-

Europdisches Patentamt
o European Patent Office

Office européen des brevets

0 279 231
A2

@ Publication number:

@ EUROPEAN PATENT APPLICATION

@) Application number: 88101084.7

@ Date of filing: 26.01.88

@ Int.clL4 GO9G 1/16

®) Priority: 12.02.87 US 13849

Date of publication of application:
24.08.88 Bulletin 88/34

Designated Contracting States:
DEFRGBIT

@) Applicant: International Business Machines
Corporation
Oid Orchard Road
Armonk, N.Y. 10504(US)

@ Inventor: Mansfield, Robert Lockwood.
12303 Meuse Cove
Austin Texas 78727(US)
Inventor: Spencer, Alexander Koos
12705 Cantle Trail
Austin Texas 78727(US)
Inventor: St. Clair, Joe Christopher
2603 Valley View Cove
Round Rock Texas 78681(US)

Representative: Grant, lain Murray
|BM United Kingdom Limited Intellectual
Property Department Hursley Park
Winchester Hampshire SO21 2JN(GB)

@ Grafik-Prozessor flir ein hochauflésendes Video-Anzeige-System.

@ A processing system is provided that includes
an external device connected to a processor. The
external device has the capability of responding to
external device commands wherein each of these
external device commands is performed within at
least one fixed time period. The processor provides
these external device commands and further in-
cludes the means for executing instructions that not
gonly specify the external device commands but also
specify at least one internal command to be per-
e=formed internally by the processor simultaneously
MM with the performance of the external commands by
N the external device. In the disclosed embodiment, a
@ graphics display system is provided that includes a
I system processor, a graphics processor, a graphics

memory and a display device. The graphics proces-

€ sor receives instructions from the system processor.
These instructions specify commands to be execut-
L ed in both the graphics processor and in the graph-
ics memory. The commands executed in the graph-
ics memory are executed within a fixed time period.

The commands executed by the graphics processor
are also executed within this fixed time period si-
multaneously with the execution of the commands in
the graphics memory. The graphics processor fur-
ther includes control circuitry for controlling the ex-
ecution of the graphics processor commands. The
control circuitry is connected to several registers in
the graphics processor which receive instructions
from the system processor. These system processor
instructions specify commands from both the graph-
ics memory and the graphics processor. The control
circuitry provides for the execution of these instruc-
tions in these registers in a serial loop fashion.

Xerox Copy Centre

45

i

0 279 231

4%0 nl_. i

FROM SYSTEN
DATA BUS

90
”
STATIC CNTL § —Z-.
% ;
STATIC CNTL 4 -t
92

wid
LOOP CONTROL
CIRCUIT / TASK BECIN
IKNER SOE | sequENCER TASK
? EXECU-
LooP/ 14 TTIDI
DUTER — oo | o
DYNANIC LooP CONTROL
CONTROL counTs
YORD FILE
m 4}4: |~ 147
FROM SYSTEN
DATA BUS { 1488
\ 8¢
L IRTTT
h— ho~148
150
)
L o T0 MENORY SETUR COKTROL
LATCH 156
Y
FIG. {1 92
L« 10 NENORY CYCLE CONTROL

la

*

LY

1 0 279 231 2

A GRAPHICS FUNCTION CONTROLLER FOR A HIGH PERFORMANCE VIDEO DISPLAY SYSTEM

This specification forms part of a set of seven
specifications, each relating to a different invention,
but having a common exemplary embodiment. To
save repetitive description, all seven specification
cross-refer and are:-

EP-A- (AT9-86-070) entitled
"RECONFIGURABLE COUNTERS FOR AD-
DRESSING IN GRAPHICS DISPLAY SYSTEMS”
EP-A- (AT9-86-072) entitied "A GRAPHICS
DISPLAY SYSTEM".

EP-A- (AT9-86-073) entitled "A GRAPHICS
FUNCTION CONTROLLER FOR A HIGH PERFOR-
MANCE VIDEO DISPLAY SYSTEM".

EP-A- ,(KI9-86-029) entitled "HIGH RESOLU-
TION DISPLAY ADAPTER™.

EP-A- (Y09-86-051) entitled "RASTER DIS-
PLAY VECTOR GENERATOR".

EP-A- .(YO9-86-104) entitled "VIDEQ ADAPT-
ER WITH IMPROVED DATA PATHING ".

EP-A- (Y09-86-105) entitted "A FRAME
BUFFER IN OR FOR A RASTER SCAN VIDEO
DISPLAY™.

The present invention relates to a computer
graphics and more specifically to a control appara-
tus for regulating the execution of commands in
both a graphics processor and an external graphics
memory simultaneously.

The evolution of computer technology has re-
sulted in the creation of a sophisticated technical
area devoted to the representation of graphics in-
formation generated by computers. This area is
termed computer graphics. One graphics technique
commonly used to produce an image is that of
producing a set of points and connecting these
points with straight lines. The resulting combination
of poinis and straight lines are displayed on the
computer graphics terminal display which normally
includes a cathode ray tube (CRT). The cathode
ray tube includes an array of picture elements. The
graphics image is produced by illuminating se-
lected picture elements of the array. This array of
picture elements in a display corresponds to the
memory locations in an image memory. This image
memory is often termed a bit map memory. The
corresponding CRT display is termed a bit mapped
display.

A very useful function for bit map displays is
the ability to move a rectangular block of illumi-
nated picture elements (pels) from one place in the
bit map (or display) to another place and to logi-
cally combine two subsets of the image array to
produce a third image array. Another useful func-
tion is that of drawing lines between two points.
The technique often used to draw these lines is
disclosed in a text entitled Fundamentals of Inter-

10

1§

20

25

30

35

50

active Computer Graphics by James D. Foley and
Andries Van Dam published by Addison Wesley
Publishing Company, 1982 and herein incorporated
by reference.

Discussions of graphic functions are contained
in several IBM Technical Disclosure Bulletins. |IBM
Technical Disclosure Bulletin, Vol. 28, No. 8, No-
vember 1985, entitled "Graphic Bit-Blt Copy Under
Mask" discloses a system for making bit boundary
block transfers of arbitrary shapes within a frame
buffer. IBM Technical Disclosure Bullstin, Vol. 27,
No. 8, 1985, entitled "Raster Graphics Drawing
Hardware", describes the application of program-
mable logic arrays to the design of hardware cir-
cuitry implementing graphics drawing algorithms.
IBM Technical Disclosure Bulletin, Vol." 28, No. §,
October 1985, entitled "Circuit for Updating Bit
Map-Memory of A Display Adapter”, discloses a
circuit for providing bit manipulation flexibility to
control picture element data stored in an all points
addressable display memory.

An object of the present invention is to provide
a system that can be used, inter alia, for controlling
a graphics processor and a graphics memory for
rapidly accompilishing bit block transfers and line
draw functions.

According to the present invention, there is
provided a processing system including an external
device that responds to any one of several external
device commands and performs such command
within a single fixed time period and a conirol
processor connected to the external device to pro-
vide the external device with the external device
commands, the processor including circuitry for
executing instructions that generate these external
device commands together with at least one inter-
nal command, the processor being arranged to
perform the current internal command simulta-

. neously with the performance of the current exter-

nal command by the external device.

In the disclosed embodiment of this invention,
the external device is a memory storage device
that receives load and store commands from a
processor. During the time that these load and
store commands are being responded to by the
memory, the processor also performs commands
internally. These simultaneously executed proces-
sor commands perform, in certain instances, ad-
dressing computations to compute the addresses
for successive memory commands. The simulia-
neous computation of commands internally in-
creases the throughput capability for the processor
and memory combination.

