(12)

DEMANDE DE BREVET EUROPEEN

21 Numéro de dépôt: 87403006.7

(5) Int. Cl.4: **F02F 1/14**, F01P 3/02

2 Date de dépôt: 29.12.87

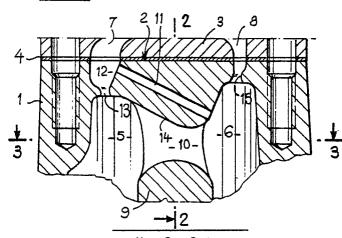
(3) Priorité: 09.01.87 FR 8700174

Date de publication de la demande: 10.08.88 Bulletin 88/32

Etats contractants désignés:
DE GB IT

75, avenue de la Grande Armée F-75116 Paris(FR)

Demandeur: AUTOMOBILES CITROEN 62 Boulevard Victor-Hugo F-92200 Neuilly-sur-Seine(FR)


- Inventeur: Schwab, Luc 85 Bis, Avenue Albert 1er F-92500 Rueil Malmaison(FR)
- Mandataire: Moncheny, Michel et al c/o Cabinet Lavoix 2 Place d'Estienne d'Orves F-75441 Paris Cedex 09(FR)

Moteur à combustion interne muni de moyens perfectionnés de refroidissement du bloc-cylindres.

Selon l'invention, il est prévu dans la cloison (9) séparant deux cylindres adjacents, d'une part un passage principal (10) et, d'autre part, au moins un conduit 11, percé à partir de la face supérieure (2) du bloc-cylindres et qui met en communication une cavité (12) reliée à une chambre (5) et une chambre (6) située de l'autre côté de la ligne de cylindres.

Application, notamment, aux moteurs dans lesquels, pour des raisons d'encombrement, la distance entre deux cylindres adjacents est particulièrement faible.

EP 0 277 446 A1

Xerox Copy Centre

Moteur à combustion interne muni de moyens perfectionnés de refroidissement du bloc-cylindres

10

20

30

La présente invention concerne les moteurs à combustion interne comportant plusieurs cylindres en ligne et en particulier ceux de ces moteurs qui pour avoir une longueur aussi réduite que possible présentent une faible distance entre cylindres.

1

Dans de tels moteurs, les cylindres sont ménagés dans un bloc-cylindres surmonté d'une culasse et ces cylindres sont refoidis par un circuit de liquide de refoidissement comportant des chambres disposées de part et d'autre de la ligne de cylindres et reliées par des passages ménagés dans les parois séparant deux cylindres adjacents.

Le bloc-cylindres étant réalisé en métal coulé, le passage ménagé dans la paroi séparant deux cylindres est obtenu soit par moulage à partir d'un noyau de fonderie, soit par usinage.

Dans le premier cas ni le passage, ni la paroi séparant deux cylindres ne peuvent être très minces, d'une part compte tenu de la dimension du noyau et du retrait du métal lors du refroidissement après la coulée et, d'autre part, en ce qui concerne la paroi, à cause des risques de porosité, surtout à proximité de la partie supérieure des cylindres où les contraintes mécaniques et thermiques sont maximales.

Il en résulte que la distance entre deux cylindres adjacents ne peut pratiquement être inférieure à environ un centimètre. De plus, des déformations de paroi se produisent fréquemment au voisinage des parties supérieures des cylindres, notamment lorsque le moteur est fortement chargé ce qui est le cas lorsqu'il est suralimenté.

