
(19)
turopaiscnes Patentamt

European Patent Office

Office europeen des brevets

© Publication number: 0 2 6 9 9 8 0

A 2

(3) EUROPEAN PATENT A P P L I C A T I O N

Q) Application number: 87117331.6 © |nt. CI.4: G06F 9 /38

© Date of filing: 24.11.87

© Priority: 28.11.86 JP 281720/86 © Applicant: HITACHI, LTD.
6, Kanda Surugadai 4-chome

© Date of publication of application: Chiyoda-ku Tokyo 101 (JP)
08.06.88 Bulletin 88/23

@ Inventor: Kamada, Eiki
© Designated Contracting States: Hitachi Horiyamashita Apartment B34

DE FR GB 1, Horiyamashita Hadano-shi(JP)
Inventor: Shintani, Yooichi
1279-3, Shibusawa
Hadano-shi(JP)
Inventor: Kuriyama, Kazunori
D-804, 526-1, Oaza Fujikubo Miyoshimachi
Iruma-gun Saitama-ken(JP)
Inventor: Shonai, Tohru
Hitachi Sekishinryo A311 1, Horiyamashita
Hadano-shi(JP)
Inventor: Inoue, Kiyoshi
11, Senkawamachi-1-chome
Toshima-ku Tokyo(JP)

© Representative: Strehl, Schubel-Hopf,
Groening, Schulz
Widenmayerstrasse 17 Postfach 22 14 55
D-8000 Miinchen 22(DE)

)̂ Data processor for parallelly executing conflicting instructions.

90, 920) for detecting that a succeeding instruction
vrites a read-out operand into the general register
jroup without subjecting it to arithmetic or logical
jperation, in accordance with instruction decode in-
ormations provided by the instruction hold unit; a
:onflict detection unit (90, 940) for detecting a con-
licting state that the preceding instruction performs
i write operation into a general register of the gen-
>ral register group and the succeeding instruction
eads an operand from the same general register, in
iccordance with instruction decode informations pro-
@ided by the instruction hold unit; and a contention
ietection unit (90, 913) for detecting a contention
itate that the preceding instruction performs a write
iperation into the same general register and the
;ucceeding instruction also performs a write opera-
ion into the same general register, in accordance

(57) A data processor includes a storage (50, 51 , 52)
and a general register group (70) for storing an
operand; an operand hold unit (60) for storing
operands read from the storage for a plurality of

2» instructions and providing at least two operands; an
^"operand select unit (80, 85) connected to the
©operand hold unit and the general register group for
£0 selecting either one of the operands for a preceding

instruction and a succeeding instruction; at least one
05 arithmetic or logical operation unit (80, 81) con-
^nected to the operand select unit; a decode unit (20,

21) for sequentially decoding instructions to be ex-
Oecuted and generating instruction decode informa-
t i ons ; an instruction hold unit (30) for storing a plural-
LUity of instruction decode informations generated by

the decode unit and providing at least two instruction
decode informations; an instruction detection unit

erox Copy Centre

0 269 980

with instruction decode informations provided by the
instruction hold unit. INSTRUCTION READ OUT CIRCUIT

tINSP
[INSTRUCTION (REGISTER

)INSS
r

INSTRUCTION
@REGISTER

20
OPP RIP R2P

10 |WS R2S

FIG.

32P X2PC.32PC

1 IN -
j POINTER
QIPPDECPj_
36 HlN!
.OOPpJq,

BPP OSS
|DECS_

INSTRUCTION INSTRUCTION Y j ADDRESS j ADDRESS
32 DECODER DECODER | ADDER j ADDER I! ! ''

_'IN- IpointerI
33IS2P "-40 "«! |S2S

INSTRUCTION
QUEUE

OUT- POINTER
EOFH EOPS

•30 J_
QOPS

OUT-
POINTER I '37

BPP

=-i SUFFER
5°> STORAGE

T
; SUFFER
; STORAGE
bps ; < I

S2PC i |S2SC 52

BPS
so;

-4 OPERAND
_j BUFFER

MAIN
STORAGE

[S3S

I
;RIP 'CHP iUDP

;N2P % > i t V
iKal H SELECTOR CHS I 1 I -90 '0P2P

<— (SELECTOR
I0P2S

GENERAL
REGISTER
GROUP

Mai
WRAP CONTROL CIRCUIT

OC WC
OPP iRiP 1CHP
ALU CONTROL CIRCUIT

-95
OPCP

|wpp |RiP WPS IRIS

-ILW
SELECTOR

g7ll

H SELECTOR

ALU ALU

2

I 0 269 980 2

umia r-rfutxtsijuK hUK rARALLeLLY EXECUTING CONFLICTING INSTRUCTIONS

DHU^nuuiNU ur I nt IINVtlN I IUN

The present invention relates to a data proces-
sor for parallelly executing plural instructions, and
more particularly to a data processor suitable for
executing plural instructions in a pipeline process-
ing system (advanced control system).

In a data processor intended to speed up the
processing by employing a system, e.g., a pipeline
processing system, of processing plural instruc-
tions in parallel (including a system for processing
instructions partially in an overlapped manner), if a
preceding instruction writes an operation result in a
register and a succeeding instruction uses the con-
tent of the same register to calculate an address,
the succeeding instruction cannot start address cal-
culation until the preceding instruction has written
the operation result in the register, thus causing a
delay in the processing. Such contention of data to
De used in calculating an address is called
"address conflict".

For the case where a preceding instruction is a
so-called load instruction which writes a read-out
Dperand in a register without subjecting it to
arithmetic or logical operation and a succeeding
nstruction becomes in address conflict with the
Dreceding instruction, a method of reducing a delay
n the processing has been proposed as in JP-A-
56-46170 in the name of the present assignee.

If a preceding instruction writes an operation
esult in a register and a succeeding instruction
eads an operand from the same register, the suc-
ceeding instruction cannot read the operand from
he register until the preceding instruction has writ-
en the operation result in the register, thus causing
i delay in the processing. Such operand contention
an a register is called "register operand conflict" or
simply "operand conflict".

According to a known conventional method of
;liminating a delay in the processing to be caused
)y operand conflict, a short path for supplying an
>peration result of a preceding instruction to the
nput of an arithmetic or logical unit (ALU) is pro-
vided at an intermediate of a write path of the ALU
o a general purpose register, whereby the
irithmetic or logical operation of a succeeding in-
duction which requires an operation result of the
ireceding instruction is performed without waiting
or such a time when the operation result has been
written in a designated general-purpose register,
"his method is called "a register operand wrap-
iround" or simply "operand wrap-around".