This disclosed embodiment is disclosed in a
graphics display system that includes a system

3 0 279 231 4

processor, a graphics processor, a graphics mem-
ory and a display. The system processor provides
graphics information to the graphics processor. The
graphics processor provides the memory com-
mands to the graphics memc-. and includes the
capability to execute simultaneously with the mem-
ory command executions, internal processor com-
mands. In this embodiment, the graphics processor
provides picture element data to the graphics
memory. The graphics memory includes a memory
array for storing the picture element data. This
memory and this image array corresponds directly
to the display image to be displayed. The display
is connected to the graphics memory for directly
accessing the picture element data in this memory
array.

Anothe feature of the disclosed embodiment is
control circuitry in the graphics processor which is
connected to several registers. The registers are
accessible by the system processor to receive
instructions from the system processor. These
instructions specify commands for both the mem-
ory and the graphics processor. The control cir-
cuitry provides for the execution of these com-
mands in these registers in a serial loop fashion.

The present invention will be described further
by way of example with reference to an embodi-
ment thereof as illustrated in the accompanying
drawings in which:

Figure 1 is a block diagram illustrating dis-

play adapter connected to a processor and moni-
tor;

Figure 2 is a diagram illustrating the or-
ganisation of the bit map memory 22;

Figure 3 is a timing diagram illustrating the
timing control signals provided to the bit map
memory 22 from the pel processor 18;

Figure 4 is an illustration of a portion of a
display screen illustrating the display of a 4 x 4 pel
matrix upon a grid dispiay;

Figure 5 illustrates the address convention
for a 4 x 4 pel matrix;

Figure 6 is a block diagram of the pel pro-
cessor 18;

Figure 7A illustrates a bit block transfer func-
tion;

Figure 7B illustrates a line draw function;

Figure 8A is a flow diagram for the bit block
transfer function task;

Figure 8B is a flow diagram fir a line draw
task;

Figure 9 is a block diagram of the pel pro-
cessor 18 control circuitry;

Figure 10 is timing diagram illustrating the
simultaneous executions of setup cycles and mem-
ory cycles;

Figure 11 is a block diagram of a section of
the pel processor 18 control circuitry 45;

10

15

20

25

30

35

40

45

50

55

Figure 12 is a flow diagram illustrating the
operation of the control circuitry in Fig. 11;

Figure 13 is a flow chart illustrating the op-
eration of the memory cycle state circuit 104;

Figure 14 is a timing diagram illustrating the
control signals provided by the pel processor 18
control circuitry for a setup cycle; 7

~ Figure 15 is a flow diagram illusirating the
operation of the control circuitry to execute a read,
load, write and store instructions;

Figure 16 is a timing diagram illustrating the
control signails provided by the pel processor 18
control circuitry for a memory cycle load;

Figure 17 is a timing diagram iliustrating the
control signals provided by the pel processor 18
control circuit for a memory cycle store;

Figure 18 is a bit format for a control instruc-
tion;

Figure 19 is a bit format for the first static
control register;

Figure 20 is a bit format for the second static
control register; '

Figure 21 illustrates a bit block transfer;

Figure 22 illustrates the instructions and the
contents of the static control registers for the ex-
ecution of a bit block transfer;

Figure 23 illustrates a line draw function;

Figure 24 illustrates the instruction and the
content of the static control registers for the execu-
tion of a line draw function;

Figure 25A illustrates a bit block transfer
operation including the logical combination of two
bit blocks;

Figure 25B is an illustration of the actual
ORing of a bit block transfer illustrated in Fig. 25A;
and

Figure 26 illustrates the instructions and the
contents of the static control registers for accom-
plishing the bit block fransfer illustrated in Figs.
25A and 25B.

This adapter circuit is a high resolution graph-
ics display adapter that in the disclosed embodi-

- ment drives an IBM 5081 display monitor unit. This

circuit provides a resolution of 1024 by 1024 pic-
ture elements with 256 simultaneous colours from a
palette of 4,096 possible colours. A general de-
scription of this display adapter circuit follows.

Display Adapter - General Description

Figure 1 is a block diagram illustrating the
display adapter circuit 17 connected for operation.
Specifically, display adapter circuit 17 is connected
to a system processor 10 by a system /O bus 11.
Additionally, the adapter circuit 17 is connected to
a RGB monitor 30 by an output bus 28. The
display adapter circuit 17 includes two memories

5 0279 231 6

12A and 12B that are connected to a digital signal
processor which is used for circuit resource man-
agement and is further used to transform coordi-
nates. In the disclosed embodiment, the digital
signal process is of a Harvard architecture requir-
ing separate memories for data and instructions.
Memory 12A is an instruction RAM that is loaded
with microcode to provide instructions to the signal
processor 14. The memory 12B is a data RAM that
provides a primary interface between the signal
processor 14 and the system processor 10 and
also forms the main data store for the signal pro-
cessor 14. In the disclosed embodiment, 256K
bytes of memory are provided for memory 12B. In
this embodiment, however, the digital signal pro-
cessor 14 has an address space of only 128K
bytes. Therefore, a bank switching mechanism is
provided. Furthermore, in this disclosed embodi-
ment memory located outside of the adapter circuit
17 may be mapped into the digital signal processor
14 address space.

A first-in, first-out buffer 13 is provided for
passing sequential display commands from the
data memory 12B to the digital signal processor
14. Further, an instruction ROM 15 is connected via
bus 16 to provide the power on and self-test in-
struction microcode programs for the digital signal
processor 14.

A pel (picture element) processor 18 is also
connected to bus 16. The function of the pel pro-
cessor 18 is to draw lines, provide for manipulation
of areas of data on the display screen and provide
bit map memory control. This manipulation of areas
on the display screen is termed bit block transfer
or BITBLT. The pel processor 18 also includes
control and status registers that along with other
functions aliow the system processor 10 to inter-
rupt, disable or reset the signal processor 14 and
allow the signal processor 14 to interrupt the sys-
tem processor 10.

The pel processor 18 is connected via bus 20
to a bit map memory 22. The bit map memory 22
is organised as 1024 by 1024 by 8 bits. The bit
map memory 22 also includes the capability to
provide an overlay piane that can be used to pro-
vide blinking or highlighting to data on the display.

A video stage 26 is connected to the bit map
memory 22 via bus 24 and transforms the data in
the bit map memory 22 into a video signal for the
video monitor 30. This video stage 26 provides this
transformation via a digital to analog circuit. A
colour palette circuit is also included in the video
stage 25 that provides 256 simultaneously dis-
playable colours from a larger palette of colours.
This is accomplished through video lookup tables
than translate the value in the bit map fo a value
with more bits and thus a greater range of colours
is provided. With this greater range of values pro-

10

15

20

25

30

35

40

50

55

vided by the colour palette, more colours are pro-
vided than would be provided by use of the bits in
the bit map memory 22 alone.

A hardware cursor 21 is connected to the video
stage 26 via bus 24 and provides a full screen
cross hair and/or a bit programmable cursor. The
full screen cross hair can be programmed to one of
several widths. In addition this cross hair can also
be scissored (reduced in size) to provide various
smaller sizes.

In the disclosed emboadiment, the display
adapter circuit 17 uses the digital signal processor
14 as a primary interface to the system processor
10. In this embodiment, the digital signal processor
is a Texas Instruments TMS 32020 digital signal
processor which executes 5 million instructions per
second. Therefore, it is well suited to perform such
tasks as matrix multiplications which are used to
translate, scale and rotate vectors on the screen.
The digital signal processor can address a data
space of 64K of 16 bit words and an instruction
space of the same size. As mentioned earlier, a
portion of the data space may be located within the
adapter circuit 17 or remote from the adapter cir-
cuit 17. The digital signal processor 14 can be
interrupted by the system processor 10 or by the
pel processor 18. The pel processor 18 can gen-
erate interrupts to the digital signal processor 14 or
the system processor 10 upon the occurrence of a
task complete addition or the condition where a
vertical retrace has been started. In addition, the
digital signal processor 14 also includes a timer
which can be used to control the time between
display updates.