Dans le second cas, le passage consiste soit en au moins un perçage, nécessairement de petit diamètre et ne procurant qu'un faible écoulement de liquide et par conséquent un échange thermique insuffisant (document US-A-4 369 739) soit en une fente s'étendant perpendiculairement à la ligne de cylindres, cette fente étant fraisée à partir de la face du bloc-cylindres dirigée vers la culasse. Une telle fente étant située au voisinage de la partie supérieure des cylindres, c'est-à-dire dans la zone la plus chaude et soumise aux plus fortes contraintes mécaniques, affaiblit la paroi dans laelle est ménagée. Les risques de déformation impliquent que les parois disposées de part et d'autre de la fente présentent une épaisseur d'au moins quatre millimètres, ce qui conduit à nouveau à une distance entre deux cylindres adjacents d'au moins un centimètre. Pour pouvoir réduire au moins légèrement cette distance, il est nécessaire d'insérer une pièce métallique de renfort dans la fente, ce qui est délicat à réaliser de façon fiable. On constate de plus que des fentes agencées de cette façon ont tendance à s'entartrer et sont soumises à des dépôts de particules véhiculées par le liquide de refoidissement, qui restreignent progressivement la section de passage pour ce liquide.

L'invention a pour but de proposer un agencement dans lequel ces divers inconvénients soient réduits ou supprimés et qui permette d'assurer un refroidissement efficace des cylindres sans affaiblir les cloisons qui les séparent, ni augmenter l'épaisseur de ces cloisons.

A cet effet l'invention a pour objet un moteur à combustion interne, comprenant un bloc-cylindres en métal coulé délimitant plusieurs cylindres qui sont disposés en ligne et débouchent sur une face du bloc-cylindres adjacente à une culasse ellemême fixée sur le bloc-cylindres, deux cylindres adjacents étant séparés par une cloison, le bloccylindres délimitant également une partie d'un circuit de liquide de refroidissement et notamment des chambres situées de part et d'autre de la ligne de cylindres et au moins un passage venu de fonderie ménagé dans ladite cloison et reliant lesdites chambres, caractérisé en ce qu'au moins l'une de ces chambres, disposée d'un côté de la ligne de cylindres, débouche sur ladite face du bloccylindres par une cavité et il est prévu au moins un conduit percé dans ladite cloison, au-dessus dudit passage, ce conduit s'étendant entre ladite cavité et la chambre située de l'autre côté de la ligne de cylindres.

Suivant d'autres caractéristiques :

- les deux chambres communiquent respectivement avec une partie du circuit de liquide de refroidissement ménagée dans la culasse par des passages de section restreinte;
- un passage de section restreinte est situé entre la cavité et la chambre adjacente ;
- un joint de culasse étant interposé entre les deux faces en regard du bloc-cylindres et de la culasse, ce joint comporte deux orifices calibrés reliant le circuit de liquide ménagé dans la culasse, respectivement à ladite cavité et à la chambre disposée de l'autre côté de la ligne de cylindres.

L'invention va être décrite plus en détail cidessous en se référant au dessin annexé, donné à titre d'exemple et sur lequel :

- La figure 1 est une vue en coupe par un plan perpendiculaire à la ligne de cylindres, dans la zone située entre deux cylindres adjacents, d'un premier mode de réalisation de l'invention;
- Les figures 2 et 3 sont respectivement des vues en coupe suivant les lignes 2-2 et 3-3 de la figure 1;
- Les figures 4 et 5 sont deux vues analogues à celle de la figure 1 de deux variantes ; et

2

45

5

15

25

35

45

- La figure 6 est une vue en coupe suivant la ligne 6-6 de la figure 5.

On voit sur la figure 1 une partie d'un bloccylindres 1 réalisé en métal coulé et qui délimite plusieurs cylindres tels que C₁, C₂ (figure 3), disposés en ligne. Cette ligne est désignée par la référence L-L' et correspond à la trace sur le plan de la figure 3, du plan contenant les axes des différents cylindres. Le bloc 1 comporte une face 2 dirigée vers une culasse 3 fixée sur le bloc par des moyens habituels. Un joint de culasse 4 est interposé de façon connue, entre le bloc-cylindres et la culasse.

Dans le bloc-cylindres sont ménagées de part et d'autre de la ligne de cylindres des chambres 5 et 6 faisant partie d'un circuit de liquide de refroidissement. De même, une partie 7, 8 de ce circuit de refroidissement est ménagée dans la culasse.

