11 Veröffentlichungsnummer:

0 279 908 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87115558.6

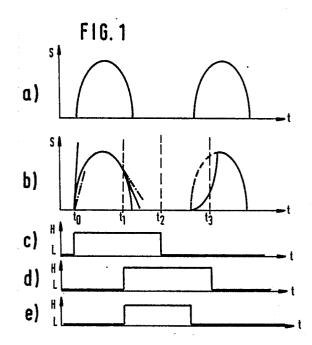
(5) Int. Cl.4: F02D 11/10, B60K 26/04

2 Anmeldetag: 23.10.87

(3) Priorität: 12.02.87 DE 3704316

Veröffentlichungstag der Anmeldung: 31.08.88 Patentblatt 88/35

Benannte Vertragsstaaten:


DE FR GB SE

71 Anmelder: VDO Adolf Schindling AG Gräfstrasse 103 D-6000 Frankfurt/Main(DE)

② Erfinder: Säger, Peter
Pfingstweidstrasse 24
D-6382 Friedrichsdorf 2(DE)

Vertreter: Klein, Thomas, Dipl.-Ing. (FH)
Sodener Strasse 9 Postfach 6140
D-6231 Schwalbach a. Ts.(DE)

- (9) Verfahren und Schaltungsanordnung zum Verhindern von Schwingungen eines Kraftfahrzeuges.
- Bei einem Verfahren und einer Schaltungsanordnung zum Verhindern von Schwingungen des Kraftfahrzeugs mit einem Motor, einem die Leistung des Motors steuernden Stellglied und einem Sollwertgeber, wird innerhalb einer vorgegebenen Zeit nach einem Anstieg des Sollwertes, welcher schneller als mit einer vorgegebenen Anstiegsgeschwindigkeit erfolgt, geprüft, ob ein Abfall des Sollwertes vorliegt, der schneller als mit einer vorgegebenen Abfallgeschwindigkeit erfolgt. Bei Vorliegen eines schnelleren Abfalls des Sollwertes wird die Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes vorübergehend begrenzt.

EP 0 279 908 A1

Verfahren und Schaltungsanordnung zum Verhindern von Schwingungen eines Kraftfahrzeugs

Die Erfindung betrifft ein Verfahren zum Verhindern von Schwingungen des Kraftfahrzeugs mit einem Motor, einem die Leistung des Motors steuernden Stellglied und einem Sollwertgeber sowie eine Schaltungsanordnung zur Durchführung des Verfahrens.

1

Insbesondere bei Kraftfahrzeugen mit einem starken Motor und einem weichen Antriebsstrang kann es bei ruckartigem Gasgeben zu Schwingungen kommen. Diese werden dadurch unterstützt, daß der Fahrer beim ruckartigen Gasgeben in den Sitz gedruckt wird und dadurch den Fuß unbewußt vom Gaspedal zurücknimmt. Dieses hat wiederum zur Folge, daß das Kraftfahrzeug merkbar verzögert wird und der Fahrer nach vorne rutscht. Dabei tritt er wieder stärker auf das Gaspedal. Dieses wiederholt sich mehrmals bis entweder der Fahrer Vollgas gibt, auskuppelt oder seinen Fuß vom Gaspedal nimmt.

Diese sogenannte Bonanza-Schwingung, die durch ein einmaliges ruckartiges Gasgeben angeregt werden kann, wird nicht nur als äußerst unangenehm empfunden, sondern kann auch zu gefährlichen Verkehrssituationen führen.

Aufgabe der vorliegenden Erfindung ist es, diese Schwingungen zu verhindern, ohne daß das Beschleunigungsvermögen des Kraftfahrzeugs darunter leidet.

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß innerhalb einer vorgegebenen Zeit nach einem Anstieg des Sollwertes, welcher schneller als mit einer vorgegebenen Anstiegsgeschwindigkeit erfolgt, geprüft wird, ob ein Abfall des Sollwertes vorliegt, der schneller als mit einer vorgegebenen Abfallgeschwindigkeit erfolgt, und daß bei Vorliegen eines schnelleren Abfalls des Sollwertes die Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes vorübergehend begrenzt wird.