According to this method, if a preceding in-
truction is an instruction such as a LOAD instruc-

tion which requires no operation by an ALU. the
operation of a succeeding instruction cannot start
until the operation stage of the LOAD instruction
has completed.

5

SUMMARY OF THE INVENTION

It is an object of the present invention to pro-
w vide a data processor capable of performing oper-

ations of both preceding and succeeding instruc-
tions at the same time even in the case of operand
conflict between the instructions.

The above object can be achieved by the
is provision of a data processor which comprises a

storage and a general register group for storing
operands, operand hold means for storing
operands read from said storage for a plurality of
instructions and providing at least two operands;

io operand select means connected to said operand
hold means and said general register group for
selecting either one of the operands for a preced-
ing instruction and a succeeding instruction; at
least one arithmetic or logical means connected to

?5 said operand select means for performing an
arithmetic or logical operation on selected
operands; decode means for sequentially decoding
instructions to be executed and generating instruc-
tion decode informations; instruction hold means

)0 for storing a plurality of instruction decode informa-
tions generated by said decode means and provid-
ing at least two instruction decode informations;
instruction detection means for detecting that a
succeeding instruction writes a read-out operand

15 into said general register group without subjecting
it to arithmetic or logical operation, in accordance
with instruction decode informations provided by
said instruction hold means; conflict detection
means for detecting a conflicting state that said

'@o preceding instruction performs a write operation
into a general register of said general register
group and said succeeding instruction reads an
operand from said general register, in accordance
with instruction decode informations provided by

5 said instruction hold means; and contention detec-
tion means for detecting a contention state that
said preceding instruction performs a write opera-
tion into a general register of said general register
group and said succeeding instruction also per-

o forms a write operation into said same general
register, in accordance with instruction decode in-
formations provided by- said instruction hold
means.

When said instruction detection means detects
that a preceding instruction writes an operand into

3 0 269 980 4

the general register group without subjecting it to
arithmetic or logical operation, in accordance with
instruction decode informations provided by said
instruction hold means, said at least one arithmetic
or logical means performs at least arithmetic or
logical operations of the preceding and succeeding
instructions at the same time.

When said conflict detection means detects a
conflicting state that the preceding instruction per-
forms a write operation into a general register of
the general register group and the succeeding in-
struction reads an operand from the same general
register, in accordance with instruction decode in-
formations provided by said instruction hold
means, said operand select means supplies the
operand for the preceding instruction to said at
least one arithmetic or logical means which per-
forms arithmetic or logical operation of the suc-
ceeding instruction, and said at least one arithmetic
or logical means performs arithmetic or logical op-
erations of the preceding instruction and the suc-
ceeding instructions at the same time.

When said contention detection means detects
a contention state that the preceding instruction
performs a write operation into a general register of
the general register group and the succeeding in-
struction also performs a write operation into the
same general register, in accordance with instruc-
tion decode informations provided by said instruc-
tion hold means, said contention detection means
inhibits the write operation by the preceding in-
struction into the same general register.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram showing an overall
structure of an embodiment of the data processor
according to the present invention;

Fig. 2A is a timing chart illustrating a flow of
executing instructions in a conventional pipeline
processing system;

Fig. 2B is a timing chart illustrating a flow of
executing instructions in another conventional par-
allel pipeline processing system;

Fig. 3 shows instruction formats used with
the processor shown in Fig. 1;

Fig. 4 shows an example of a series of
instructions;

Fig. 5A is a timing chart illustrating a flow of
executing the series of instructions shown in Fig. 4
in accordance with a prior art;

Fig. 5B is another timing chart illustrating a
flow of executing the series of instructions shown in
Fig. 4 in accordance with the prior art;

Fig. 5C is a timing chart illustrating a flow of
executing the series of instructions shown in Fig. 4
in accordance with another prior art;

Fig. 5D is a timing chart illustrating a flow of
executing the series of instructions shown in Fig. 4
in accordance with the present invention:

Fig. 6 is a detailed block diagram of the
5 wrap control circuit" 90 of the embodiment shown in

Fig. 1;
Fig. 7 is a detailed block diagram of the ALU

control circuit 95 of the embodiment shown in Fig.
1;

70 Fig. 8 is a block diagram showing an overall
structure of another embodiment of the data pro-
cessor according to the present invention:

Fig. 9 is a detailed block diagram of the
wrap control circuit 92 of the embodiment shown in

75 Fig. 8; and
Fig. 10 is a detailed block diagram of the

ALU control circuit 97 of the embodiment shown in
Fig. 8.

20
DESCRIPTION OF THE PREFERRED EMBODI-
MENTS

A pipeline processing system to which the
25 present invention is applied will now be described.

Fig. 1 is a block diagram showing an overall
structure of an embodiment of the data processor
according to this invention. In this embodiment, the
pipeline processing system executes two instruc-

30 tions in parallel. A prior art for writing two instruc-
tions into two instruction registers of the pipeline
processing system is disclosed, for example, in JP-
A-58-1 76751.

Referring to Fig. 1, an instruction readout cir-
35 - cuit 8 reads two instructions to be processed and

sets them at instruction registers 10 and 11. The
instruction register 10 holds a preceding instruc-
tion, while the instruction register 11 holds a suc-
ceeding instruction. An instruction decoder 20 (21)

40 decodes a preceding (succeeding) instruction to
generate instruction decode information used for
controlling the circuitry of the data processor. An
instruction queue 30 sequentially holds instruction
decode informations generated by the instruction

45 decoders 20 and 21 until a corresponding instruc-
tion starts being subjected to arithmetic or logical
operation. An address adder 40 (41) calculates a
logical address of a storage operand for a preced-
ing (succeeding) instruction to be read from a

so buffer storage 50 (51). The buffer storages 50 and
51 hold instructions and data to be processed. An
operand buffer 60 sequentially holds storage
operands read from the buffer storages 50 and 51
until a corresponding instruction starts being sub-

55 jected to arithmetic or logical operation. A general
purpose register group 70 is constructed of a
group of registers and mainly holds data (such as
register operand, address modifying data and the

4

0 0 269 980 6

iiKej Trequentiy used. An ALU 80 (81) performs
arithmetic or logical operation designated by a pre-
ceding (succeeding) instruction. A wrap control cir-
cuit 90 and an ALU control circuit 95 are necessary
for realizing the present invention and are de-
scribed later in detail.

Figs. 2A and 2B are timing charts illustrating
the standard flow of executing instructions in a
pipeline processing system, wherein the abscissa
represents a time basis. The time basis is gradu-
ated in units of cycles, each cycle being referred to
as CO, C1, C2, ... in this order starting from an
initial cycle (at the left end in the chart).