Deux cylindres adjacents sont séparés par une cloison 9 réalisée avec une épaisseur aussi faible que possible et dans laquelle est venu de fonderie un passage 10 qui fait communiquer les deux chambres 5 et 6.

Suivant l'invention, un conduit 11 est percé dans la partie supérieure de la cloison 9 au dessus du passage 10, ce perçage faisant communiquer la partie supérieure de la chambre 6 avec une cavité 12 qui débouche sur la face 2 du bloc-cylindres et communique avec la chambre 5, de préférence par l'intermédiaire d'un orifice 13 de section restreinte. L'orientation oblique du perçage 11 est telle qu'il peut être usiné à partir de la face supérieure du bloc-cylindres. Sondiamètre peut, par exemple être de l'ordre de 4 mm. En variante, deux conduits 11 peuvent être percés dans la cloison 10.

De préférence, le bord supérieur 14 du passage 10 est oblique et orienté à peu près parallèlement au perçage 11.

La deuxième chambre 6 communique avec la partie 8 du circuit de liquide de refroidissement ménagée dans la culasse par l'intermédiaire d'un orifice 15 de section restreinte, cet orifice comme l'orifice 13 étant venu de fonderie dans le mode de réalisation des figures 1 à 3.

Dans le mode de réalisation de la figure 4, la cavité 12 dans laquelle débouche la chambre 5 a une forme générale cylindrique et reçoit une coupelle 21 dans laquelle est ménagée un orifice calibré 22. La coupelle 21 peut être emmanchée ou vissée dans la cavité 12.

De plus, dans ce mode de réalisation, le joint de culasse 4 comporte également deux orifices 23, 24 de section restreinte qui déterminent la section de passage entre les parties du circuit de refroidissement ménagées dans le bloc-cylindres et dans la culasse, respectivement.

Dans la variante des figures 5 et 6, une entretoise 31 venue de fonderie est ménagée dans la partie médiane du passage 10, de façon à renforcer la cloison 9 qui sépare les cylindres adjacents C1, C2.

4

Le fonctionnement de l'agencement que l'on vient de décrire est le suivant :

En remontant du bloc-cylindres 1 vers la culasse 3, le liquide de refroidissement s'écoule, d'une part, de la chambre 5 vers la cavité 12 par l'orifice 13 ou 22 de section restreinte et, d'autre part, de la chambre 6 vers la cavité 12 par le perçage 11, et vers le circuit 8 par le passage restreint 15 ou 24. De plus, une circulation du liquide de refroidissement se produit aussi dans le passage 10.

Les divers passages de section restreinte sont dimensionnés de façon que les pertes de charge qu'ils procurent entraînent une répartition optimale des débits de liquide dans le passage 10 et dans le perçage 11 et, par suite, un échange thermique suffisant pour refroidir correctement les cylindres. C'est ainsi que suivant la réalisation représentée, l'orifice 22 a une section plus faible que celle de l'orifice 23 et plus importante que celle de l'orifice 24.

Cet agencement offre les avantages suivants:

- il procure un refroidissement efficace, comme cela a été indiqué ci-dessus ;
- la cloison séparant les cylindres peut être relativement mince et conserver une épaisseur inférieure à un centimètre, tout en présentant une bonne tenue mécanique grâce au fait qu'elle est pleine au voisinage de la face 2 et que le perçage 11 ne contribue que faiblement à réduire sa section. Or il est important de conserver une résistance suffisante à la cloison à proximité de la face 2, car c'est dans cette zone que les contraintes sont les plus importantes;
- les passages de section restreinte et le perçage 11 risquent peu de s'entartrer ou d'être encombrés par des particules car le débit du liquide qui y circule est relativement important. Il en est de même pour le passage 10, notamment grâce à son éloignement de la zone la plus chaude, proche de la face 2.