The RCM 15 is provided with the initial power-
up instruction sequence for the digital signal pro-
cessor 14. In the disclosed embodiment, the ROM
15 is provided with 18K bytes of information and
includes a power-on self-test program and a graph-
ics display adapter emulation program. The power-
on self-test program provides an indication that
immediately after a power-up condition or a reset

- condition that the adapter circuit 17 is functioning

properly.

The data RAM 12B provides 256K bytes of
RAM in the adapter circuit 17 for the signal proces-
sor 14 to use as storage. 1K byte of the 256K byte
data space is overlayed by the signal processor 14
internal registers. The data memory 12B consists
of dynamic RAM, which is refreshed by logic within
the display adapter circuit 17. This memory is
operated in a page mode so that accesses to two
words loaded on the same page (i.e., in the dis-
closed embodiment in the high order 8 address
bits) will require no wait states for the digital signal
processor 14. Accesses to words on a new page
will result in a single wait state. Thus, locating
frequently referenced data in internal registers or

7 0279 231 8

grouped together on a single RAM page will in-
crease performance by not incurring any wait
stages. Although the digital signal processor 14
data addressing capacity is limited to 64K words, a
bank switching mechanism is provided to extend
its address space. This scheme allows a full ac-
cess to the data memory 12B. Presently, four
banks (64K bytes for each bank for a total of 256K
bytes) have been implemented. However, the ad-
dress logic in architecture may provide for up to 16
banks in this disclosed embodiment. In this em-
bodiment, the RAM is dual ported, that is the
system processor 10 and the signal processor 14
have concurrent access to it. Since both proces-
sors 10 and 14 have easy access o this memory,
it provides for a convenient communications chan-
nel between the two processors 10 and 14. In this
embodiment, the signal processor 14 can also ad-
dress memory located remote from the display
adapter circuit 17 as an exiension of this data RAM
12B, by first acting as a first party bus master on
bus 11. Both memory on the /O bus 11 and within
the system processor's 10 main memory may be
accessed in this manner. The signal processor 14
can put a full 24 bit address on bus 11 and so has
a potential of addressing 16 megabytes of mem-
ory. The mapping of data space remote from the
adapter circuit 17 is controlled by a Bank/Extended
Address Register within the signal processor 14.
The 16 bit address bus of the signal processor 14
is extended to 24 bits with this register. Access
may be made in burst mode, buffered mode, or
singly. The length of the burst in burst mode is
software controllable. Four to sixteen wait states
are required for access to remote memory.

The instruction memory 12A provides 128K
bytes of memory in the disclosed embodiment to
the digital signal processor 14 to use as an instruc-
tion space. This is in addition to the instruction
space provided by ROM 15. However when the
ROM 15 is mapped into an instruction space, it
overlays an equivalent amount of instruction RAM
12A. This is done because the digital signal pro-
cessor 14 can only address a total instruction
space of 128K bytes. The instruction memory 12A
consists of dynamic BAM which is refreshed by
logic on the adapter circuit 17. The instruction RAM
12A is operated in a page mode so that access o
words located on the same page (i.e., the high
order 8 bits) requires no wait states for the signal
processor 14. Accesses to a new page results in
one wait state. Therefore, locating frequently ex-
ecuted code loops on the same page within the
instruction memory 12A or within the signal proces-
sor 14 internal instruction memory will provide a
maximum execution speed. This instruction mem-
ory 12A is also dual ported providing concurrent
access from the system processor 10 or the signal

10

15

20

25

30

35

40

45

50

&5

processor 14.

The FIFO buffer 13 is 1K words in length.
When there is space in buffer 13, the system
processor 10 may load commands and/or data into
this buffer providing access to the digital signal
processor 14 which can then sequentially access
this information. In this embodiment, display in-
formation from the system processor 10 is pro-
vided. The buffer 13 includes three flags: empty
flag, half full flag and full flag which can be read by
the system processor 10 to determine if there is
room to write more information into-this buffer 13.
In addition to the flags, this buffer 13 has three
interrupts associated with it. A half full interrupt, a
half empty interrupt and a buffer overflow interrupt
are provided. The first two may be used to pace
write operations to the buffer 13 without polling the
flags, while the last would normally be considered
an error condition. The digital signal processor 14
also has access to the flags to determine if more
information can be read from the buffer 13.

The pel pracessor 18 assists the signal proces-
sor 14 in updating the bit map memory 22 quickly.
The pel processor 18 can either draw lines into the
bit map memory 22 or manipulate rectangular
blocks of data bits (BITBLT) in the bit map memory
22. When line drawing, the pel processor 18 can
either be given the end points of the line, with
Bresenham's parameters calculated by the pel pro-
cessor 18, or the end points along with the param-
eters needed by the Bresenham's incremental line
drawing algorithm. The latter approach allows more
control over the vector to raster translation and
may be useful for special cases such as wide lines.
In addition, line attributes of colour and pattern are
supported directly by the pel processor 18. Sup-
port of the line width attribute requires more inter-
vention by the signal processor 14. Lines may be
drawn in replace mode, exclusive OR mode, or line
on line mode.

Bit block transfers are also performed by the

pel processor 18. Some of the bit block transfers

- operate with minimal processor intervention while

others require more intervention. The bit block
transfer includes the operation of an inner loop and
an outer loop and the implementation in this em-
bodiment provides that the inner loop may be
either horizontally or vertically oriented. This option
is particularly useful when fransferring images of
character strings to the bit map memory 22. in
addition, the pel processor 18 has the ability to
provide bit block transfers with colour expansion.
Colour expansion is defined as the process of
taking data in which each active bit represents a
pixel of a known colour and a zerc indicates trans-
parency (i.e., the frame buffer is not altered for this
pixel location). This mode offers a perfoermance
advantage as each word of data represents 16

9 0 279 231 10

pixels of screen memory rather than 2.

When using colour expansion, a special feature
associated with the Direct Write Mask, a capability
of the pel processor 18, allows the object being
transferred to be rotated in any one of iour possible
90 degree orientations.

The digital signal processor 14 or the system
processor 10 can define an active region of the bit
map memory 22 where drawing occurs. For line
draw and block transfer operations, only pels that
are to be drawn in this active region will be written
to the bit map memory 22. Line draw and block
transfer operations resulting in drawing outside of
this area will be performed but the resuiting pel
information will not be written to the bit map mem-
ory 22. The use of this active drawing region is
termed scissoring.

A further feature of the pel processor 18 is the
pick window. This window can be defined to the
pel processor 18 and when enabled any access to
the frame buffer within this window causes an
interrupt to the signal processor 14. This can be
used while drawing objects to identify any part of
the object which falls within the specified window.

The pel processor is normally controlled by the
signal processor 14, however, the system proces-
sor 10 may disable the signal processor and con-
trol the pel processor 18 directly. The pel proces-
sor 18 will be discussed in more detail later.

The bit map memory 22 consists of 1
megabyte of video RAM. The bit map memory 22
is displayed on the screen as a 1024 by 1024 pel
image with 8 bits per pel. The pel processor 18
acts as the interface between the system processor
10 or signal processor 14 and the bit map memory
22. Depending upon how some of the bits located
within the pel processor 18 are set, the bit map
memory 22 will be read as either two horizontally
adjacent pels or four horizontally adjacent half pels
(wherein a half pel is defined as either the first four
or last four bits of a full pel). In all addressing
modes, the bit map memory 22 is pel addressable.
That is, X and Y address registers in the pel
processor 18 are used to indicate the pel being
addressed.

The organisation of the bit map memory 22 is
shown in Figure 2. The pels are arranged in 4 x 4
squares. Each pel is 8 bits deep. The 8 bits repre-
sent 8 planes 400 through 407. Pel memory mod-
ules on the same rows share a common row ad-
dress strobe (RAS) line. Those in the same column
share a common address strobe (CAS) line. The
same address lines are shared by all the pel mem-
ory modules. Both the serial data lines used to
refresh the screen and the parallel data lines used
to read and write the bit map are connected in
columns. Thus, data can be read from one of four
layers and loaded into accumulators. Each of the

10

20

25

30

35

45

50

55

18 pel memory modules in the 4 x 4 array has its
own write enable that is controlled by the direct
mask register and the Bresenham line drawing
circuits in the pel processor 18.