Fig. 2A shows the flow of executing instructions
wherein an instruction is sequentially processed
one by one, whereas Fig. 2B shows the flow of
executing instructions wherein two instructions are
sequentially processed in parallel. The instruction
processing is divided into a plurality of process
stages, each process stage being sequentially pre-
sented to a plurality of instructions and operated in
parallel with others. Referring to Fig. 2B, first an
instruction n and an instruction n + 1 undergo stage
D at cycle CO. The instructions n and n + 1 then
advance to stage A at cycle C1 whereat two
instructions immediately after the two instructions n
and n + 1 start being processed at stage D. Next, at
cycle C2 the instructions n and n-M advance to
stage L, the next two instructions advance to stage
A, and the second next two instructions start being
processed at stage D. In this manner, a plurality of
succeeding instructions are processed in parallel at
each process stage. Therefore, a plurality of
instructions are processed at respective process
stages for a certain cycle time in parallel and in an
overlap manner at the same time, thus reducing an
sntire instruction processing time.

An instruction is processed at each stage
called D, A, L, E and P stage in this order for a unit
cycle time. Particularly, referring back to Fig. 1 , at
stage D instructions held in the instruction registers
10 and 11 are decoded by the instruction decoders
20 and 21 and undergo address calculation by the
address adders 40 and 41 to obtain the logical
addresses of corresponding storage operands. At
tie next stage A, translation from logical addresses
:o physical addresses and reading of storage
Dperands are carried out at the buffer storages 50
and 51. At the following stage L, the storage
3perands read from the buffer storages 50 and 51
3re transferred to the operand buffer 60 and then to
tie ALUs 80 and 81. Register operands are also
ead from the general register group 70 and trans-
erred to the ALUs 80 and 81. The above oper-
ations provide a preparation for starting arithmetic
jr logical operations designated by instructions to
De executed by the ALUs 80 and 81. At stage E,
arithmetic operation is executed by the ALUs 80

and 81. At stage P, the operation results from the
ALUs 80 and 81 are written into the general regis-
ter group 70.

Instruction formats used in the following de-
5 scription of the embodiments will now be de-

scribed. Fig. 3 shows instruction formats called an
RR type and an RX type. An RR type instruction is
composed of an OP field, R1 field and R2 field. An
RX type instruction is composed of an OP field, R1

70 field, X2 field, B2 field and D2 field. The OP field
indicates the type of arithmetic or logical operation
to be executed by the ALUs 80 or 81 . The R1 , R2,
X2 and B2 fields each indicate a register in the
general register group 70. The R1 and R2 fields

75 indicate the registers in which first and second
operands are stored, respectively. The contents of
the registers designated by the X2 and B2 fields
are added to the content of the D2 field by the
address address 40 or 41 to produce a logical

20 address of a second operand stored in the buffer
storages 50 or 51 . Generally, in the case of the RR
type instruction and the RX type instruction, first
and second operands are read and subjected to
arithmetic or logical operation to thereafter write the

25 operation result into the register which stored the
first operand. However, in the case of a LOAD
instruction, a second operand is read and directly
written in the register designated by the first
operand without performing arithmetic or logical

30 operation.
Fig. 4 shows an example of a series of instruc-

tions using a so-called LOAD instruction as a pre-
ceding instruction. For the LOAD instruction, the
logical address Sb of the second operand (Sb)

35 . stored in the storage can be obtained by adding
the contents (Xb) and (Bb) of the registers des-
ignated by Xb and Bb to the value Db itself. The
preceding instruction L writes the second operand
(Sb) designated by the logical address Sb into a

40 register Ra. A succeeding instruction AR herein
used as an example is an addition instruction be-
tween registers. In this case, the first operand is
the content (Rc) of a register designated by Rc,
while the second operand is the content (Rd) of a

45 register designated by Rd. The succeeding instruc-
tion AR adds (Rc) to (Rd) to write the result in the
register Rc. It is noted however that in the case of
Rc = Ra or Rd = Ra, the succeeding instruction AR
cannot start reading an operand from a register

50 until the preceding instruction L has written the
operand in the register. This condition is called
register operand conflict or simply operand conflict.

Figs. 5A to 5D are timing charts showing the
flow of executing two instructions in parallel includ-

es ing the series of instructions shown in Fig. 4.
The timing chart shown in Fig. 5A illustrates

the case where there occurs no operand conflict
(Rc?^Ra and Rd?=Ra) between the preceding

7 0 269 980 8

instruction L and the succeeding instruction AR
shown in Fig. 4. In this case, the flow of executing
instructions is the same as the standard one in the
pipeline processing shown in Fig. 2B, thus provid-
ing no delay in the processing.

The timing chart shown in Fig. 5B illustrates
the case where there occurs operand conflict
(Rc = Ra or Rd = Ra) between the preceding in-
struction L and the succeeding instruction AR
shown in Fig. 4. In this case, at least one of the
operands [(Rc) and (Rd)] to be read by the suc-
ceeding instruction AR is the content written in the
register Ra by the preceding instruction L. Stage P
where the preceding instruction performs a write
operation into the register Ra is carried out during
cycle C4. Therefore, stage L where the succeeding
instruction AR reads the operands from the regis-
ters Rc and Rd cannot start up to cycle C4. Now,
consider stage E where arithmetic or logical opera-
tion is performed. There arises two cycle delay in
the processing of AR and following instructions as
compared to the case of no operand conflict.

The timing chart shown in Fig. 5C illustrates
the case where there occurs operand conflict
(Rc = Ra or Rd = Ra) between the preceding in-
struction L and the succeeding instruction AR
shown in Fig. 4, and where a conventional known
operand wrap-around is employed. Also in this
case, at least one of the operands [)Rc) and (Rd)]
to be read by the succeeding instruction AR is the
content written in the register Ra by the preceding
instruction L. However, use of operand wrap-around
enables to read the operand not from the register
but from the short path, at stage L of the succeed-
ing instruction AR. The operand to be read from
the short path can be identified at the latest before
stage E during cycle C3 has been fully completed.
Therefore, stage L of the succeeding instruction AR
can be finished by cycle C3. Now, consider stage
E where arithmetic or logical operation is per-
formed. There arises one cycle delay in the pro-
cessing of AR and following instructions as com-
pared to the case of no operand conflict.

In the processing of the series of instructions
shown in Fig. 4, the second operand (Sb) of the
preceding instruction L read from the buffer stor-
age and written into the operand buffer is directly
written into the register Ra without being subjected
to arithmetic or logical operation by the ALU.
Therefore, in the case of operand conflict between
the preceding instruction L and the succeeding
instruction AR, the operand (Ra) read from the
register Ra by the succeeding instruction AR is
identical to the operand (Sb) read by the preceding
instruction L from the buffer storage and written
into the operand buffer. According to the present
invention, the succeeding instruction AR can read
the operand, not from the register of the general

register group in which the preceding instruction L
writes the operation result but from the resource (in
this case, operand buffer) from which the preced-
ing instruction read the operand.