Das erfindungsgemäße Verfahren hat den Vorteil, daß die eingangs genannten Schwingungen verhindert werden, ohne daß die Steigerung der sprunghaftem Gasgeben Motorleistung nach verzögert wird. Auch bei einem sprunghaften Gaswegnehmen die Motorleistung wird Verzögerung reduziert. Dieses erfolgt auch innerhalb des Zeitfensters, innerhalb dessen, die Anstiegsgeschwindigkeit begrenzt wird. Dabei wird Schwelle der Anstiegs-bzw. schwindigkeit unterhalb demjenigen Wert gewählt, bei dem der sogenannte Lastwechselschlag auftritt:

Das erfindungsgemäße Verfahren ist sowohl für Benzinmotore mit Vergaser oder Einspritzung als auch für Dieselmotore geeignet. Bei der Anwendung des erfindungsgemäßen Verfahrens sind die

für die Schwingungen maßgeblichen Zeitkonstanten des jeweiligen Kraftfahrzeugs zu berücksichtigen.

Eine Weiterbildung des erfindungsgemäßen Verfahrens besteht darin, daß die Änderungsgeschwindigkeit des Sollwertes mit einem vorgegebenen positiven und einem vorgegebenen negativen Wert verglichen wird, daß bei Über-bzw. Unterschreiten der vorgegebenen Werte je ein Signal von je einer konstanten Dauer beginnt, und daß bei Koinzidenz der Signale die Begrenzung der Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes erfolgt.

Dabei ist es besonders vorteilhaft, wenn die Begrenzung der Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes nach einer Parabelfunktion erfolgt. Hierdurch wird ein Ruck bei schnellem erneuten Gasgeben vermieden, ohne jedoch den gesamten Anstieg allzu sehr zu verzögern. Dieses wird unabhängig vom genauen Zeitpunkt des erneuten Gasgebens dadurch erreicht, daß der Ablauf der Parabelfunktion durch einen Anstieg des vom Sollwertgeber abgegebenen Sollwertes gestartet wird.

Gemäß einer anderen Weiterbildung erfolgt ein Übergang auf die uneingeschränkte Zuführung des Sollwertes zum Stellglied dadurch, daß der Ablauf der Parabelfunktion nach einer vorgegebenen Zeit auch ohne Anstieg des Sollwertes gestartet wird.

Die Durchführung des erfindungsgemäßen Verfahrens ist mit verschiedenen Anordnungen möglich. So kann beispielsweise das erfindungsgemäße Verfahren mit einer sogenannten E-Gas-Anlage durchgeführt werden, bei welcher die Stellung des Gaspedals auf das Stellglied elektrisch übertragen wird. Das erfindungsgemäße Verfahren kann jedoch auch durchgeführt werden mit Anlagen, welche eine mechanische Verbindung zwischen Gaspedal und Stellglied vorsehen, in die jedoch ein Eingriff zur Begrenzung bzw. Reduzierung der Motorleistung auf elektrischem Weg erfolgt. In beiden Fällen kann eine fest verdrahtete Schaltungsanordnung oder ein entsprechend programmierter Mikroprozessor vorgesehen sein. Bei letzterem ergibt sich die Möglichkeit, Durchführung des erfindungsgemäßen Verfahrens neben anderen Steuerungs-bzw. Regelaufgaben von einem Mikroprozessor durchführen zu lassen.

Eine vorteilhafte Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens besteht darin, daß ein Anstiegsgeschwindkeitsbegrenzer zwischen den Sollwertgeber und das Stellglied geschaltet ist, daß der Anstiegsgeschwindkeitsbegrenzer über einen Steuersignaleingang verfügt, daß an den Sollwertgeber der Eingang eines Differenzierers ange-

15

30

schlossen ist, dessen Ausgang mit einem Fensterkomparator verbunden ist, daß der Fensterkomparator zwei Ausgänge aufweist, an welchen Signale in Abhängigkeit davon anstehen, ob die Eingangsspannung des Fensterkomparators eine positive Schwelle über-und eine negative Schwelle unterschreitet, daß die Ausgänge des Fensterkomparators jeweils über ein Zeitglied mit den Eingängen einer UND-schaltung verbunden sind, deren Ausgang über eine bistabile Schaltung, einen Integrator und einen Pulsbreitenmodulator an den Steuereingang des Anstiegsgeschwindkeitsbegrenzers angeschlossen ist. Dabei kann der Anstiegsgeschwindigkeitsbegrenzer einen weiteren Integrator umfassen.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Eins davon ist schematisch in der Zeichnung an Hand mehrerer Figuren dargestellt und nachfolgend beschrieben. Es zeigt:

Fig. 1 ein Diagramm, welches den Sollwert in Abhängigkeit von der Zeit darstellt,

Fig. 2 ein Blockschaltbild einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens und

Fig. 3 eine detailliertere Darstellung der Schaltungsanordnung nach Fig. 2.

Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen.