The mutliple RAS lines 410, 412, 414, and 418
and the multiple CAS lines 418, 420, 422, and 424
are used to strobe different addresses in the pels.
This allows the "access” 4 x 4 square word that is
addressed by the X and Y pel address registers to
be misaligned with the displayed words that are
scanned onto the screen. Figure 3 shows the
waveforms for the RAS lines 410, 412, 414 and 418
and the CAS lines 418, 420, 422, and 424 that are
used to strobe the addresses into the pel memory
22 and align the access word with respect to the
displayed words. Note that this pe! alignment of 4 x
4 words allows a corner of the square to be placed
at the start of any line being drawn and, because
each pel memory module has an independent write
enable, 4 pels of the line can be drawn simuita-
neously as illustrated in Figure 4. Figure 5 illus-
trates the numbering of the pels in the 4 x 4 array.

An overlay plane, actually plane 7 (407 in Fig-
ure 2) of the bit map memory 22 can be used in
conjunction with the colour palette feature of the
video stage 26 to provide highlighting or blinking at
a programmable rate. With blinking enabled any
pixel with a 1 in this plane will blink at the program-
mable blink rate. With highlighting enabled a 1 in
the overlay plane overrides the normal colour pal-
ette process in the video stage 26 and substitutes
a colour from a three entry overlay colour palette.
Note that the use of the overlay plane will effec-
tively reduce the available colours for the colour
palette feature in the video stage 28.

Returning to Figure 1, the video stage 26 in-
cludes a colour palette feature. The colour palette
translates the 8 bit value stored in the bit map
memory 22 into one of 4,096 colours. The output of
this colour palette feature provides 4 bits to each of
3 digital to analog converters. The digital to analog
converters in turn drive the red, green and blue

- colour guns of the monitor 30. Each 4 bit section of

the look-up table maps the 8 input bits from the bit
map into one of sixteen analog output levels. The
colour palette feature may be loaded by the signal
processor 14 or when the signal processor 14 is
disabled, by the system processor 10.

The hardware cursor 21 provides a full screen
cross hair and/or a 64 x 64 user programmable
cursor. The full screen cross hair can be pro-
grammed to one of several widths and scissored.
The output of the hardware cursor is fed to the
colour palette feature of the video stage 26.

In Figure 1, the system processor 10 provides
high level graphics orders to the signal processor
14. Status and other information is passed from the
signal processor 14 to the system processor 10.

11 0 279 231 12

The signal processor 14 breaks down the high level
graphics orders from the system processor 10 into
a series of low level graphics commands which are
then passed to the pel processor 18 via the input
bus 16. This input bus 16 includes address, data
and control information. If the signal processor 14
has been disabled, the system processor 10 can
transfer low level commands and retrieve data di-
rectly from the pel processor 18 by means of the
input bus 16. Access to the bit map memory 22 is
controlled by the pel processor 18. The accesses
to the bit map memory 22 take place over bus 20
which provides address data and control informa-
tion.

Pel Processor - Description

A block diagram of the pel processor 18 is
shown in Figure 6. Control of the bit map memory
22 in execution of low level graphics command is
achieved by writing control parameters from either
the system processor 10 or the signal processor 14
into the pel processor control logic 44 via the input
bus 16. These parameters are decoded within the
dynamic control mechanism 45, generating control
and timing signals for the other parts of the pel
processor circuitry and which are provided via line
60. The endpoint address information for a low
level order is communicated to the pel processor
18 by the pel processor input bus 16 and stored in
the input queue contained in the endpoint logic 40.
Depending on the order being processed (either
line draw or bit biock transfer), various operations
are performed. If a line draw order is being ex-
ecuted, the endpoint data is used to calculate pa-
rameters used in executing Bresenham’s line draw
algorithm in the address count logic circuitry 50.
For block transfer operations, the endpoint logic 40
simply queues the input data until this data can be
transferred to the address count logic 50. Commu-
nications of the endpoint and line draw parameters
from the endpoint logic 40 to the address count
logic 50 takes place over the address/parameter
bus 48. When these parameters have been loaded
into the address count logic 50, the endpoint logic
40 is free to accept new endpoint data for the next
graphics order. The address count logic 50 uses
the parameters to generate the bit map addresses
needed to complete the order being executed, and,
in addition uses some parameters to sequence the
task and determine when the task has been com-
pleted.

The address count logic 50 manipulates co-
ordinates in 10 bit fields. The upper 8 bits of the
field form the bit map memory addresses 20. The
lower 2 bits of both the X and Y coordinates are
passed to the RAM control logic 52 via the pel bus

10

15

20

25

30

35

40

45

50

55

56 where they are decoded into bit map control
signals on line 20. These bits are also passed to

" the data path merge logic 54 via the pel bus 56

where they are used to control data being stored
into or retrieved from the bit map memory 22. The
data path merge logic 54 serves as the bridge
between the system and display processor buses
and the bit map memory data bus 20. System
processor 10 data can be fransferred between or
combined with bit map data using the merge logic
54. Data being transferred to and from the system
processor 10 is controlled by the data path synch-
ronisation circuitry 42 and passed via the merge
bus 48.

The following is a more detailed explanation of
the two main graphics tasks that are performed by
the pel processor 18. These two tasks are illus-
trated in Figures 7A and 7B. The bit block transfer
task (Figure 7A) consists of moving rectangular
blocks of data from a source area of the bit map
memory 22 to a destination area of the bit map
memory 22. This task is commonly used to "scroll”
information on the screen or to display a pop-up
menu. Line drawing (Figure 7B) which consists of
connecting two points in the bit map memory 22
via straight line, is also a commonly used function.
Both of these tasks form the foundation of higher
level graphics operations, such as multiple source
bit block transfers, pattern lines, polygon drawing,
etc. For this reason, it is essential to perform these
base functions as effectively as possible.

In Figure 7A, it is desired to move a data block
from location 128 to location 136. In order to per-
form a bit block transfer from the source location
128 to the destination location 136, the following
sequence of events must take place within the pel
processor 18. Once the pel processor 18 control
logic 44 (Figure 6) is loaded with control param-
eters to perform a bit block transfer operation, the
endpoint data for P1 (130) and P2 (138) along with
the height parameter (134) and the width parameter
(132) are loaded into the endpoint logic 40 (Figurs

-6). In executing a bit block transfer operation, the

endpoint logic serves as an intermediate level of
storage, passing the parameters to the address
count logic 50 (Figure 6) when the task is initiated.
Loading the Y address value of Pz (138) signals the
pel processor 18 to begin task execution. At this
point, the address and parameter counters within
the address count logic begin to access the bit
map memory locations along with the width dimen-
sion of the bit block transfer, alternately accessing
the source, then the destination addresses. When a
string of accesses is completed along the width
dimension, the address counters are automatically
counted and reloaded to begin the next line. This
process continues until the bottom of the bit block
transfer is reached. The address counters generate

)

13 0 279 231 14

a 10 bit pel address, and the upper 8 bits are used
as the bit map memory address 20, while the lower
2 bits 56 are used as the pel decode in the RAM
control logic 52 (Figure 6), and the merge logic 54.
The merge logic 54 takes the data read in from the
source location, aligns it, and passes it out to be
stored in the destination locations.

Figure 7B illustrates a line draw task. In order
to perform a line draw command, the end points of
the line, P1 (150) and P2 (152) are loaded into the
endpoint logic 40 (Figure 6). Loading the Y address
value of P2 (152) signals the pel processor 18 to
begin execution. At this point, the endpoint logic
begins to calculate the various Bresenham param-
eters associated with the line to be drawn. Once
this calculation process is finished, the parameters
are passed to the address count logic 50. To
execute this line draw task, the address count logic
will begin generating pel addresses for each pel in
the line. The upper 8 bits of the address will serve
as the bit map address 20 as before. The lower 2
bits 56 of the pel address are passed to the RAM
control logic 52, where they are used to generate
the appropriate write enables to draw the line into
the bit map.