5 The timing chart shown in Fig. 5D illustrates
the case where there occurs operand conflict
(Rc = Ra or Rd = Ra) between the preceding in-
struction L and the succeeding instruction AR
shown in Fig. 4, and where the present invention is

70 practiced. According to the present invention, the
succeeding instruction AR can read at stage L the
operand not from the general register group but
from the operand buffer. The operand to be read
from the operand buffer can be identified at the

75 latest before stage L of the preceding instruction L
during cycle C2 has been completed. Therefore,
stage L of the succeeding instruction AR can be
finished by cycle C2. Now, consider stage E where
arithmetic or logical operation is performed. It is

20 possible to process the AR and following instruc-
tions at same cycles as those in the case of no
operand conflict.

Referring back to Fig. 1, the operation of the
data processor constructed in accordance with the

25 present invention will be described. In the following
description, signals associated with a preceding
instruction is represented by a symbol with suffix p
and those associated with a succeeding instruction
by a symbol with suffix s, to make them distin-

30 guishable.
A preceding instruction INSp (succeeding in-

struction INSs) set at the instruction register 10
(11) by the instruction readout circuit 8 is decoded
and subjected to address calculation. Namely, the

35 " OP field OPp (OPs) of an instruction is decoded by
the instruction decoder 20 (21) to generate instruc-
tion decode information DECp (DECs) which is
used to control associated elements in the proces-
sor. Instruction decode informations DECp (DECs)

40 which are relevant to the present invention are
shown in the following:

OPp (OPs... designates the type of arithmetic or
logical operation to be executed by the ALU 80 or
81.

45 N1p (n1s) ... indicates that a first operand is
read from the general register group 70.

N2p (n2s) ... indicates that a second operand is
read from the general register group 70.

CHp (CHs) ... indicates that an operation result
so is written into the general register group 70.

LDp (LDs)... indicates a LOAD instruction (for
transferring a second operand in the storage or in a
register to another register).

BPp (BPs)... identifies the entry of the operand
55 buffer 60 where an operand read from the buffer

storage 50 (51) is held.
The instruction decode informations DECp

(DECs) include further the following informations:

6

y 0 269 980 10

ine mi Tiera Hip (His) or an instruction identifies a
register of the general register group 70 from which
a first operand is read and into which an operation
result is written, in the case of an RR type instruc-
tion, the R2 field R2p (R2s) thereof identifies a
register of the general register group 70 from which
a second operand is read. Alternatively, in the case
of an Rx type instruction, the X2 field X2p (X2s)
and the B2 field B2p (B2s) thereof identify registers
of the general register group 70 which are used to
calculate a logical address S2p (S2s) of an operand
to be read from the buffer storage 50 (51). The
above-described instruction decode informations
DECp (DECs) are sequentially stored in the instruc-
tion queue 30.

In the case of an RX type instruction, simulta-
neously when an instruction is decoded by the
instruction decoder 20 (21), the logical address
S2p (S2s) of an operand to be read from the buffer
storage 50 (51) is calculated by the address adder
40 (41). Particularly, the contents X2pC and B2pC
(X2sC and B2sC) of the registers of the general
register group 70 respectively identified by the X2
field X2p (X2s) the B2 field B2p (B2s) of the
instruction are added to the D2 field D2p (D2s) by
the address adder 40 (41) and the result is sent to
the buffer storage 50 (51). Also sent to the buffer
storage 50 (51) at this time is the instruction de-
code information BPp (BPs) which identifies the
entry of the operand buffer 60 where a read-out
operand is held.

When the buffer storage 50 (51) receives the
logical address S2p (S2s) of the operand to be
read, it translates the logical address into a phys-
ical address at stage A and reads the operand
S2pC (S2sC) which together with the received in-
struction decode information BPp (BPs), is sent to
the operand buffer 60. The buffer storage 50 (51) is
generally a high speed and small capacity storage
and is used in combination with a low speed and
large capacity main storage 52. If an operand to be
-ead is present in the buffer storage 50 (51), it is
D-ossible to read the operand in one cycle. How-
3ver, if an operand to be read is not present in the
suffer storage 50 (51), it takes several cycles be-
cause the associated operand must be read from
:he main storage 52, thus leading to a delay in the
processing time at stage A.

The operand buffer 60 receives at stage L the
operand S2pC (S2sC) sent from the buffer storage
50 (51) and the instruction decode information BPp
BPs). The received operand S2pC (S2sC) is held
it the entry of the operand buffer 60 identified by
he instruction decode information BPp (BPs).

An instruction is executed by the ALUs 80 and
31 on the condition that the instruction decode
nformations DECp (DECs) are held in the instruc-
ion queue 30, an operand S2pC (S2sC) to be read,

if the instruction is RX type, from the buffer storage
50 (51) is held in the operand buffer 60, and the
ALUs 80 and 81 has completed arithmetic or logi-
cal operations of the preceding instruction. If such

5 conditions are met, various control signals of the
instruction decode informations DECp (DECp) are
sent from the instruction queue 30 to the asso-
ciated elements of the information processor. Thus,
it is possible to read a storage operand S2pC

70 (S2sC) held at the entry identified by the instruc-
tion decode information BPp (BPs) sent to the
operand buffer 60 from the instruction queue 30.
Also read are register operands R1pC and R2pC
(R1sC and R2sC) respectively identified by the

75 instruction decode informations Rip (Rls) and R2p
(R2s) sent to the general register group 70 from
the instruction queue 30. One of the operand S2pC
(S2sC) read from the operand buffer 60 and the
operand R2pC (R2sC) read from the general regis-

20 ter group 70 is selected by a selector 84 (85)
which is controlled by the instruction decode in-
formation N2p (N2s) sent from the instruction
queue 30, the selected one serving as the second
operand OP2p (OP2s). In this case, the instruction

25 decode information OPp (OPs) representative of
the type of arithmetic on logical operation is sent to
the ALU 80 (81) via the ALU control circuit 95. The
operand of the succeeding instruction is sent to the
ALU 81 via selectors 87 and 89 which are con-

30 trolled by the wrap control circuit 90. The present
invention is realized mainly by the wrap control
circuit 90, ALU control circuit 95 and selectors 87
and 89, the details of which are described later.

The ALU 80 (81) executes at stage E an
35 • arithmetic or logical operation designated by the

instruction decode information OPp (OPs), using
the first operand R1pC (WOls) and the second
operand OP2p (W02s) to obtain an operation re-
sult. A simple arithmetic or logical operation can be

to ' performed usually in one cycle. But, a complicated
arithmetic or logical operation requires several cy-
cles, thus leading to a delay of stage E.