Fig. 1a) zeigt den zeitlichen Verlauf der Gaspedalstellung, einer die Gaspedalstellung auf das Stellglied übertragenden Steuerspannung sowie der Stellung des Stellgliedes, beispielsweise der Drosselklappe selbst. Die Steuerspannung stellt den Sollwert für die Drosselklappenstellung dar und wird von einem mit dem Gaspedal gekoppelten Sollwertgeber erzeugt. Es sind etwa zwei Perioden einer Bonanza-Schwingung dargestellt, wobei jeweils die Drosselklappe von der Leerlaufstellung in die Vollaststellung und wieder in die Leerlaufstellung bewegt wird, wo sie solange verbleibt, bis die nächste Periode anfängt.

An Hand von Figur 1b) wird das erfindungsgemäße Verfahren erläutert. Dabei wird angenommen, daß zum Zeitpunkt to sehr schnell Gas gegeben wird. Dieses ist durch die durchgezogene Tangente dargestellt, während die strichpunktierte Linie einen vorgegebenen Wert der Änderungsgeschwindigkeit des Sollwertes darstellt. Da bei dem dargestellten Beispiel die Änderungsgeschwindigkeit des Sollwertes S über dem vorgegebenen Wert liegt, wird ein in Fig. 1c) dargestellter Impuls ausgelöst, der bis zum Zeitpunkt to dangen danger.

Bei t, erfolgt ein schnelles Gaswegnehmen, so daß die Änderungsgeschwindigkeit des Sollwertes (durchgezogene Tangente) größer ist als der vorgegebene Wert (strichpunktierte Linie). Dadurch wird ein zweiter, in Fig. 1d) dargestellter Impuls ausgelöst. Solange der schnelle Abfall des Sollwer-

tes innerhalb der Zeit to bis to erfolgt, besteht zeitweise Koinzidenz zwischen den in Fig. 1c) und 1d) dargestellten Impulsen, was indirekt zu dem in Fig. 1e) gezeigten Impuls führt. Die Rückflanke dieses Impulses wird durch ein erneutes Gasgeben ausgelöst. Selbst wenn dieses erneute Gasgeben so plötzlich ist, wie es in Fig. 1b) durch die gestrichelte Linie dargestellt ist, wird an das Stellglied ein langsamerer Anstieg weitergeleitet. Dieser ist in in Fig. 1b) als durchgezogene Linie dargestellt.

Sollte bis t₃ kein erneutes Gasgeben auftreten, so wird die Anstlegsgeschwindigkeitsbegrenzung für den Sollwert aufgehoben, so daß wieder ein plötzliches Gasgeben möglich wird.

Bei der Anordnung nach Fig. 2 wird ein den Sollwert darstellendes Signal von einem mit einem Gaspedal 1 verbundenen Sollwertgeber 2 über einen Anstiegsgeschwindigkeitsbegrenzer 3 einer Steuerschaltung 4 zugeführt, welche entsprechend dem Sollwert eine Drosselklappe 5 eines nicht dar-Verbrennungsmotors gestellten steuert. Anstiegsgeschwindigkeitsbegrenzer 3 ist seiner Art nach ein Tiefpaß, welcher jedoch nur bei ansteigendem Sollwert und nur in Abhängigkeit von einer dem Eingang 6 zugeführten Steuerspannung wirksam ist. Ein Abfall des Sollwertes wird ohne Verzögerung übertragen, ebenso ein Anstieg, wenn am Eingang 6 eine entsprechende Steuerspannung anliegt.

Die Ausgangsspannung des Sollwertgebers wird ferner einem Differenzierer 7 zugeführt, dessen Ausgang mit einem Fensterkomparator 8 verbunden ist, der wiederum über zwei Ausgänge 9, 10 verfügt, die mit einem Eingang je einer monostabilen Kippschaltung 11, 12 verbunden sind. Je ein Ausgang der monostabilen Kippschaltungen 11, 12 ist an die Eingänge einer UND-Schaltung 13 angeschlossen.

Die Ausgangsspannung des Differenzierers 7 entspricht der Änderungsgeschwindigkeit des Sollwertes. Beim Durchtreten des Gaspedals 1 entsteht ein negativer Impuls, während ein Loslassen des Gaspedals einen positiven Impuls zur Folge hat. Je schneller die Bewegung des Gaspedals erfolgt, je größer sind die Amplituden der Impulse. Sind die Bewegungen schnell genug, so überschreitet die Amplitude des negativen Impulses eine im Fensterkomparator 8 vorhandene negative Schwelle, während eine positive Schwelle bei einem genügend plötzlichen Loslassen des Gaspedals unterschritten wird.