Revendications

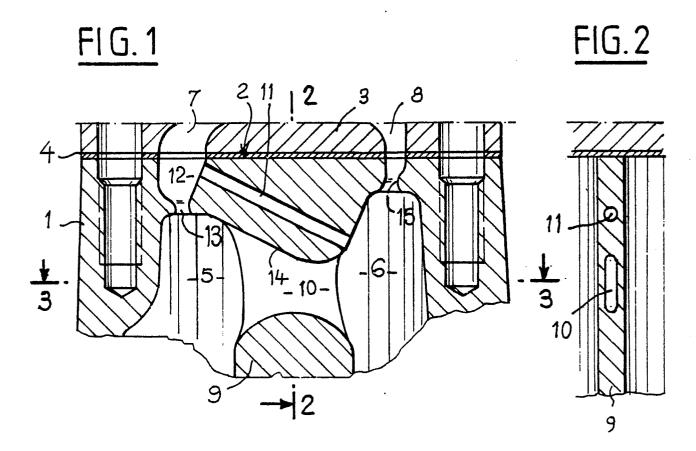
1 - Moteur à combustion interne comprenant un bloc-cylindres (1) en métal coulé, délimitant plusieurs cylindres (C₁, C₂) qui sont disposés en ligne et débouchent sur une face (2) du bloc-cylindres adjacente à une culasse (3) fixée sur le bloc-cylindres, deux cylindres adjacents étant séparés par une cloison (9), le bloc-cylindres délimitant également une partie d'un circuit de liquide de refroidissement et notamment des chambres (5, 6) situées de part et d'autre de la ligne de cylindres (L, L') et au moins un passage (10) venu

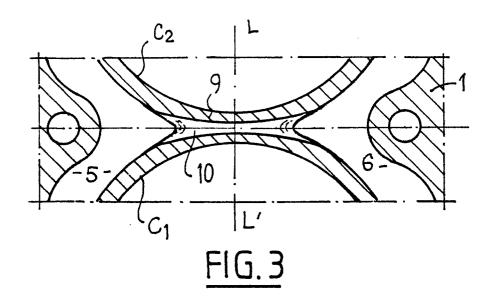
10

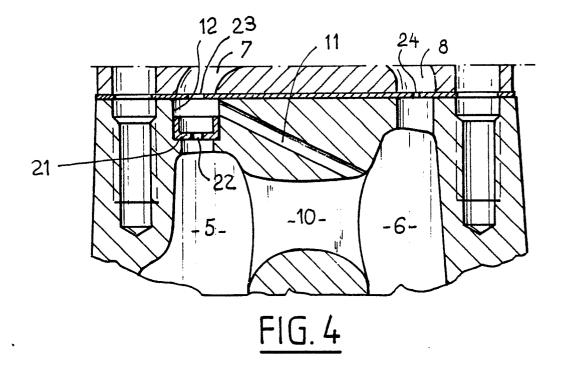
30

35

de fonderie, ménagé dans ladite cloison (9) et reliant lesdites chambres (5, 6), caractérisé en ce qu'au moins l'une (5) desdites chambres située d'un côté de la ligne de cylindres, débouche sur ladite face (2) du bloc-cylindres par une cavité -(12) et au moins un conduit (11) est percé dans ladite cloison, au-dessus du passage (10), ce conduit s'étendant entre ladite cavité (12) et la chambre (6) située de l'autre côté de la ligne de cylindres.