When an operation result RSTp (RSTs) is ob-
tained by the ALU 80 (81) and a write enable signal

»5 WPp (WPs) is outputted from the ALU control
circuit 95, the operation result RSTp (RSTs) is
written at stage P into a register of the general
register group 70 identified by the instruction de-
code information R1p (Rls).

;o The instruction queue 30 is provided in order
to hold the instruction decode informations during
the time from when an instruction has been de-
coded by the instruction decoder 20 or 21 to when
an arithmetic or logical operation starts at the ALU

;5 80 or 81 . The operation of the instruction queue 30
will now be described in detail hereinafter.

The instruction queue 30 undergoes a first-in
first-out (FIFO) control by means of in-pointers and

11 0 269 980 12

out-pointers. In this embodiment, the instruction
queue 30 is provided with two in-pointers 32 and
33 and two out-pointers 36 and 37. QIPp (QIPs)
from the in-pointer 32 (33) indicates the entry
where the instruction decode informations sent
from the instruction decoder 20 (21) is held. QOPp
(QOPs) from the out-pointer 36 (37) indicates the
entry where the instruction decode informations to
be sent to the associated elements in the data
processor when an arithmetic operation by the ALU
80 (81) starts are held. QIPs from the in-pointer 33
and QOPs from the out-pointer 37 are controlled
such that they always indicate the next entries to
those indicated by QIPp from the in-pointer 32 and
QOPp from the out-pointer 36, respectively. In this
concern, it is possible to unite the two in-pointers
and two out-pointers into one in-pointer and one
out-pointer, respectively. After the instruction de-
coders 20 and 21 have decoded instructions held
in the instruction registers 1 0 and 1 1 , they send the
instruction decode informations DECp and DECs to
the instruction queue 30, and decode end signals
DSp and DSs to the in-pointers 32 and 33. If both
the instruction decoders 20 and 21 send the de-
code end signals DSp and DSs, the in-pointers 32
and 33 are incremented by two. If the instruction
decoder 20 alone sends the decode end signal
DSp, then the in-pointers 32 and 33 are incre-
mented by one. If the instruction decoder 20 does
not send the decode end signal DSp, the decode
end signal DSs delivered by the instruction de-
coder 21 is inhibited, and the in-pointers 32 and 33
are not incremented. When arithmetic or logical
operations for instructions have been completed by
the ALUs 80 and 81, the ALU control circuit 95
delivers the write enable signals WPp and WPs to
the general register group 70 to write therein the
operation results RSTp and RSTs, and delivers
arithmetic or logical operation end signals EOPp
and EOPs for the ALUs 80 and 81 to the out-
pointers 36 and 37. When the ALU control circuit
95 delivers both the operation end signals EOPp
and EOPs for the ALUs 80 and 81 , the out-pointers
36 and 37 are incremented by two. When the ALU
control circuit 95 delivers only the operation end
signal EOPp for the ALU 80, the but-pointers 36
and 37 are incremented by one.

According to the present invention aiming at
solving a delay in the processing caused by
operand conflict, if a preceding instruction in con-
flict with a succeeding instruction is a so-called
LOAD instruction, the operand read by the preced-
ing instruction is supplied to the succeeding in-
struction as an operand to be read by the succeed-
ing instruction. In this embodiment, the wrap con-
trol circuit 90 controls to detect oeprand conflict
and eliminate a delay in the processing to be
caused by operand conflict.

Fig. 6 is a block diagram showing the internal
structure of the wrap control circuit 90. Instruction
decode informations for preceding and succeeding
instructions for use in performing arithmetic or logi-

5 cal operation at the next cycle are sent to the wrap
control circuit 90 from the instruction queue 30.
The instruction decode informations for the preced-
ing instruction have been held in the instruction
queue 30 at the entry designated by QOPp from

70 the out-pointer 36. On the other hand, the instruc-
tion decode informations for the succeeding in-
struction have been held in the instruction queue
30 at the entry designated by QOPs from the out-
pointer 37.

75 Sent to the wrap control circuit 90 from the
instruction queue 30 at the entry designated by
QOPp from the out-pointer 36 are instruction de-
code information LDp indicative of that the preced-
ing instruction is a LOAD instruction, instruction

20 decode information CHp indicative of that the pre-
ceding instruction writes an operation result into the
general register group 70, and instruction decode
information R1p indicating the register into which
the operation result is written. Also sent to the wrap

25 control circuit 90 from the instruction queue 30 at
the entry designated by QOPs from the out-pointer
37 are instruction decode information N1s indica-
tive of that the succeeding instruction reads a first
operand from the general register group 70; in-

30 struction decode information CHs indicative of that
the succeeding instruction writes an operation re-
sult into the general register group 70. instruction
decode information R1s indicating a register in
which the operation result is written, instruction

35 - decode information N2s indicative of that the suc-
ceeding instruction reads a second operand from
the general register group 70, and instruction de-
code information R2s indicating a register from
which the second operand is read. Using the

40 above-noted instruction decode informations, the
wrap control circuit 90 generates an operand con-
flict detection signal QC, operand wrap-around in-
dicating signals LW1 and LW2 in the case where
the preceding instruction is a LOAD instruction, and

45 an inhibition signal WC for inhibiting a write opera-
tion of an operation result by the preceding instruc-
tion.

In the wrap control circuit shown in Fig. 6, R1 p
indicating a register into which the preceding in-

50 struction writes an operation result and R1s and
R2s indicating the registers from which the suc-
ceeding instruction reads the operands are com-
pared by comparators 901 and 902. Detected by
AND gates 911 and 912 is the condition that the

55 preceding instruction writes an operation result in a
first register, the succeeding instruction reads an
operand from a second register, and the first and
second registers are the same one. In other words.

B

1 o 0 269 980 14

me minu gaies an ana yiid aetect an operand
conflict based on the status of the first and second
operands of the succeeding instruction. That the
preceding instruction is not a so-called LOAD in-
struction is indicated by an output of an inverter
920. As a result, when the first and second
operands are read by the succeeding instruction,
the outputs of AND gates 931 and 932 indicate if
an operand conflict has occurred between the suc-
ceeding instruction and the preceding instruction
which is not a LOAD instruction. When either one
of the AND gates 931 and 932 detects an operand
conflict, an OR gate 940 outputs an operand con-
flict detection signal OC. However, in the case
where the preceding instruction is a so-called
LOAD instruction, if the AND gates 911 and 912
detect an operand conflict, then the AND gates 931
and 932 inhibit to output the operand conflict de-
tection signals OC. In this case, AND gates 951
and 952 output operand wrap-around indicating sig-
nals LW1 and LW2 for the corresponding first and
second operands of the succeeding instruction.
The condition that the preceding and succeeding
instructions perform a write operation into registers
and the registers are the same one is detected by
an AND gate 913. In this case, not the operation
result by the preceding instruction but the opera-
tion result by the succeeding instruction should be
written in the register, so that a preceding instruc-
tion write inhibit signal WC is outputted from the
AND gate 913.