Mit Hilfe der Ausgangsimpulse des Fensterkomparators werden die beiden monostabilen Kippschaltungen 11, 12 in den instabilen Zustand gebracht, so daß an den Ausgängen die in Fig. 1c) und d) dargestellten Impulse anstehen, welche eine vorgegebene Breite aufweisen und mit ihren Anstiegsflanken vom Zeitpunkt des Auftretens der

50

jeweiligen Bewegung des Gaspedals abhängen. Dabei ist in einem bevorzugten Ausführungsbeispiel die Breite des Ausgangsimpulses der monostabilen Kippschaltung 11 etwa 200 ms, während der andere Ausgangsimpuls eine geringere Breite aufweist.

Durch die Verknüpfung beider Impulse mit Hilfe der UND-Schaltung 13 ergibt sich dann folgendes: Bei langsamen Bewegungen des Gaspedals werden die Schwellen im Fensterkomparator 8 nicht über-bzw. unterschritten, so daß dort keine Ausgangssignale auftreten. Erfolgt ein schnelles Durchtreten, wird die monostabile Kippschaltung 11 gesetzt. Wenn innerhalb der Dauer des Ausgangsimpulses der monostabilen Kippschaltung 11 das Gaspedal plötzlich zurückgenommen wird, wird auch innerhalb dieser Zeit die monostabile Kippschaltung 12 gesetzt, so daß für eine gewisse Zeit beide Impulse an den Eingängen der UND-Schaltung 13 anliegen und ein Ausgangsimpuls entsteht. Bei späterem plötzlichen Loslassen des Gaspedals ergibt sich keine Koinzidenz und somit auch keine Begrenzung der Anstiegsgeschwindigkeit des Sollwertes.

Das Ausgangssignal der Und-Schaltung 13 ist einem Setzeingang eines Flip-Flops 14 zugeführt, dessen Rücksetzeingang mit dem Ausgang des Differenzierers 7 verbunden ist. Das Ausgangssignal (Fig. 1e)) des Flip-Flops 14 steuert einen Integrator 15, dessen Ausgangssignal wiederum eine bei 16 zugeführte dreieckförmige Spannung mit Hilfe eines Pulsbreitenmodulators 17 moduliert. Die pulsbreitenmodulierten Impulse werden dem Anstiegsge-Steuereingang des schwindigkeitsbegrenzers 3 zugeführt. Wie im Zusammenhang mit Fig. 3 noch genauer erläutert wird, dient das Flip-Flop 14 dazu, die Schaltungsanordnung bei jedem Gasgeben, auch wenn es nicht so schnell erfolgt, daß eine Bonanza-Schwingung angeregt wird, in einen Ruhezustand zu versetzen. Lediglich für eine vorgegebene Zeit nach einem plötzlichen Gasgeben und kurz darauf erfolgtem plötzlichen Gaswegnehmen wird der Anstiegsgeschwindiakeitsbegrenzer 3 mit Hilfe des Integrators 15 und des Pulsbreitenmodulators 17 derart gesteuert, daß der Sollwert auch bei kurz danach erfolgendem plötzlichen Gasgeben langsam entsprechend einer vorgegebenen Funktion ansteigt.

Fig. 3 zeigt ein detaillierteres Schaltbild der in Fig. 2 als Blockschaltbild dargestellten Schaltungsanordnung. Der Eingang 21 ist mit dem Ausgang des Sollwertgebers 2 (Fig. 2) verbunden, während der Ausgang 22 an die Steuerschaltung 4 (Fig. 2) angeschlossen ist. Die Eingangsspannung wird dem invertierenden Eingang eines Operationsverstärkers 23 zugeführt, dessen Ausgang über einen Widerstand 24 mit positiver Betriebsspannung und über zwei Reihenschaltungen aus je ein-

er Diode 25, 26 und einem Widerstand 27, 28 mit dem invertierenden Eingang eines weiteren Operationsverstärkers 29 verbunden ist. In den von der Diode 26 und dem Widerstand 28 gebildeten Zweig ist ein Transistor 34 eingefügt, der über einen Widerstand 30 von einer bei 6 zugeführten Steuerspannung gesteuert wird.