Figure 8A is a software flow diagram illustrating
the bit block transfer function. The pel processor
18 is in the idle state 160 until it receives the bit
block transfer end points as illustrated in step 162.
if the end points have not yet been received, the
pel processor 18 remains in a idle state 160
searching for the end points. When the end points
have been received, the pel processor 18 proceeds
to step 164 to calculate the inner and outer loop
values. In 166 the inner loop incrementing begins
with the X pel address being incremented. In step
168 a decision is made as to whether or not the
inner loop has been completed. if the inner loop
has not been completed, the processor 18 returns
to step 168. If the inner loop has been completed,
the processor 18 proceeds to step 170 to step the
outer loop set the Y pel and reload the inner loop
counter. In step 172, a decision is made as to
whether or not the outer loop has been completed.
If the outer loop has not been complete, when the
pel processor 18 returns to step 168. If so, the pel
processor 18 returns to the idle state 160.

Figure 8B illustrates a flow chart for the
Bresenham line draw algorithm. The Bresenham
algorithm has disclosed in the Fundamentals of
Interactive Computer Graphics by James D. Foley
and Andries Van Dam, published by Addison Wes-
ley Publishing Company, 1982 and appearing on
pages 433-435. An over simplified explanation of
the Bresenham algorithm is that it determines
which picture elements in an array of picture ele-
ments should be illuminated to represent an ap-
proximation of a straight line in this array of picture

10

15

20

25

30

35

45

50

55

elements. Basically the algorithm uses the slope
between the two end points to determine a set of
parameters that are used to designate which pels
are to be activated. In Fig. 8B, the pel processor 18
initially loops between an idle state 174 and a
decision state 176 until the line end poinis have
been received. When the line end points have been
received, the processor 18 proceeds to step 178 to
calculate an initial error term, i1, 12, and the line
length. The processor 18 then proceeds to step
180 to determine if the error term is less than 0. If
not, the pel processor 18 proceeds to step 184
where the error term is added to 12 and the Y pel
address is incremented. The pel processor 18 pro-
ceeds to steps 186 to increment the X pel. A
decision is made in step 188 to determine if alt the
pels have been processed. If not, the processor 18
returns to step 180 to examine the error term. If the
error term is less than 0, then the processor 18
proceeds to step 182 to add the constant 11 to the
error term. The pel processor 18 then proceeds to
step 186 as before. When it is determined that all
the pels have been processed (step 188), the pro-
cessor 18 returns to the idle state 174. It should be
understood that the slope of the line to be drawn
and its direction will determine which address
counter is being conditionally counted.

In Fig. 8, the control logic 44 controls the
internal operation of the pel processor 18. The
control logic is connected to the system processor
10 and the digital signal processor 14 by bus 186.
The control logic 44 provides control signais on
line 60 to various other blocks illustrated in Fig. 6.
Fig. 9 illustrates in greater detail the contents of
control logic 44. A section of this control logic
illustrated in Fig. 6 is a block 45 that is illustrated in
Fig. 9 as a functional control circuit 456 containing
command registers, decoding circuitry and task
execution circuitry. Controller 45 is connected to
control decoder circuitry 100. Controller 456 is fur-
ther connected to a memory cycle arbitration unit
106 and a memory cycle state machine 104, The

- memory cycle arbitration unit 108 is connected to a

refresh timer 102. The purpose of the circuitry in
Fig. 9 is to perform a memory access setup cycle
and a memory cycle task. During the setup cycle,
addresses, control signals and data are being set
to be transmitted on the next ensuing memory
cycle. The actual interface with the memory (the bit
map memory 22) is accomplished during the mem-
ory cycle task.

The control circuit 45 exercises a dynamic
control over the executions of these tasks. The
control registers contained in controller 45 are load-
ed from bus 18. These registers contain instruc-
tions that provide both commands for internal com-
putation by the pel processor 18 and commands
for the bit map memory 22. In operation the com-

15 0 279 231 16

mands for the bit map memory 22 and the com-
mands for the pel processor 18 are executed si-
multaneously. In the disciosed embodiment control-
ler 45 includes four instruction registers and further
includes control circuitry that executes these four
instructions in a looping fashion. In this embodi-
ment four types of instructions may be executed.
These include read, write, load, store. The read
and write instructions provide data access between
the bit map memory 22 and the system processor
10 or digital signal processor 16 via the pel proces-
sor 18. The load and store instructions provide
direct access between the bit map memory 22 and
the pel processor 18.

When the instructions are loaded into controller
45, execution begins when a signal is received on
line B0D. This signal is originated from biock 40
(Fig. 8) signifying that all data has been loaded.
The first instruction that is to be executed requires
both setup cycles and memory cycles. At first
controi logic 45 determines if a setup is in progress
on line 78. If no setup is in progress, then a setup
cycle is requested by a signal on line 76 to the
memory cycle arbitration unit 106. Likewise, during
a memory cycle execution, the control circuitry 45
first determines if a memory cycle is in progress
by examining the signal on line 82 and if not
providing a signal on line 80 to initiate a memory
cycle. During the execution of a setup cycle, setup
control signals are provided on lines 90. During the
execution of a memory cycle, memory cycle con-
trol signals are provided on lines 92. During the
execution of either bit block transfer or line draw
algorithms, the control circuiiry 45 receives the
inner and outer loop counts via lines 60E. Line 84
provides the instruction type currently being ex-
ecuted by the controller 45 to the memory cycle
state circuit 104.

The function of the memory cycle arbitration
unit 106 is to allocate time periods for the bit map
memory 22, memory cycle refresh, screen refresh,
cycle, setup cycle memory cycle and to determine
when memory cycles and sefup cycles are in
progress. The memory cycle arbitration unit 106 is
connected to the memory cycle state circuit 104
via lines 72 and 74 providing an initiation signal on
line 72 and completion signal on line 74. The
memory cycle state circuit 104 provides the mem-
ory cycle state outputs on lines 70 to drive the
control decoding circuit 100. The conirol decoding
circuit 100 actually provides the memory control
signals to the bit map memory 22. Additionally,
control decoding circuitry 100 provides control sig-
nals to the remaining functional blocks in the pel
processor 18 as illustrated in Fig. 8.

One additional function provided in Fig. 9 is
that of refresh timing. Timer 102 is connected to
the memory cycle arbitration unit 106 to provide a

10

15

20

25

30

35

40

45

50

55

signal when memory refresh and screen refresh is
required.

Fig. 10 is illustrated a timing diagram of the
execution of setup cycles and memory cycles for
the decoding of instructions and the control register
contained in control circuitry 45. At a time 122 the
first command is read and a setup cycle requested.
At time 123 a setup cycle for the first instruction is
begun. At time 129 the execution of the memory
cycle for that first instruction is executed (126). At
the same time of the execution of the memory
cycle for the first instruction (126), the execution of
the setup cycle for the second instruction is begun
(127).