Referring to Fig. 1 , the selector 87 performs an
ordinary operation to select, as a first operand
WOls to be sent to the ALU 81 which performs
arithmetic or logical operation of the succeeding
nstruction, a first operand RlsC of the succeeding
nstruction in the case where the operand wrap-
around indicating signal LW1 is not delivered, and
f delivered, performs an operation to select as a
:irst operand WOls a second operand OP2p of the
Dreceding instruction. On the other hand, the selec-
:or 89 performs an ordinary operation to select, as
a second operand W02s to be sent to the ALU 81 ,
a second operand R2sC of the succeeding instruc-
:ion in the case where the operand wrap-around
ndicating signal LW2 is not delivered, and if deliv-
ared, performs an operation to select as a second
aperand W02s a second operand OP2p of the
preceding instruction.

Fig. 7 is a block diagram showing the internal
structure of the ALU control circuit 95. Sent to the
\LU control circuit 95 from the instruction queue
30 at the entry designated by QOPp from the out-
aointer 36 are the instruction decode information
3Pp indicating the type of arithmetic or logical
)perations to be performed by the preceding in-
struction, the instruction decode information CHp
ndicative of that the preceding instruction writes an

operation result into the general register group 70,
and the instruction decode information Rip indicat-
ing the register into which the operation result is
written. Also sent to the ALU control circuit 95 from

5 the instruction queue 30 at the entry designated by
QOPs from the out-pointer 37 are the instruction
decode information OPs indicating the type of
arithmetic or logical operations to be performed by
the succeeding instruction, the instruction decode

w information CHs indicative of that the succeeding
instruction writes an operation result into the gen-
eral register group 70, and the instruction decode
information R1s indicating the register into which
the operation result is written. Also sent to the ALU

75 circuit 95 from the wrap control circuit 90 are the
operand conflict (between the preceding and suc-
ceeding instructions) detection signal OC and the
write inhibit signal WC for inhibiting a write opera-
tion of the operation result by the preceding in-

m struction.
In the ALU control circuit shown in Fig. 7, an

ALU control logic 800 (805) generates various con-
trol signals necessary for the arithmetic or logical
operation, based on the instruction decode informa-

J5 tion OPp (OPs) indicating the type of arithmetic or
logical operations of the preceding (succeeding)
instruction. The ALU control logics 800 and 805
may be constructed of wired-logics or may be
realized by means of microprograms. The control

30 signals relevant to the present invention will be
described in the following:

OPCp (OPCs)... controls the arithmetic or logical
operation of the preceding (succeeding) instruction
by the ALU.

S5 @ WTp (WTs)... indicates the write timing of an
operation result by the preceding (succeeding) in-
struction.

ENDp (ENDs)... indicates the end of the
arithmetic or logical operation by the preceding

to (succeeding) instruction.
The ALU control signal OPCp (OPCs) is sent to

the ALU 80 (81) which performs an arithmetic or
logical operation of the preceding (succeeding) in-
struction. The instruction decode information R1p

is (R1s) indicating the register into which an operation
result by the preceding (succeeding) instruction is
written is directly sent to the general register group
70. The instruction decode information CHp (CHs)
indicative of that the preceding (succeeding) in-

io struction writes an operation result into the general
register group 70 is synchronized with the write
timing WTp (WTs) at an AND gate 810 (815).

An output from an inverter 820 indicates that it
is not necessary to inhibit a write operation of the

i5 operation result by the preceding instruction. An
output from an inverter 830 indicates that there is
not detected an operand conflict between the pre-
ceding and succeeding instructions. Accordingly,

15 0 269 980 16

an output from an AND gate 860 allows a write
operation of the operation result by the preceding
instruction into the general register group 70 in the
case where it is not necessary to inhibit a write
operation of the operation result by the preceding
instruction and there is not detected an operand
conflict between the preceding and succeeding
instructions. Further, an output from an AND gate
861 allows a write operation of the operation result
by the preceding instruction into the general regis-
ter group 70 in the case where there is detected an
operand conflict between the preceding and suc-
ceeding instructions. When one of the AND gates
860 and 861 allows a write operation of the opera-
tion result, an OR gate 882 outputs a write enable
signal WPp. Further, an AND gate 862 allows a
write operation of the operation result by the suc-
ceeding instruction into the general register group
70 to output a write enable signal WPp for the
succeeding instruction in the case where there is
not detected an operand conflict between the pre-
ceding and succeeding instructions. The write en-
able signals WPp and WPs are sent to the general
register group 70.

An output from an AND gate 870 indicates that
the arithmetic or logical operations for both the
preceding and succeeding instructions have been
completed in the case where an operand conflict
was not detected between the preceding and suc-
ceeding instructions. An output from an AND gate
871 indicates that the arithmetic or logical opera-
tion by the preceding instruction has been com-
pleted in the case where an operand conflict was
detected between the preceding and succeeding
instructions. When one of the AND gates 870 and
871 indicates the completion of an arithmetic or
logical operation, an OR gate 883 outputs an op-
eration end signal EOPp of the preceding instruc-
tion. Alternatively, an operation end signal EOPs of
the succeeding instruction is outputted from the
AND gate 870 when it indicates the completion of
an arithmetic or logical operation by the succeed-
ing instruction in the case where there is not de-
tected an operand conflict between the preceding
and succeeding instructions. In other words, if
there is detected an operand conflict between the
preceding and succeeding @ instructions and an
operand conflict detection signal OC is sent from
the wrap control circuit 90, the write enable signal
WPs and the operation end signal EOPs of the
succeeding instruction are inhibited, to accordingly
suspend an arithmetic or logical operation by the
succeeding instruction. The operation end signals
EOPp and EOPs are sent to the out-pointers 36
and 37 to increment them.

With the above control sequence, the data pro-
cessor shown in Fig. 1 can process the series of
instructions shown in Fig. 4 in accordance with the

timing chart shown in Fig. 5D.
Fig. 8 shows a block diagram indicating an

overall structure of another embodiment of the data
processor according to the present invention. In

5 this embodiment, two ALUs are replaced with one
ALU, wherein an idle ALU which needs not perform
an arithmetic or logical operation during a LOAD
process is utilized for the arithmetic or logical op-
eration by the succeeding instruction. According to

10 the present invention aiming at solving a delay in
the processing to be caused by operand conflict, if
a preceding instruction in conflict with a succeed-
ing instruction is a so-called LOAD instruction
which requires no operation by an ALU, the

75 operand read by the preceding instruction is sup-
plied to the succeeding instruction as an operand
to be read by the succeeding instruction.