Der Operationsverstärker 29 ist mit dem Kondensator 31 als Integrator geschaltet, wobei dem nichtinvertierenden Eingang über einen Spannungsteiler 32, 33 eine konstante Spannung zugeführt wird. Der Ausgang des Operationsverstärkers 29 bildet den Ausgang 22 und ist über einen Widerstand 36 mit Betriebsspannung und über einen Kondensator 35 mit Massepotential verbunden. Außerdem ist der nichtinvertierende Eingang des Operationsverstärkers 23 mit dem Ausgang des Operationsverstärkers 29 verbunden. Durch diese Gegenkopplung wird erreicht, daß der Ausgang 22 der Spannung am Eingang 21 folgt, wobei jedoch je nach Integrationszeitkonstante eine Verringerung der Änderungsgeschwindigkeit erfolgt. Die Schaltung ist nun derart ausgelegt, daß bei einem Abfall des Sollwertes die Ausgangsspannung derart schnell folgt, daß eine spürbare Verzögerung beim Gaswegnehmen nicht auftritt. Auch ein Anstieg des Sollwertes wird praktisch unverzögert übertragen, wenn der Transistor 34 leitend ist - also dem Eingang 6 eine Spannung zugeführt ist, welche kleiner als die Spannung am invertierenden Eingang des Operationsverstärkers 29 abzüglich der Basis-Emitter-Spannung des Transistors 34 und des Spannungsabfalls am Widerstand 30 ist.

Ist jedoch die bei 6 zugeführte Steuerspannung größer - beispielsweise U + - so ist der Transistor 34 gesperrt und die Spannung am Ausgang 22 bleibt trotz steigendem Sollwert stehen. Durch Zuführung eines pulsbreitenmodulierten Signals können Zwischenwerte für die Änderungsgeschwindigkeit der Ausgangsspannung eingestellt werden.

Der Differenzierer 7 (Fig. 2) wird in der Schaltungsanordnung nach Fig. 3 durch einen Operationsverstärker 41 gebildet, dessen invertierender Eingang über eine Reihenschaltung aus einem Widerstand 42 und einem Kondensator 43 mit dem Eingang 21 verbunden ist. Der nichtinvertierende Eingang erhält eine Spannung, die der Hälfte der positiven Betriebsspannung entspricht und mit Hilfe eines Spannungsteilers 44, 45 erzeugt wird. Ferner ist der Operationsverstärker 41 mit Hilfe eines Widerstandes 46 und eines Kondensators 47 gegengekoppelt. Am Ausgang des Operationsverstärkers 41 entsteht während eines Anstiegs des Sollwertes eine negative und während eines Abfalls eine positive Spannung, bezogen auf das Potential am nichtinvertierenden Eingang.

Die Amplitude ist um so höher, je schneller der

15

Abfall bzw. der Anstieg erfolgt. Die Operationsverstärker 51 und 52 bilden einen Fensterkomparator, wozu über einen Spannungsteiler 48, 49, 50 dem invertierenden Eingang des Operationsverstärkers 51 und dem nichtinvertierenden Eingang des Operationsverstärkers 52 verschieden hohe konstante Spannungen zugeführt werden. Der differenzierte Sollwert wird vom Ausgang des Operationsverstärkers 41 dem nichtinvertierenden Eingang des Operationsverstärkers 51 und dem invertierenden Eingang des Operationsverstärkers 52 zugeführt. Soweit im folgenden digitale Signale erwähnt werden, wie beispielsweise die Ausgangssignale des Fensterkomparators wird ein positiver Pegel mit H sowie ein negativer bzw. ein Massepegel mit L bezeichnet.

Operations-Die Ausangsspannung des verstärkers 52 nimmt den Pegel H an, sofern die Anstiegsgeschwindigkeit größer als der vorgegebene Wert ist. Fällt der Sollwert schneller als mit einer vorgegebenen Geschwindigkeit, so nimmt das Ausgangssignal des Operationsverstärkers 51 den Pegel H an. Mit diesen Signalen werden zwei monostabile Kippschaltungen in den instabilen Zudie bei dem dargestellten gesetzt, Ausführungsbeispiel mit Hilfe einer integrierten Schaltung vom Typ 45 28 verwirklicht sind. Mit Hilfe der RC-Glieder 54, 55 und 56, 57 wird die Dauer der an den Ausgängen Q1 und Q2 auftretenden Impulse festgelegt.

