Background of the Invention
1. Field of the Invention
[0001] This invention relates to packaging, and particularly to an improved package construction
using a pressure sensitive adhesive tape material to improve the opening characteristics
of a disposable gable-top container suitable for the packaging of liquids. More particularly,
this invention relates to a blank from which the container is formed.
2. Description of the Prior Art
[0002] Containers for beverages such as milk, fruit juices, and drinks are conventionally
constructed from blanks of thermoplastic coated paperboard. The most widely used of
such containers have a rectangular cross-sectional body surmounted by a gable-top
closure incorporating an extensible pouring spout. Blanks from which the containers
are constructed are divided into a plurality of panels which are adapted to form the
walls and closure members. The panels are formed and separated by score lines at which
the blank is folded. Particular panels are intended to be joined together in a lapped
arrangement in the completed container. Typically, those panels are pressed together
and heated or exposed to high frequency radiation to fuse the adjoining thermoplastic
surfaces and form a generally strong seal. To finally seal the filled container, two
or more panels are finally joined and sealed to form rib along the top edge of the
roof panels. Exemplary of such container blanks are those shown in Alden U.S. Patent
No. 2,750,095 and Wilcox U.S. Patent No. 3,245,603.
[0003] Containers of this type are opened for access to the contents by a two-step toggle
action process. First, the gable edges of "the roof panels at the front of the container
are pushed outward and upward toward the rear of the container by thumb pressure,
breaking the seal between the outside surfaces of the two lip panels, and breaking
the seal in the rib panels surmounting the roof above the pouring spout. The gable
edges are forced backward past the point at which the lip panels are joined, to nearly
tough the roof panels.
[0004] Second, the gable edges are pushed forward and inward. The second stage opening forces
are communicated through spout panels to the tip of the pouring spout, breaking the
seal between the lip panels and the underside of the roof panels and snapping the
spout outward to a pouring position.
[0005] The first step in the opening process primarily produces tension forces in the spout
panels, while the second step produces compression forces, and these forces are transmitted
over a greater distance. Thus, the second opening stage is more likely to result in
bent and crumpled spout panels.
[0006] In early models of gable-top containers, the panels comprising the lips, i.e. gable
rib panels of the pouring spout were bonded to the underside of the roof panels. The
resulting sealed spout was difficult to open, generally requiring insertion of a tool
behind the lips to separate them from the roof underside. The cardstock panels often
tore or delaminated, producing an unsightly and unsanitary container. In those cases
where an adhesive was applied to only those panels which were to be joined, it was
simple to eliminate adhesive from the spout panels to reduce the forces required to
open the spout. The resulting container, of course, was not effectively sealed and
was subject to leakage.
[0007] An improvement in gable-top containers to provide a hermetic seal for an extended
shelf life package consisted of coating the inner surface of the container blank with
a foil or other gas-impermeable layer and an overcovering layer of thermoplastic such
as polyethylene. The panels to be sealed are bonded by heating the thermoplastic surface
coatings to a softening or melting temperature, compressing the panels together and
cooling. The use of thermoplastic coatings or foil adds some stiffness to the panels,
and the container is made resistant to wicking by liquids. However, polyethylene has
a low modulus of elasticity, and the added stiffness is minimal. The strong thermoplastic
bonding of the lip panels results in buckling, tearing and delamination of the cardstock
upon opening the seal. Thus, the spout is difficult to open, and the opened panels
are unappealing in appearance.
[0008] As used in the food packaging industry, the term hermetic refers to a container designed
and intended to be secure against the entry of oxygen which degrades flavor. The term
is also used to designate containers used for aseptic filling and storage, i.e. containers
secure against the entry of microorganisms. The hermetic barrier of such cartons typically
comprises an aluminum or other barrier film coating the inner surface, overcovered
with a thermoplastic such as polyethylene. The carton wall thickness is thus increased,
requiring significantly greater forces to open the container, particularly in the
second step of the opening process. Attempts to provide an easily opened spout seal
for hermetically sealed and other gable-rib cartons have included (a) perforations
in the spout panels which tear open to expose pouring lips, (b) improved control of
the sealing temperature, (c) the use of added scoreline patterns to concentrate the
opening forces, and (d) the use of anti-adhesion agents, i.e. abhesive, to reduce
the required opening forces.