Fig. 11 illustrates the contents of control cir-
cuitry 45. Two registers 140 and 141 termed static
control registers are contained in control circuitry
45 to maintain constant control signal data during
the operation of the control circuitry 45. These
constants are loaded from the bus 16. These regis-
ters provide outputs on lines 90 and 92 for the
control decoder 100 (Fig. 9) . The heart of the
control circuitry 45 is the dynamic control instruc-
tion file 148 that includes four instruction registers
148A, 148B, 148C, and 148D. The execution of
instructions contained in these four registers 148A-
D controlled by the loop controf and task sequenc-
er circuit 144. The sequencer 144 receives the
begin task execution signal on line 60D and the
inner loop/outer loop counts on line 60E. Further-
more, the sequencer circuit 144 provides the re-
quest setup signal on line 76 and the request
memory cycle signal on line 80. It also receives the
setup grant signal on line 78 and the memory cycle
grant signal on line 82. The dynamic control in-
struction file 148 is connected to three latches 152,
154, and 156. When an instruction is to be ex-
ecuted, it is first latched into latch 152 by the
sequencer 144. During the latching of this instruc-
tion sequencer 144 determines if it is a loop in-
struction via line 147. Data from register 148 is
latched to latch 150 when the control word CWO is

- read at time 122 (Fig. 10). The data from latch 150

is transferred to latch 154 at the start of the instruc-
tion setup cycle 123. Data from latch 154 is trans-
ferred to latch 156 at the beginning of the instruc-
tion memory cycle 129. The instruction is latched
into latch 154. The insiruction in latch 154 contains
bits which supply signals on lines 80 designating
the setup cycle control signals. These signals are
provided to the control decoder 100 (Fig. 9). During
the next fixed time period, when the samse instruc-
tion that was in latch 154 is transferred into latch

156, it provides the memory cycle control signals -

on lines 92 and also a memory cycle designator on
line 84 to the memory cycle state machine. There-
fore, during any given fixed time period, control
signals are being provided on lines 90 and 92

“

17 0 279 231 18

simultaneously.

Fig. 12 is a flow chart illustrating the operation
of the control circuitry 45. In Fig. 12 the control
circuitry 45 first enters an idle state 300 until it
receives the start signal on line 60D. Steps 301
and 300 are repetitively executed until the start
signal on lines 80D is received. When the start
signal is received, step 302 is executed which
initialises certain registers. In step 303, the control
circuitry determines from examining line 78 wheth-
er a setup cycle is pending. if so, step 305 is
exscuted where the controller waits until the cycle
is complete. If not setup is pending, the controlier
45 proceeds with step 304 to request a setup cycle
by placing a signal on line 76. In step 307, the
controller determines if the instruction contained
within the latch (152) requires looping. If not, the
instruction counter is incremented in step 306 and
a determination as to whether the setup cycle has
been granted via line 78 is made. If the setup cycie
has not yet been granted, then the controller waits
in step 311 until this process is granted. And then
the controller proceeds to step 318 where it deter-
mines if certain control circuitry is busy due to
requirements from the system processor 10 or the
signal processor 14. If so, then the controller waits
in step 319 until the this circuitry is not busy. The
execution of the load and store instructions will not
require any interface by the system processor 10
or the signal processor 14 and therefore the con-
troller 45 will always pass through this state when
executing load and store instructions. if the cir-
cuitry is not occupied with communications with the
signal processor 14 or the system processor 10,
controller proceeds to step 320 to initiate the mem-
ory cycle. This is accomplished by first looking at
the grant line 82 to determine if the memory cycle
is in progress, if not then the memory cycle is
requested by placing a signal on line 80. The
controller then returns to step 303.

Returning to step 307 if a loop instruction is to
be executed, the instruction counter is cleared in
step 308 to insure that this execution is looped. In
step 310 the controller waits until an indication that
it can test the counter state. These counters are
contained in block 50 (Fig. 8) and are providing the
address counting for the bit block transfer algo-
rithm and line draw algorithm. In step 312 a de-
cision is made whether it is time to test it, if not,
the controller loops back to step 310. When the
counters can be tested, the controller proceeds to
step 313 to determine if the task has been accom-
plished. If not, the controller proceeds to step 315
to determine if a bit block transfer line has been
completed. In other words, if the inner loop count-
ing is complete for this transfer. If so, then the
inner loop counter is reloaded in step 316 and the
outer loop counter is decremented. if not, or after

70

15

20

25

30

35

40

50

55

10

step 316 has been accomplished, the controller
proceeds to step 318 previously discussed.

Returning to step 313, if the task has been
completed the controller proceeds to decision step
314 to determine if the the controller 45 is interfac-
ing to either the system processor 10 or the signal
processor 14. This wait step is 315 which is similar
to step 319 previously discussed. If the circuitry is
not busy the controller proceeds to step 317 which
is similar to set 320 in the initialisation of the
memory cycle. The coniroller then proceeds back
to the idle step 300. -

The memory cycle state circuit 104 will se-
quentially provide one of eight states. Figure 13 is
a flow chart iliustrating the operation of the memory
cycle state circuitry 104. This state circuitry 104
initially starts in step 330 in idle until it receives a
signal on line 72 from the memory cycle arbitration
unit 106. A decision is made in step 331 when this
signal has been received. When such a signal is
received, the memory state circuitry 104 then se-
quentially provides five states 332-336. In step 337
it is determined whether or not the cycle that has
been requested is a memory refresh cycle. if so,
then the state circuitry 104 returns to idle state 330
and if not the state circuitry 104 provides steps
338-340. It should be understood that these eight
states from the memory state circuitry 104 provide
information for both the setup cycle and memory
access cycles. The state condition output from
state circuitry 104 is provided on lines 70 to the
control decoder 100.

Fig. 14 illustrates the output signals from the
control decoder 100 for each of the eight stages for
a setup cycle. During state 1 a reset line 350 is
dropped to reset the mask for the write enable
controt signals. The write enable control signals are
used to control not only timing of the memory
access but also to control which bits of the pro-
vided data is written into memory. The setup clock
in line 351 is also activated as is a latch signal on
line 352. Line 352 activates a latch to store the

- current or soon to be old address. Line 353 is

activated during the seventh state to latch the new
computed address. Line 354 is active during states
2, 3, 4 and 5 and provide clocking signais for the
calculation of addresses. At the end of state 5, line
356 provides the test signal to the controller 45 to
indicate that the counters can now be tested (i.e.,
step 312 in Fig. 12). In step 357 a clear signal is
active during state 2 to provide the grant signal on
line 78. A

All of the instructions such as read, write, ioad
and store include a setup cycle. All setup cycles
are conducied in accordance with the timing dia-
gram of Fig. 14.. The read and write instructions
entail access to either the signal processor 14 or
the system processor 10. The load and store

19 0 278 231 20

instructions only entail activities between the pel
processor 18 and the bit memory 22. Fig. 15 is a
flow chart illustrating the exscution of the read,
write, load and store instructions. To avoid confu-
sion only the load and store instructions will be
discussed since the read and write instructions do
include load and store but also require interfacing
to the system processor 10 or the signal processor
14.

The timing diagrams for the load and store
instructions are provided in Figs. 16 and 17. It
should be understood that these cycles are similar
to the setup cycle timing in Fig. 14. However, the
control signals provided by the control decoder 100
are as illustrated in Figs. 16 and 17 as a result of
the states of the memory cycle state circuit 104.
Referring to Fig. 16, two row address strobe timing
signals 360 and 361 and two column address
strobe timing signals 362 and 363 are provided to
access the bit map memories. Line 364 is provided
to pass data from the memory into the pel proces-
sor 18. Line 365 is a data latch signal. Line 366
provides the memory cycle grant on line 82. Line
367 designates the availability of the row address
and column address signals. Line 368 is used in
column and row address calculations.

Fig. 17 is the timing diagram for a store cycle
and is similar to Fig. 16 and will not be discussed
further.

Fig. 18 is a bit format listing for instructions
that are contained in the control registers 148. Bit
position 350 specifies whether or not the instruction
is a loop instruction. This is used in decision step
307 of Fig. 12. Bit positions 352 specify the in-
struction type, i.e., read, write, load or store. This is
used to provide the signal on line 84 (Fig. 9). Bit
positions 353 specify the data paths to be activated
in the data path merge logic 54.

Fig. 19 illustrates the bit formats for the con-
tents of the static control register 140. These bits
provide information to the control decoder 100 (Fig.
9) on lines 90 for the setup cycle.

Fig. 20 provides the data format for the static
controf register 141. These bits specify the types of
memory access to the control decoder 100 on the
memory cycle control lines 92.