Ein Netzwerk aus den Widerständen 58, 59, 60 dient zusammen mit dem Operationsverstärker 61 und einem Spannungsteiler 62, 63 als UND-Schaltung 13 (Fig. 2). An die UND-Schaltung schließt sich ein Differenzierglied aus einem Kondensator 64 und einem Widerstand 65 an. Der somit differenzierte Impuls steuert über einen Widerstand 66 den nichtinvertierenden Eingang eines Operationsverstärkers 67 derart an, daß sein Ausgang den Pegel H annimmt, wodurch die Dîode 68 leitend wird und diesen Zustand aufrechterhält, wozu über einen Widerstand 69 Betriebsspannung zugeführt wird. Der invertierende Eingang des Operationsverstärkers 67 erhält über einen Spannungsteiler 70, 71 eine Vorspannung, die bei der halben Betriebsspannung liegt.

Der Operationsverstärker 67 erfüllt die Funktion eines Flip-Flops, das durch die zugeführten Impulse gesetzt wird. Ein Rücksetzen erfolgt durch einen weiteren Operationsverstärker 72, dessen invertierender Eingang über einen Spannungsteiler 73, 74 eine Vorspannung erhält und dessen nichtinvertierender Eingang mit dem differenzierten Sollwert beaufschlagt ist.

Die Operationsverstärker 67 und 72 haben sogenannte Open-collector-Ausgänge, wodurch bewirkt wird, daß an beiden gemeinsam nur dann der Pegel H ansteht, wenn beide Operationsverstärker

entsprechend angesteuert sind. Eine dem Pegel H entsprechende positive Spannung wird über den Widerstand 75 der Basis eines Transistors 76 zugeführt, dessen Emitter-Kollektor-Strecke in Reihe mit einem Widerstand 77 zwischen den invertierenden Eingang und den Ausgang eines Operationsverstärkers 78 geschaltet ist. Außerdem ist in diesem Gegenkopplungszweig eln Kondensator 79 angeordnet, so daß der Operationsverstärker 78 als Integrator arbeitet. Ein festes Potential wird über einen Spannungsteiler 80, 81 dem nichtinvertierenden Eingang zugeführt, während der invertierende Eingang über einen Widerstand 82 mit Massepotential verbunden ist.

Die Spannung am Ausgang des Integrators strebt bei nichtleitendem Transistor 34 einen Endwert an, der dem Spannungspotential der Versorgungsspannung entspricht. Wird dieser Endwert dem invertierenden Eingang des Operationsverstärkers 85 zugeführt und eine dreieckförmige Spannung dem nichtinvertierenden Eingang mit einem solchen Gleichspannungsanteil zugeleitet, daß die dreieckförmige Spannung ständig negativer als die Ausgangsspannung des Operationsverstärkers 78 ist, so ist der Transistor 34 leitend. Eine schnelle Änderung des dem Stellglied 5 (Fig. 2) zugeführten Sollwertes ist möglich.

Durch die Steuerung des Ausgangs des Operationsverstärkers 67 auf den Pegel H wird jedoch der Transistor 76 leitend und somit der Integrator auf einen bestimmten Anfangswert gesetzt. Dabei ist die Spannung am invertierenden Eingang des Operationsverstärkers 85 dauernd negativer als die dreieckförmige Spannung, so daß am Ausgang des Operationsverstärkers 85 ein Pegel H ansteht, der ein Sperren des Transistors 34 zur Folge hat.

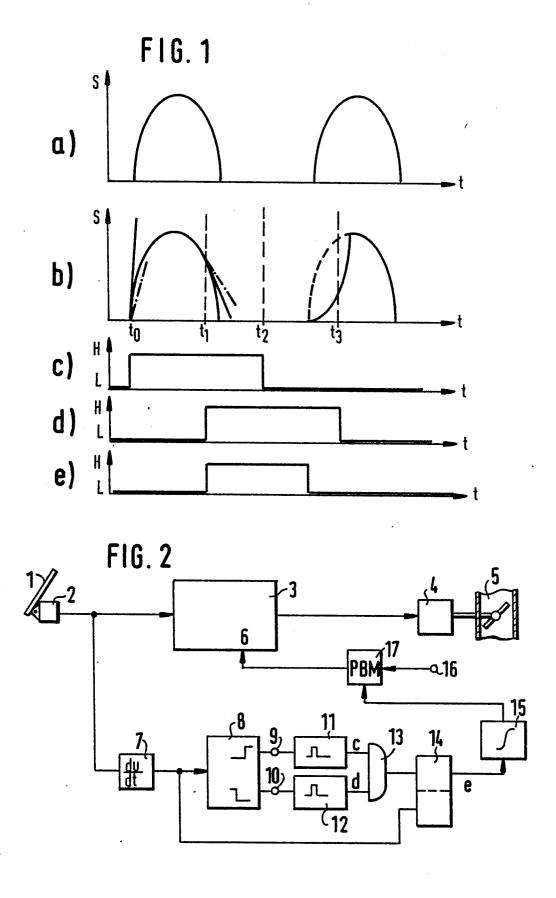
Bei dem darauf folgenden Gasgeben wird der Transistor 76 durch den Ausgangspegel L des Operationsverstärkers 72 in den nichtleitenden Zustand gesteuert, 'so daß die Ausgangsspannung des Integrators linear auf das größtmögliche positive Potential ansteigt. Dabei durchläuft sie den Spannungsbereich des dreieckförmigen Signals, so daß am Ausgang des Operationsverstärkers 85 Impulse entstehen, deren Breite zeitlinear größer wird. Die Periodendauer der dreieckförmigen Spannung ist klein gegenüber den übrigen Zeitkonstanten des Systems, so daß sich eine impulsförmige Steuerung des Transistors 34 lediglich kontinuierlich mit zunehmender Pulsbreite bemerkbar macht. Setzt man einen sprungartigen Anstieg der Spannung am Eingang 29 voraus, so wird aus dem zeitlinearen Anstieg der pulsbreitenförmigen Ansteuerung des Transistors 34 durch die Wirkung des Integrators, welcher durch den Operationsverstärker 29 gebildet wird, die in Fig. 1b) dargestellte parabelförmige Funktion. Die Anstlegsgeschwindigkeit des dem Stellglied zugeführten Soll-