[0009] The use of perforations in the spout panels has generally been unsatisfactory. Such
perforations produce a spout of reduced size, which requires special sealing operations.
The perforations are considered by some to be a weak point in the carton, prone to
develop leaks. This type of carton spout requires external forces such as thumbnail
pressure to open, and this procedure is considered unsanitary. The carton cannot be
effectively closed, once opened, and shaking of the carton results in spillage.
[0010] Likewise, efforts to reduce temperature variations in the sealing process have not
produced a satisfactory hermetic sealing gable-top container. The desired adhesion
is obtained within a narrow range of temperature, and temperatures either higher or
lower may produce excessive or inadequate sealing. Variations in sealing persist in
spite of improved temperature control. Moreover, the required opening forces generally
exceed the panel strength, even where minimal sealing is achieved.
[0011] The use of novel scoreline patterns generally has not overcome the strong sealing
forces of well-sealed spouts and buckling of the spout panels is common.
[0012] One method for preventing the difficulty in opening the completely bonded lip panels
of polyethylene coated gable-top containers is shown in Crawford et al, U.S. Patent
No. 3,116,002. In this reference, a thin coating of a high molecular weight organo-siloxane
gum is applied to the lip panels as an abhesive, that is, to prevent permanent adhesion
to the panels in contact with the lip panels.
[0013] Egleston et al, U.S. Patent No. 3,270,940 discloses the use of an anti-adhesive composition
applied to both the outside and inside surfaces of the pouring lip of a gable-top
container. Abhesive agents disclosed include cellulose plastic laminated to polyethylene,
the latter heat-bondable to the polyethylene surface of the cardstock blank.
[0014] The release properties of abhesives are generally affected by the heat sealing parameters
and are inconsistent. Containers designed for hermetic use and having adhesives in
the spout sealing area often require opening forces greater than the wall strength
of the panels, and the spout panels buckle during the opening process.
Summary of the Invention
[0015] The present invention is directed to an improvement in the formation of a package
of paneled flexible material to stiffen the package material adjacent the sealed area
to be opened. The result is a more reliable, consistently openable opening for gaining
access to the contents. The flexible material may be cardstock plastic, or other material
with a thermoplastic inner surface coating which is sealed by elevated temperature
and pressure. The flexible material may include a gas-impermeable film or foil layer.
A blank of the package material with scoreline-defined panels is folded into the package
shape and overlying panels are sealed. A typical sealing process consists of heating
with hot air to a temperature which melts or fuses the thermoplastic surface coatings,
and compressing together the panels to be joined.
[0016] A container body is provided having sides, a top, and a bottom suitable for the packaging
of liquids. The container body in the illustrated embodiment includes a front body
panel, a back body panel and first and second side panels. Bottom closure panel means
is provided for closing the bottom of the gable-top container. Connected to the upper
edges of the first and second side panels are the first and second roof panels, respectively.
When assembled, the roof panels are oppositely disposed to converge upwardly, and
are connected at their top edges to form a gable roof. The front edges of the roof
panels have score lines defining subpanels which comprise first and second roof wing
panels. The wing panels form the rear portion of the pouring spout.
[0017] First and second opposed, substantially triangular end panels are connected to the
upper edges of the front and back body panels to extend upwardly therefrom. The first
triangular end panel, the first and second wing panels, and the panels listed below
comprise an extensible pouring spout connected to the top of the container body.
[0018] A first foldback panel is connected to the first roof wing panel and to one lateral
edge of the first triangular end panel. A second foldback panel is connected to the
second roof wing panel and to the other lateral edge of the first triangular end panel.
[0019] A third foldback panel is connected to the other end of the first roof panel and
to one lateral edge of the second triangular end panel. A fourth foldback panel is
connected to the other lateral edge of the second triangular end panel, and is adapted
to be connected to the second roof panel, opposite the second foldback panel.
[0020] First and second gable rib panels are connected to the upper edges of the first and
second foldback panels, respectively, and extend upwardly therefrom. These gable rib
panels are also connected to each other at a common line, and comprise lips of the
pouring spout from which the container contents are discharged.
[0021] Third and fourth gable rib panels are connected to the upper edges of the third and
fourth foldback panels, respectively, and extend upwardly therefrom.
[0022] First and second roof rib panels are connected to the upper edges of the first and
second roof panels, respectively, and extend upwardly therefrom. Each roof rib panel
is connected at one side thereof to one of the first and second gable rib panels.