In the second embodiment shown in Fig. 8, the
two ALUs 80 and 81 in the first embodiment of Fig.

20 1 are replaced with one ALU 82. Therefore, there
are other different circuit portions in the data pro-
cessor. The following description is directed only to
those elements different from the first embodiment
shown in Fig. 1 .

25 Two out-pointers 38 and 39 are incremented
by two only when a LOAD instruction is used as a
preceding instruction and both operation end sig-
nals EOPp for a selector 84 and EOP for the ALU
82 are outputted from an ALU control circuit 97.

30 The two out-pointers 38 and 39 are incremented by
one when the ALU control circuit outputs only the
operation end signal EOP for the ALU 82.

In the embodiment shown in Fig. 8, the present
invention can be realized mainly by a wrap control

35 - circuit 92, the ALU control circuit 97 and selectors
86 and 88.

Fig. 9 shows a block diagram illustrating the
internal structure of the wrap control circuit 92. In
this embodiment, since arithmetic or logical opera-

40 tion by a succeeding instruction can be performed
only if the preceding instruction is a LOAD instruc-
tion, it is not necessary for the wrap control circuit
90 to generate an operand conflict detection signal
OC indicative of an operand conflict between the

45 preceding and succeeding instructions. Instead, the
wrap control circuit 92 outputs instruction decode
information LDp indicative of that the preceding
instruction is a LOAD instruction, directly to the
ALU control circuit 97. Particularly, an operand

so conflict between the preceding and succeeding
instructions causes to inhibit the arithmetic or logi-
cal operation by the succeeding instruction in the
embodiment of Fig. 1, whereas in the embodiment
of Fig. 8 that the preceding instruction is not a

55 LOAD instruction causes to inhibit the arithmetic or
logical operation by the succeeding instruction.
Consequently, the wrap control circuit 92 is con-
structed by removing the inverter 920, AND gates

10

1 / 0 269 980 18

ao i ana ao<: ana uh gate a4U rrom the wrap circuit
90 shown in Fig. 6.

Referring to Fig. 8, the selector 86 performs an
operation to select, as a first operand W01 to be
sent to the ALU 82 which performs arithmetic or
logical operation of the preceding instruction or the
succeeding instruction, a first operand R1pC of the
preceding instruction in the case where the instruc-
tion decode information LDp indicative of that the
preceding instruction is a LOAD instruction is not
delivered, and if delivered and at the same time if
an operand wrap-around indicateing signal LW1 is
not delivered, performs an operation to select a
first operand R1sC of the succeeding instruction, or
alternatively if the operand wrap-around indicating
signal LW1 is delivered, performs an operation to
select a second operand OP2p of the preceding
instruction. On the other hand, the selector 89
performs an operation to select, as a second
operand W02s to be sent to the ALU 82, a second
operand OP2p of the preceding instruction in the
case where the instruction decode information LDp
is not delivered, and if delivered and at the same
time if an operand wrap-around indicating signal
LW2 is not delivered, performs an operation to
select a second operand OP2s of the succeeding
instruction, or alternatively if the operand wrap-
around indicating signal LW2 is delivered, performs
an operation to select a second operand OP2p of
the preceding instruction.

Fig. 10 shows a block diagram indicating the
nternal structure of the ALU control circuit 97. A
nain difference from the ALU control circuit 95
shown in Fig. 7 is that instead of the operand
conflict detection signal OC indicative of an
Dperand conflict between the preceding and suc-
ceeding instructions, instruction decode information
.Dp indicative of that the preceding instruction is a
-OAD instruction is used. The instruction decode
nformation LDp indicative of that the preceding
nstruction is a LOAD instruction, and a write inhibit
signal WC for inhibiting a write operation of an
cperation result by the preceding instruction are
sent from the wrap control circuit 92 to the ALU
control unit 97.

In the ALU control circuit shown in Fig. 10, as
described previously, the ALU control logic 800
805) generates OPCp (OPCs) for controlling op-
iration of the ALU, WTp (TWs) indicating a write
iming of an operation result and ENDp (ENDs)
ndicating the end of an arithmetic or logical opera-
ion, based on the instruction decode information
DPp (OPs) indicating the type of operations of the
receding (succeeding) instruction. An instruction
lecode information CHp (CHs) indicative of that the
receding (succeeding) instruction writes an opera-
ion result into the general register group 70 is
;yrrchonized with the write timing WTp (WTs) at an

AND gate 810 (815).
An output from an inverter 820 indicates that it

is not necessary to inhibit a write operation of the
operation result by the preceding instruction. An

5 output from an inverter 835 indicates that the pre-
ceding instruction is not a LOAD instruction. Ac-
cordingly, an output from an AND gate 845 causes
to output an operation control signal for the preced-
ing instruction to the ALU in the case the preceding

70 instruction is not a LOAD instruction. Alternatively,
an output from an AND gate 846 causes to output
an operation control signal for the succeeding in-
struction to the ALU, in the case the preceding
instruction is a LOAD instruction. An OR gate 885

75 outputs the operation control signal OPC selected
by the AND gates 845 and 846.

R1p designating a register of the general regis-
ter group 70 into which an output OP2pf from a
selector 84 is written by the preceding instruction,

20 is directly sent to the general purpose register 70.
An output of an AND gate 855 designates a regis-
ter of the general register group 70 into which an
operation result of the ALU 82 by the preceding
instruction is written, in the case where the preced-

25 ing instruction is not a LOAD instruction. Alter-
natively, an output of an AND gate 856 designates
a register of the general register group 70 into
which an operation result of the ALU 82 by the
succeeding instruction is written, in the case where

30 the preceding instruction is a LOAD instruction. An
output from an OR gate 886 designates a register
selected by the AND gates 855 and 856 into which
an operation result by the ALU 82 is written.

If it is not necessary to inhibit a write operation
?5 - of an operation result by the preceding instruction

and if the preceding instruction is a LOAD instruc-
tion, an AND gate 865 outputs a write enable signal
WPp for enabling a write operation of an output
OP2p from the selector 84 into the general register

to group 70 by the preceding instruction. If the pre-
ceding instruction is not a LOAD instruction, an
output from an AND gate 866 allows the preceding
instruction to write an operation result by the ALU
82 into the general register group 70. Also if the

(5 preceding instruction is a LOAD instruction, an
output from an AND gate 867 allows the succeed-
ing instruction to write an operation result by the
ALU 82 into the general register group 70. When
one of the AND gates 866 and 867 allows a write

io operation of an operation result by the ALU 82, an
OR gate 887 outputs a write enable signal WP. The
write enable signals WPp and WP are sent to the
general register group 70.