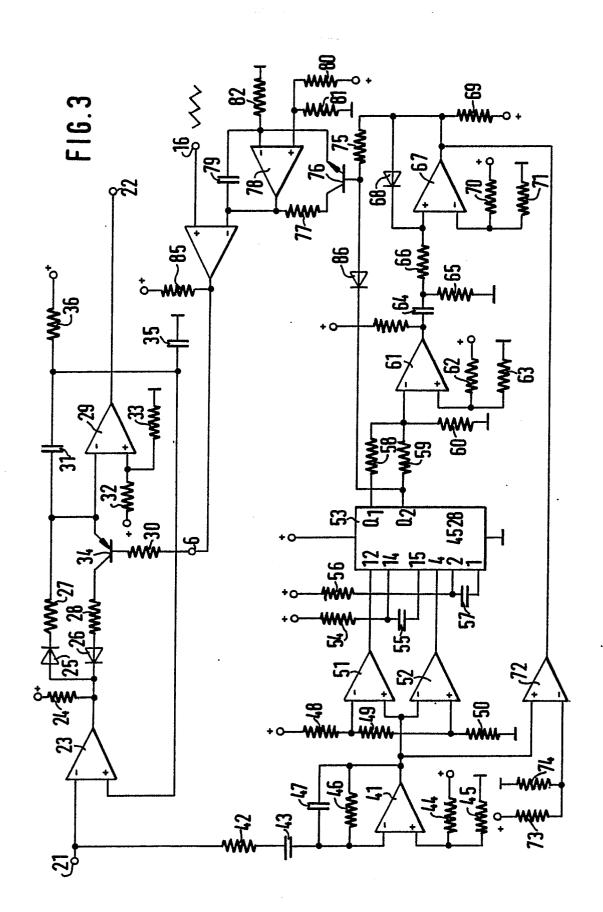
15

wertes wird also zunächst stärker und dann weniger begrenzt.

9

Durch die in Fig. 3 dargestellte Schaltung, insbesondere durch das Starten des Integrationsvorganges durch das Gasgeben selbst wird erreicht, daß die parabelförmige Begrenzung erst dann einsetzt, wenn Gas gegeben wird. Es wird also vermieden, daß beim Gasgeben (nach plötzlichem Gasgeben und Gaswegnehmen) ein Sprung im Ausgangssignal bzw. ein Sprung in der zeitlichen Änderung des Ausgangssignal auftritt, weil ein Übergang zwischen der unbeeinflußten Weiterleitung des Sollwertes und der Begrenzung der Anstiegsgeschwindigkeit bereits vor dem Gasgeben eingeleitet wurde.


Für den Fall, daß das erneute Gasgeben nicht unmittelbar nach dem plötzlichen Gasgeben und Gaswegnehmen auftritt, ist vorgesehen, daß über eine Diode 86, die zwischen den Ausgang Q2 der einen monostabilen Kippschaltung und die Basis des Transistors 76 geschaltet ist, der Integrationsvorgang auch dann ausgelöst wird, wenn innerhalb einer vorgegebenen Zeit kein erneutes Gasgeben erfolgt. Danach tritt dann keine Begrenzung der Anstiegsgeschwindigkeit ein, solange nicht durch plötzliches Gasgeben und kurz darauf erfolgtes Gaswegnehmen der Transistor 76 in den leitenden Zustand gesteuert und damit der Integrator auf den Anfangswert gesetzt wird.