- 2 Moteur à combustion interne selon la revendication 1, caractérisé en ce que les deux chambres (5, 6) communiquent respectivement avec une partie (7, 8) du circuit de liquide de refroidissement ménagée dans la culasse par des passages (13, 15, 22, 23, 24) de section restreinte.
- 3 Moteur à combustion interne selon la revendication 2, caractérisé en ce qu'un passage (13, 22) de section restreinte est situé entre la cavité -(12) et la chambre adjacente (5).
- 4 Moteur à combustion interne selon l'une quelconque des revendications 2 et 3, caractérisé en ce que lesdites passages (13, 15) sont venus de moulage.
- 5 Moteur à combustion interne selon la revendication 1, caractérisé en ce qu'un joint de culasse (4) étant interposé entre les deux faces en regard du bloc-cylindres (1) et de la culasse (3), ce joint comporte deux orifices calibrés (23, 24) reliant le circuit de liquide (7, 8) ménagé dans la culasse, repectivement à ladite cavité (12) et à la chambre (6) disposée de l'autre côté de la ligne de cylindres.
- 6 Moteur à combustion interne selon la revendication 5, caractérisé en ce que ledit orifice (24) adjacent à la chambre (6) dans laquelle débouche ledit conduit (11) a une section inférieure à celle de l'autre orifice (23).
- 7 Moteur à combustion interne selon les revendications 3 et 6, caractérisé en ce que le passage (22) disposé entre la chambre (5) et la cabité adjacente (12) a une section intermédiaire entre celles des deux orifices (23, 24).
- 8 Moteur à combustion interne selon la revendication 1, caractérisé en ce que ladite cavité -(12) est venue de moulage.
- 9 Moteur à combustion interne selon la revendication 1, caractérisé en ce que ladite cavité -(12) est un logement cylindrique, dans lequel est reçue une coupelle (21) délimitant un orifice (22) de section restreinte.
- 10 Moteur à combustion interne selon la revendication 1, caractérisé en ce qu'au moins une entretoise (31) est ménagée dans le passage (10) reliant les deux chambres (5, 6).


- 11 Moteur à combustion interne selon la revendication 1, caractérisé en ce que le conduit (11) est percé à partir de la face (2) du bloccylindres adjacente à la culasse et s'étend en oblique à partir de cette face.
- 12 Moteur à combustion interne selon la revendication 11, caractérisé en ce que le passage (10) reliant les deux chambres (5, 6) a un bord supérieur (14) à peu près parallèle à la direction du conduit (11).


55


45

50

(N ٤

87 40 3006

DO	CUMENTS CONSID	ERES COMME PERTIN	ENTS	
Catégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
A	FR-A-1 598 344 (DA * Page 1, ligne 1 -	AIMLER-BENZ) - page 2, ligne 16 *	1	F 02 F 1/14 F 01 P 3/02
A	GB-A- 809 529 (JA* Page 1, lignes 8-2, ligne 30; figure	-65, ligne 74 - page	1	
A	FR-A-2 257 788 (RE * Page 5, lignes 1-		1,11	
A	US-A-4 369 739 (NI * Colonne 3, ligne ligne 10; colonne 5 7, ligne 22; figure	36 - colonne 4, 5, ligne 61 - colonne	1,11	
Α	PATENT ABSTRACTS OF 216 (M-502)[2272], JP-A-61 53 445 (TOY 17-03-1986 * Résumé; figures *	OTA MOTOR CORP.)	1	
A	WO-A-8 000 595 (BM	ſW)		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4)
A	EP-A-0 197 365 (HA	ALBERGERHÜTTE)		F 02 F F 01 P
		•		
	·			
Le pré	ésent rapport a été établi pour to	utes les revendications		
	leu de la recherche HAYE	Date d'achèvement de la recherche 15-04-1988	KOOI	Examinateur JMAN F.G.M.
(CATEGORIE DES DOCUMENTS	CITES T: théorie ou p	rincipe à la base de l'i	nvention

X: particulièrement pertinent à lui seul
Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie
A: arrière-plan technologique
O: divulgation non-écrite
P: document intercalaire

EPO FORM 1503 03.82 (P0402)

- T: théorie ou principe à la base de l'invention
 E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date
 D: cité dans la demande
 L: cité pour d'autres raisons

- & : membre de la même famille, document correspondant