In Fig. 21 an illusiration is given of a bit block
transfer of information from a source area 360 to a
destination area 362. In Fig. 22 the contents of the
control instruction register 148 is illustrated to ac-
complish this transfer of Fig. 21. Two instructions
are required as illustrated by instructions 364 and
366 operating in a loop fashion. The contents of the
static control registers 140 and 141 are illustrated
in block 368.

Fig. 23 illustrates the drawing of a single line
370. In Fig. 24 this is accomplished by a single
instruction in the control register 148 consisting of

10

15

20

25

30

35

40

45

50

55

11

an instruction illustrated as 372. The contents of
the static control registers 140 and 141 are illus-
trated in block 374.

Fig. 25A illustrates a bit block transfer opera-
tion including two source areas 376 and 378 that
are combined in a logic operation 380 to prbvide a
destination area 382. An example is illustrated in
Fig. 25B combining the lines of 376" plus 378" in an
OR operation to result in a composite screen 382'.
To accomplish this task, the dynamic control regis-
ter instructions are illustrated in Fig. 26 as blocks
384, 386 and 388. Contents of the static control
registers 140 and 141 are illustrated in block 400.

Although: this embodiment has been described
with reference to this specific embodiment, this
description is not meant to be construed in a
limiting sense. Various modifications of the dis-
closed embodiment, as well as other embodiments
of the invention, will become apparent to those
persons skilled in the art.

Claims

1. A processing system including an external
device that responds to any one of several external
device commands and performs such command
within a single fixed time period and a control
processor connected to the external device to pro-
vide the external device with the external device
commands, the processor including circuitry for
executing instructions that generate these external
device commands together with at least one inter-
nal command, the processor being arranged to
perform the current internal command simulta-
neously with the performance of the current exter-
nal command by the external device.

2. A processing system as claimed in Claim 1,
wherein plural internal commands are generated for
each of at least some of the external commands,
the internal commands being performed in series
in the processor during the performance of the

- external command by the external device.

3. A processing system as claimed in Claim 2,
wherein the series of internal commands is per-
formed within the fixed time period.

4. A processing system as claimed in Claim 3,
wherein the processing system includes registers
which specify the external and internal commands.

5. A processing system as claimed in any
preceding claim, wherein the external device is a
memory sub-system including means for executing
memory commands for storing and retrieving the
data during the single fixed time period and the
internal commands include commands that com-
pute address information for the memory.

A}

21 0 279 231

6. A processing system as claimed in claim 5,
being a graphics display system, where a systems
processor computes graphics information to be dis-
played; the conirol processor being a graphics
processor connected to the system processor for
receiving the graphics information and for comput-
ing picture element data for display; the memory
sub-system being a graphics memory for receiving
and storing the picture element data; there being
display means connected to the graphics memory
means for displaying the picture slement data from
the graphics memory means.

7. A graphics display system as claimed in
Claim 8, wherein the graphics processor includes
control means connected to at least two of the
registers for executing the instructions in the regis-
ters in a serial loop.

8. A graphics display system as claimed in
Claim 7, wherein the graphics processor registers
receive instructions from the system processor and
are connected to a plurality of serially connected

latches each connected to respective decoding cir- -

cuit means, the latches for receiving instructions
from one of the control registers from the control
means and for providing its insiruction to its re-
spective decoding circuit means for providing a
plurality of control signals simultaneously specify-
ing memory commands and iniernal processor
commands.

9. A graphics display system as claimed in
Claim 8, wherein each instruction within the control
registers is serially circulated through the latches
by the control means.

10. A graphics display system as claimed in
Claim 9, wherein a instruction is loaded into a latch
each fixed time period.

10

15

20

25

30

35

45

50

56

12

22

0 279 231

YOLINON
894

|
|
|
|
|
|
|
all
(

¥ "914d
———— _
= St 7
¥0SHNI oY 0414
JHVMQUVH , |
4 |
3T |
9¢ 0 T v viva
. r pEID
\ T
be 02 I |
10Y4d _
39V1$ VA 9044 TVN91S
0301 118 13d VL1910 |
NOILONYLSNI _
9} /| |

0 279 231

2 914

b 22y 0eb 1%}
MY AN Y
¢ Sv) ¢ SVl F SYJ 0 SvY)

Lol

0rd
owf_\,\

0 INvd ¢ IN[T NVDS -~—
F INV1d 2 IN[T NV S. o |} Sy 0t
2 INV1d B b w1 wvals —
£ INVd 0 TEEETHE — £ SV
b IV R | | _ L 00s Hw:
1 - { ‘ SRS TT
¢ INVTd | | |
9 INVTd B | | | R
I INV1d e | | Loy
| — | | | RTY
| _ _ _ (4/2:
L g0p
_ _ _ [\\J,\:vv

0 279 231

914

T

i

14

¢ 38041S SSIYAAY NWR10) b2 P
2 180415 $S3YAQY NANT0I L~ 22¥
b 380415 SSIHAAY NNAT0I —~ g7y
0 380Y1S SSIHAAY NNNT0I ~~ g}y
£ 380415 SSIMAAY MO ~~ g
2 J04LS SSIUOAY MOU~~, o
¥ 30041S $S3¥aQY MoY
0 39041S SSIYaqy ;:M//M”H

$SIYAAY ITINCON AYOWIW 13d

0 279 231

y 914

SS3IYAGY A oyOM Q3AVIdSIQ
SS3¥aav A 13d QIAVIdSIQ

S MM N

SSIYAAY X QHOM —» ¢ 2 V 0
SSIYGOV X 1d—= ¥ 0 £ 2 ¥ 0 € 2 ¥ 0 £ 2 b 0 € 2 ¥
QYIS0 €T T T T T T T T T T T T
y oe oo
‘91 4 o xx xxlee
co we oeyy
G
¥
!
m .

0 279 231

‘N\
SYSTEM/ | BRESENHAM LINE SOURCE / DESTINA-
TMS$320 DRAW/ PARAMETER TION /7 HOST
BUS gaBCULATION/ ADDRESS COUN - 8
POINT QUEUE TERS, BRES. / BIT MAP RAM
<:::;§::::> ::%F:i> LINE DRAW -;2r2> ADDRESSES
16 40 46 30 20
| =
42X, 2Y LSB'S
SYSTEN / @}SQEQS CONTROLS TO
TMS320 BUS 52 :::i?:> BIT MAP
20
60
A 2X, 2Y LSB'S
56\/’
9
DATA DATA PATH
PATH MERGE LOGIC 3
SYNCRO
SYSTEM/ TMS320 BIT AP
DATA BUS <:§;::> RAM DATA
42 54
6 | — 48 — 20

FIG.

|

44]

SYSTEN/TMSS20::§::::>

.

46

CONTROL LOGIC 60
CONTROLS TO
22%?;/ <:£i:>VAR|ous
7

- 45 BLOCKS

0 279 231

4128
5 ’

b\ SOURCE DATA

b 138
i — e 132 \,\

434/“1///// 7‘?

FIG. 7A

450

136
S

DESTINATION

—e W - 140

iz

452
PQ/A/,

FIG. 7B

0 279 231

IDLE

462

CALCULATE INNER, OUTER
LOOP VALUES

L~ 164

)

—»

STEP INNER LOOP, XPEL, }r-466

A68

STEP OUTER LOOP, YPEL 170
RELOAD INNER. XPEL [~

DONE

Vo WITH OUTER

LOOP

FIG. 8A

0 279 231

ol IDLE 174 }»——-————ﬂ

176

LINE
END -
POINTS

NO

YES

CALCULATE INITIAL ERROR
TRM, T4, I2, VLEN - 118

ERROR TRM - 182 ERROR TRM -
ERRORTRM + I ERRORTRM + 12,

14~ TPEL = YPEL +14

XPEL = XPEL + 1 - 186

188

ALL
YES PELS PRO-

NO

[]

W
FIG. 8B |

0 279 231

. NOILNI3X3
6 ‘914 ¥SVi NI938
St
1dAL 31949 003~
YR ;:1 Afﬂmz VIVO 0d9
31949 1S3n03Y NOTLNDIX3
1 TTETSTTITR ¥SV.1/¥300930 I |
d-pg ob /S934 ONVNNO) " SLNNOD 4007
dn13$ 153003y ‘ ‘ N NI1N0 Y INNI
SILVIS N
31949 NIN 8l 26 06 309
Vg |
¢8 &L 1041N0) 1041N0D
0L 11949 31949
£, f I\ AYONIN dn13s
LIN9Y4 19 L _
vo LIND 4300930 Sl
vis | 2l NOILVY L1 gYY 1081N09 N in
1710400 |, 31949
AHONIN 09 AHONIN 01
LNVHO ONV 1S3N03Y HSIHATY 03\% *\/QL\/%
KYOWIN ONV NIFHDS $~g [N\ pg R
3LV9 INNOD STYNIIS .