Ansprüche

- 1. Verfahren zum Verhindern von Schwingungen des Kraftfahrzeugs mit einem Motor, einem die Leistung des Motors steuernden Stellglied und einem Sollwertgeber, dadurch gekennzeichnet, daß innerhalb einer vorgegebenen Zeit nach einem
- Anstieg des Sollwertes, welcher schneller als mit einer vorgegebenen Anstiegsgeschwindigkeit erfolgt, geprüft wird, ob ein Abfall des Sollwertes vorliegt, der schneller als mit einer vorgegebenen Abfallgeschwindigkeit erfolgt, und
- daß bei Vorliegen eines schnelleren Abfalls des Sollwertes die Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes vorübergehend begrenzt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
- daß die Änderungsgeschwindigkeit des Sollwertes mit einem vorgegebenen positiven und einem vorgegebenen negativen Wert verglichen wird,
- daß bei Über-bzw. Unterschreiten der vorgegebenen Werte je ein Signal von je einer konstanten Dauer beginnt, und
- daß bei Koinzidenz der Signale die Begrenzung der Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes erfolgt.

- 3. Verfahren nach einem der Ansprüche 1 oder 2, <u>dadurch</u> gekennzeichnet, daß die Begrenzung der Anstiegsgeschwindigkeit des dem Stellglied zugeführten Sollwertes nach einer Parabelfunktion erfolgt.
- 4. Verfahren nach Anspruch 3, <u>dadurch gekennzeichnet</u>, daß der Ablauf der Parabelfunktion durch einen Anstieg des vom Sollwertgeber abgegebenen Sollwertes gestartet wird.
- 5. Verfahren nach Anspruch 4, <u>dadurch gekennzeichnet</u>, daß der Ablauf der Parabelfunktion nach einer vorgegebenen Zeit auch ohne Anstieg des Sollwertes gestartet wird.
- 6. Schaltungsanordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
- daß ein Anstiegsgeschwindigkeitsbegrenzer (3) zwischen den Sollwertgeber (2) und das Stellglied (4, 5) geschaltet ist,
- daß der Anstiegsgeschwindigkeitsbegrenzer (3) über einen Steuersignaleingang (6) verfügt,
- daß an den Sollwertgeber (2) der Eingang eines Differenzierers (7) angeschlossen ist, dessen Ausgang mit einem Fensterkomparator (8) verbunden ist, daß der Fensterkomparator zwei Ausgänge (9, 10) aufweist, an welchen Signale in Abhängigkeit davon an stehen, ob die Eingangsspannung des Fensterkomparators (8) eine positive Schwelle über-und eine negative Schwelle unterschreitet,
- daß die Ausgänge (9, 10) des Fensterkomparators (8) jeweils über ein Zeitglied mit den Eingängen einer UND-Schaltung (13) verbunden sind, deren Ausgang über eine bistabile Schaltung (14), einen Integrator (15) und einen Pulsbreitenmodulator (17) an den Steuereingang (6) des Anstiegsgeschwindigkeitsbegrenzers (3) angeschlossen ist.
- 7. Schaltungsanordnung nach Anspruch 6, <u>dadurch</u> <u>gekennzeichnet</u>, daß der Anstiegsgeschwindigkeitsbegrenzer (3) einen weiteren Integrator (29, 31) umfaßt.

6

87 11 5558

	EINSCHLÄGI	GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokun der maßgebl	nents mit Angabe, soweit erforderlich, ichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Α	DE-A-2 839 478 (S * Seite 1, Zeile 1 17; Seite 6, Zeile 3; Anspruch 1; Fig	7 - Seite 5, Zeile 31 - Seite 7, Zeile	1,6	F 02 D 11/10 B 60 K 26/04
Α	GB-A-2 117 136 (PG-A-2 117 136	5-72; Ánsprüche	1,3,6	
A		F JAPAN, Band 8, Nr. . Mai 1984; & JP - A KOGYO) 20.01.1984	6	•
A		F JAPAN, Band 8, Nr. 26. September 1984; & (NISSAN JIDOSHA)	6	
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
		•		B 60 K
				F 02 D .
			·	-
į				
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche	.	Prifer
BE	ERLIN	20-05-1988	BEIT	NER M.J.J.B.

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument