in more details as to the aforesaid discriminating circuit 20 with reference to Fig. 2 and moreover description will be made as to a function of the illustrated embodiment. It is discriminated in this discriminating circuits 20 with reference to detected signals of the acceleration pedal position detecting sensor 2, a hydraulic pressure detecting sensor 30 and a forward and rearward movement lever position detecting sensor 31 whether the wheeled type construction machine is kept in a working state or in a moving state.

[0026] As described above, the acceleration pedal position detecting sensor 2 outputs a signal H indicative of the position of depression of the acceleration pedal 1 (a height of the pedal) Incidentally, the ouitput signal H in this embodiment represents a value in inverse proportion to the extent of depression of the acceleration pedal 1. The hydraulic pressure detecting sensor 30 is disposed in a hydraulic circuit for driving a working portion of the construction machine to output a signal P indicative of hydraulic pressure in the hydraulic circuit. The forward and rearward movement lever position detecting sensor 31 outputs a signal FWD ( " 1 ") when a lever 31a for selecting the forward movement or the rearward movement of the construction machine assumes a position indicative of the forward movement thereof.

[0027] The discriminating circuit 20 is composed of setting devices 21 and 22, compartors 23 and 24 and an AND circuit 25. The setting device 21 outputs a setting signal H for discriminating whether or not the acceleration pedal 1 is depressed to an extent more than predetermined one and the setting device 22 outputs a setting signal P0 for discriminating whether or not hydraulic pressure in the hydraulic circuit of the working section is kept at a pressure applied during working.

[0028] The comparator 23 makes a comparison between input signals H and H and outputs a signal " 1 " when a formula of H < H is established, that is, when the acceleration pedal 1 is depressed to an extent more than predetermined one. The comparator 24 makes a compasion between input signals P and P0 and then outputs a signal " 1 " when a formula of P = P0, that is, when hydraulic pressure in the hydraulic circuit in the working section does not reach a pressure applied during working.

[0029] The AND circuit 25 takes AND conditions relative to a signal transmitted from the forward and rearward movement lever position detecting sensor 30, and when the AND conditions are established, a signal " 1 " indicative of the fact that the construction machine is kept in a moving state is transmitted to the maximum injection volume calculating circuit 7, while when the AND conditions fail to be established, a signal " 0 " indicative of the fact that the construction machine is kept at a working state is transmitted to the maximum injection volume calculating circuit 7.

[0030] The maximum injection volumr calculating circuit selects an injection volume characteristic B(see Fig. 4) conformable to moving when a signal " 1 " is transmitted from the aforesaid discriminating circuit 20 and selects an injection volume characteristic A conformable to working.

[0031] When either one of the characteristics A and B shown in Fig. 4 is selected by the circuit 7 and either one of lines ℓ1, ℓ2' --shown in Fig. 3 is selected by the circuit 3, a torque characteristic of the engine is determined. Accordingly, in this embodiment the circuits 3 and 7 function as an element for determining the torque characteristic of the engine.

[0032] Since the engine controlling apparatus in accordance with the present embodiment functions in the above-described manner, a high engine torque on the basis of the characteristic A can be obtained when..the construction machine works. Further, when the construction machine moves, a rotational speed of the engine can be increased on the basis of the characteristic B. That is to say, the construction machine can move at a high speed.

[0033] It should be noted that a point P on the characteristic A and a point Pb on the characteristic B shown in Fig. 4 are located on a rated engine horse power curve C of the engine, respectively. Accordingly, output horse powers of the engine each generated when the operating point of the engine is located on a point Pa and a . point Pb become identical to each other.

[0034] In the above-described embodiment two torque characteristics A and B are set, but many torque characterisctics, for instance, four kinds of torque characteristics A, B1, B2 and B3 as shown in Fig. 5 can be set. In this case, the existent speed stage is detected with the aid of' speed stage detecting means 32 and a speed stage conformable to the speed stage detected by either one of the characteristics B1, B2 and B3 is selected in the circuit 7. Incidentally, in this case, an output from the aforesaid discriminating circuit 20 is utilized for the purpose of selecting the characteristics A and the characteristics (B1, B2 and B3).

[0035] In the above-described embodiment it is discriminated with reference to each detected output of the acceleration pedal position detecting sensor 2, the hydraulic pressure detecting sensor 30 and the forward and rearward movement lever position detecting sensor 31 whether the wheeled type construction machine is kept in a working state or in a moving state, but kind and combination of the detecting sensors should not be limited to this. The above-described discrimination can be achieved, for instance, by using a vehicle speed sensor or the like.

INDUSTRIAL APPLICABILITY



[0036] According to the present invention, an output torque of an engine is controlled in accordance with each torque characteristic conformable to working and moving when a wheeled type construction machine carries out working and moving. Accordingly, the working performance and the moving performance of the aforesaid wheeled type construction machine can be improved remarkably.


Claims

1. An engine controlling apparatus for a wheeled construction machine adapted to control an engine in such a manner as to generate a torque in accordance with a predetermined torque performance with reference to an extent of actuation of an acceleration pedal and a rotational speed of the engine, characterized in that said apparatus comprises,

torque performance setting means for setting first and second torque performances conformable to a time of working and a time of moving of the wheeled type construction machine as a torque performance,

discriminating means for discriminating whether the wheeled type constructyion machine is kept in a working state or in a moving state, and

means for controlling the engine in accordance with said first torque performance when it is discriminated that the construction machine is kept in a working state and controlling the engine in accordance with said second torque performance when it is. discriminated that the construction machine is kept in a moving state.


 
2. An engine controlling apparatus for a wheeled type construction machine as claimed in claim 1, characterized in that said torque performance setting means includes means for detecting a speed stage of a transmission and it is adapted to set a performance conformable to each speed stage of said transmission as said second torque performance.
 
3. An engine controlling apparatus for a wheeled type construction machine as claimed in claim 1, characterized in that said discriminating means comprises first detecting means for detecting that hydraulic pressure in a hydraulic circuit for driving a working section of said construction machine is lower than preset one, second detecting means for detecting that an extent of actuation of an acceleration pedal is more than preset one, third detecting means for detecting that means for commanding forward movement and rearward movements of the construction machine commands forward movement of the latter and a logical circuit adapted to take a logical sum of detected outputs of said first, second and third detecting means.
 




Drawing













Search report