An operation end signal EOPp is outputted
is from an AND gate 875 on the condition that the

preceding instruction is a LOAD instruction, the
preceding instruction has completed its arithmetic
or logical operation by writing an output OP2p from

1

19 0 269 980 20

the selector 84 into the general register group 70,
and the succeeding instruction has also completed
its operation at the ALU 82. An output from an AND
gate 876 indicates that the preceding instruction
has completed its arithmetic or logical operation at 5
the ALU 82 in the case where the preceding in-
struction is not a LOAD instruction. An OR gate 888
outputs an operation end signal EOP when one of
the AND gates 875 and 876 indicates the end of an
arithmetic or logical operation of the preceding io
instruction. In other words, in the case where the
preceding instruction is not a LOAD instruction and
the instruction decode information LDp for the pre-
ceding instruction is not sent from the wrap control
circuit 92, the write enable signal WPp and the 75
operation end signal EOPp are inhibited, to accord-
ingly suspend an operation by the succeeding in-
struction. The operation end signals EOPp and
EOP are sent to the out-pointers 38 and 39 to
increment them. 20

With the above control sequence, the data pro-
cessor shown in Fig. 8 can process the series of
instructions shown in Fig. 4 in accordance with the
timing chart shown in Fig. 5D.

According to the present invention, if the pre- 25
ceding instruction is a LOAD instruction and there
is an operand conflict between the preceding and
succeeding instructions, the operations for both the
preceding and succeeding instructions can be car-
ried out at the same time. Therefore, it is advanta- 30
geous in that the problem of processing delay to
be caused by the operand conflict can be solved,
and the processing delay caused by other factors
such as a complicated arithmetic or logical opera-
tion can be reduced. 35

Claims

1. A data processor for parallelly executing a 40
plurality of instructions, comprising:

(a) a storage (52, 50, 51) for storing
operands;

(b) a group of registers (70) each for storing
an operand; 45

(c) operand means (60) for storing operands
of a plurality of instructions, said operands being
read from said storage thereto;

(d) means (20, 21, 30) for decoding instruc-
tions to be executed and providing decode in- 50
formation of at least two instructions to be sub-
jected to an arithmetic or logical operation;

(e) instruction detection means (90) for de-
tecting, based on said instruction decode informa-
tion of said at least two instructions supplied from 55
said decode means, that a preceding instruction
among said at least two instructions requests read-
ing of an operand from said storage or from said

register group and writing of said operand into a
register of said register group without performing
an arithmetic or logical operation of said operand,
and that a succeeding instruction among said at
least two instructions requests reading of said
operand in said register and performing of an
arithmetic or logical operation thereon; and

(f) execution means (80, 81, 95, 97, 87, 89)
responsive to the detection by said instruction de-
tection means for concurrently performing
arithmetic or logical operation stages of said pre-
ceding instruction and said succeeding instructions.

2. A data processor according to claim 1
wherein said execution means comprises

(f 1) at least one operation means (81 , 82) for
performing an arithmetic or logical operation;

(f2) means (87, 89) for supplying the
operand requested by said preceding instruction
from said operand means or from said register
group to said at least one operation means; and

(f3) means (95, 97) for causing said at least
one operation means to perform the arithmetic or
logical operation requested by said succeeding in-
struction on said supplied operand.

3. A data processor according to claim 2,
wherein said execution means includes means for
allowing writing of an operation result of said suc-
ceeding instruction outputted from said at least one
operation means without writing said supplied
operand of the preceding instruction into said reg-
ister of said register group, when said succeeding
instruction 'requests writing of said operation result
into said register of said register group.

4. A data processor according to claim 2,
wherein said execution means includes means for
allowing writing of said supplied operand for the
preceding instruction and allowing writing of an
operation result of said succeeding instruction out-
putted from said at least one operation means,
when said succeeding instruction requests writing
of said operation result into a register different from
said register of said general register group.

12

0 269 980

F I G . I

U 263 380

F I G . 2 A

INS I KUU I IUN n

I N S T R U C T I O N n - H

I N S T R U C T I O N n + 2

I N S T R U C T I O N n + 3

UU Ul C2 C3 C4 C5 C6 C 7
i i 1 l l 1 1 1

D A L E P

D A L E P

D A L E P i 1 1 i i

D

M G . 2 B

SO CI C2 C3 C4 C5 C6 C7 C Y C L E

IM b I KUU I IUN n

N S T R U C T I O N n + l

N S T R U C T I O N n + 2

N S T R U C T I O N n + 3

N S T R U C T I O N n + 4

N S T R U C T I O N n - r 5

D A L E P

D A L E P

D A L E P

D A L E P

D A L E P

D A L E P

u ztsa yau

F I G . 3

rcrc i t r t
I N S T R U C T I O N

RX T Y P E

I N S T R U C T I O N

OP Rl R 2

OP Rl X2 82 D 2

- I G . 4

KCU UDIXD bb i ; Ra -

^R R c R d ; R c -

~ (S b) - - - - S b = (X b) + (B b) + D b

- (R c) + (R d)

u 4iK>a sou

I- l b . 5 A

CO Cl C2 C3 C4 C5 C6 C7 C Y C L E
i i i i 1 1 1 1 1

rxa, SD

AR R c , R d

D A L E P

D A L E P

D A L E P

D A L E P

CO CI C2 C3 C4 C5 C6 C7 C Y C L E
I I I I r — i | | 1

^R R c , R d

D A L E P

D A L E P

D A L E P

D A L E P

0 269 980

F I G . 5 C

CO CI C2 C3 C4 C5 C6 C7 C Y C L E
I I I | l 1 1 1

L R a , S b D A L E P

AR R c , R d D A L E P

D A L E P

D A L E P

F I G . 5 D

CO CI C2 C3 C4 C5 C6 C7 C Y C L E
I | | | | | | |

L R a , S b

AR R c , R d

D A L E P

D A L E P

D A L E P

D A L E P.

0 269 980

U 269 980

8 0 0
/

U r ^ P -
A L U
C O N T R O L
LOGIC

F I G . 7

9 5

O P C p

L j N U P

K I P

-i I S

^MP @

J O

O P C p

D P C s

R i p

3 I s

/ V P s

>R) E O P p

[O P s

0 269 980

F I G . 8

0 269 980

F I G . 9

9 2

L D p _ D p

_ W 2

U t i S /VC

0 269 980

	bibliography
	description
	claims
	drawings