20y

LELIN
INAS TVINOZIYOH

H1vd SS3yagy
Vive

ININIL
T041N0)
LEL)

0 279 231

15v1

b-15V1 o o e

OF "914

15V V- 1SV1

OM<.\\M\\\.A7

1SYIMY

0z 62F
¢ 2 F 37940 NIN S319A0 AYONIN 40 NOILN93IX3
531949 dN13S
b : ¢ I dni3s 10 NOILNYIX]
NN,VW vw.yw\ ¢2r
- SQHOM T04LNO?
A A A A 424 N 30091340
bA9 TV N9 0 aR Qv3y
021"
_¥SYL N193

cN~\\

45

M\

16

FROM SYSTEM §
DATA BUS -E!

0

140

)

279 231

80

STATIC CNTL 9

STATIC CNTL 4

/,
%

444j

92

CON-
TROL

TGL 0
1’1

18

ol

89 82

<]

LOOP CONTROL
s0F | CIRCUIT/ TASK BEGIN
INNER SEQUENCER TASK
LOOP/ -1§-$f§§"'
OUTER 4 oop)
DYNANIC LOOP CONTROL
CONTROL COUNTS —F
WORD FILE
FROM SYSTEM — Z
DATA BUS { 1488
\ [
18 1480
R— N~448
150t
[)
LATCH 152
L)
LATCH 154
90
¢—L "« TO MEMORY SETUP CONTROL
9
LATCH 4__6_ —at-o
84
FIG. {1 92—

——— T0 MEMORY CYCLE CONTROL

0 279 231

302
INITIALIZE 4
303 r
Y /./305
WAIT SETUP
304 N
304
SETUP
307 , /,306
LNZ INC 0P
7 344
T 309 }
® WAIT SET GR
308
. L :
@ gus
WAIT
RES 4
WAIT TEST

IDLE

a.’:H)

36 A 2E L 0ad

FIG. 12

330

IDLE CY (0)
0000

0 279 231

334

SCYCLE
NSETUP

RCYCLE
NCYCLE

CY ()
0004

333]

CY (2)
0044

334]

CY (3)
0040

335 /7

CY(4)
0440

336

CY (5)
0444

337

RCYCLE

CY (6)
0404

CY (1)
0400

CY(8)
4400

FIG. 43

SETUP CYCLE TIMING:

0 279 231

350

—_—
354 1
352 1

353

354 BEEBEEEE

356

3 \]

FIG.

LOAD CYCLE TIMING:

14

0423 5 |

I i i I { | |
360 T | I
1.7 I
362 l [
363 —
364 I
365
366 LI
367 . |
368 T

FIG. 46

CLOCK 1
CLOCK 2

STATE NUMBER

RESET - MASK

SETUP CLOCK

LATCH ADDR OLD

LATCH ADDR NEW
ADDRESS CALCULATION CLOCK
TEST TIME

CLEAR

CLOCK 4
cLock 2
STATE NUMBER

RAS A
RAS B
CAS A
CAS B
DATA LN

| | GATE LATCH

CLEAR
RAS/CAS ADDRESS

~ ADDRESS INCREMENT/
DECREMENT

0 279 231

IDLE
206
pail G202 204
READ LOAD WRITE STORE
3 .
RETRIEVE RETRIEVE RETRIEVE PASS DATA
DATA DATA DATA TO BIT
FROM FROM FROM MAP
BIT MAP BIT MAP SYSTEM
LATCH DATA
IN PEL PRO -
CESSOR 3
LATCH DATA
IN PEL PRO-
CESSOR
PASS DATA PASS DATA
TO SYSTEM | TO BIT MAP
DONE
PASSING
FIG. 45
 J J
IDLE | DLE IDLE

0 279 231

) : . ! . STATE NUMBER

NN VN I s U e Yy Y Y s N CLOCK 4

4 L M oLock 2

1 | L [WRITE ENABLE
1 1 LATCH WRITE ENABLE
[| RAS/CASS ADDRESS
/L | DATA ENABLE

CYCLE CLEAR

— L R
L [RAS A
g . I RAS B
1 [T CAS A
- [CAS B
FIG. 47
352 353
¢ ® L 4 L4 —;— T
: |
350

LOGIC UNIT
OPERATOR (4)

CYCLE TYPE (READ, WRITE,
LOAD, STORE) (2)

STEP ADDRESS COUNT

PLANE READ SELECT BITS (4)

FIG. 18

SOURCE OF WRITE DATA (ACCUM, LOL)

LOOP BIT

0 279 231

ST

X STEP VALUE

Y STEP VALUE

SINGLE STEP ADDR/INC ADDR

LINE DRAW/ BITBLT

WRITE MASK FUNCTION BITS F1G6. 19

WINDOW ENABLE

f

/

|

DATA FORMAT
SELECT BITS

- LOWER HALF SLICE /
UPPER HALF SLICE FORMAT

HALF SLICE/
PIXEL MODE —T

\

FIG. 20

0 279 231

:_SOURCEAREA/“‘) —}
|| — |
|| —— l
|
| DEST. AREA 5 362
| - 5 FIG. 21
|
l
l i
T T]
i |
DYNAMIC CNTL — PERFORM LOAD CYCLE
REG 0 ~ USING SOURCE ADDR.
~ AUTO STEP ADDR
- N0 LOOP

364-/? l
366\,I 1

DYNAMIC CNTL —PERFORM STORE CYCLE
REG 4 -~ USING DEST. ADDR.
— AUTOSTEP ADDR
= LOOP
l
|
«
368 (REPEAT TILL DONE)
j FIG. 22
STATIC CNTL REGS
— BITBLT MODE
— X STEP
— Y STEP
— SINGLE STEP ADDR.

i)

0 279 231

370

;

FIG. 23

DYNAMIC CNTL
REG. @

— USING DEST. ADDR.

~ LoOP

PERFORM STORE CYCLE

AUTO STEP ADDR.

«

REPEAT TILL DONE

STATIC CNTL REGS

— LINE DRAW MODE
- INC ADDR.

374

FIG. 24

0 279 231

SOURGE 376 SOURCE
A 2
378
LOGIC 0P L 380
DESTINATION L.-382
FIG. 285A
SOURCE 4 SOURCE 2
376'/ /1/378l
IORI
382"

FIG. 258B

0 279 231

F—— — — — —
DYNAMIC CNTL — PERFORM LOAD CYCLE
REG ¢ — USING SOURCE ADDR.
384 — AUTO STEP ADDR.
— NO LOOP
!
|
4
DYNAMIC CNTL — PERFORM LOAD CYCLE
REG 4 — PERFORM LOGIC OP

— USING HOST ADDR.
— AUTO STEP ADDR.

— NO LOOP
I
l
¢
DYNAMIC CNTL — PERFORM STORE CYCLE
REG 2 — USING DEST. ADDR.
— AUTOSTEP ADDR.
3jgg — LooP
|
|

STATIC CNTL REGS

— BIT BLT MODE
— X STEP
— Y STEP
500~ — SINGLE STEP ADDR

FIG. 26

	bibliography
	description
	claims
	drawings