[0023] First and second upper rib panels are connected to the upper edges of the first and
second roof rib panels, respectively, and extend upwardly therefrom.
[0024] At least one stiffening or reinforcement fillet overlays a portion of, and is bonded
to, the outer surface of at least one of the pouring spout panels. The fillet comprises
(a) a strip of material resistant to the container sealing process, i.e. it will not
melt, or otherwise degrade at the temperature and pressure of the sealing process,
and (b) a layer of adhesive bondingly attached to one side of the strip and to the
outer surface of the gable rib panel or panels overlain by the fillet.
[0025] The fillet stiffens the panels to which it is bonded, enabling higher applied opening
forces to be transferred to the common line connecting the gable rib panels of the
spout of the erected, sealed container, to open the seal.
[0026] The fillet extends along a major portion of the force transmission line between the
site where the second stage opening force is applied and the intersection of the gable
rib panels which receives the opening force. The fillet strengthens the panel to which
it is bonded, so that the force transmitted therethrough will break the spout seal
between the gable rib panels and roof rib panels before those panels fold, tear or
delaminate.
Brief Description of the Drawings
[0027]
Figure 1 is a perspective view of the upper end of a closed container formed from
a blank according to an embodiment of the present invention.
Figure 2 is a perspective view of the container end of Figure 1 with a partially opened
rib.
Figure 3 is a perspective view of the container end of Figure 1 with its sealed spout
rib fully open and the spout panels in the closed position.
Figure 4 is a perspective view of a portion of a stiffening fillet attached to a container
panel according to the present invention. The cross-section of the fillet and panel
are enlarged to show the laminar construction.
Figure 5 is a plan view of an embodiment of the container blank according to the invention.
Figure 6 is a cross-sectional view through the closed upper closure of one embodiment
of the invention, taken along line 6-6 of Figure 1.
Figure 7 is a cross-sectional view through the closed upper closure of a further embodiment
of the invention, taken along line 6-6 of Figure 1.
Figure 8 is a perspective view of a portion of a stiffening fillet attached to a container
panel according to a further embodiment of the invention, with the fillet and panel
enlarged in cross-section.
Figure 9 is a cross-sectional view through the closed upper closure of another embodiment
of the invention, taken along line 6-6 of Figure 1.
Figures 10 through 13 are plan views of a portion of the outer face of various embodiments
of the present invention.
Detailed Description
[0028] Referring now to the drawings, the invention is depicted with reference to a gable-top
container in which the invention is incorporated. A gable-top container is formed
from a blank of paperboad or other suitable material which may optionally be coated
on the inner planar surface and/or outer planar surface with a thermoplastic material.
The container blank is adapted to be folded along horizontal and vertical fold lines,
erected, and have certain panels sealed to each other by a container sealing process.
For thermoplastic coated container blanks, the sealing process typically consists
of compressing together the panels to be joined while those panels are at an elevated
temperature. Other alternative sealing processes may also be utilized, such as the
application of adhesive to the panels to be sealed.
[0029] FIG. 1 shows a typical container 1 in a closed, sealed condition as for storage of
beverages and the like. The container is self-sustaining in shape.
[0030] Container 1 is comprised of a series of panels, including a container body having
four body panels 2-5 which make up the body 28. Front body panel 4 and second side
body panel 5 are shown in FIG. 1, while rear body panel 2 and first side body panel
3, not shown, oppose panels 4 and 5, respectively, forming a container of rectangular
cross-section. Usually, the cross-section is square. The bottom of the container 1
is closed. First roof panel 31 is connected to the upper edge of first side panel
3. Second roof panel 32 is connected to the upper edge of second side panel 5. When
the container is in the closed condition, the roof panels 31 and 32 converge upwardly
to form a gable roof construction. Second roof rib panel 55 is attached to second
roof panel 32 and extends upwardly therefrom. Likewise, second upper rib panel 58
is attached to second roof rib panel 55 and extends upwardly therefrom.
[0031] In the same manner, first roof rib panel 54 is attached to first roof panel 31 and
extends upwardly therefrom. First upper rib panel 57 is attached to first roof rib
panel 54 and extends upwards therefrom.
[0032] First triangular end panel 29 is connected to the upper edge of the front body panel
4. When the container is closed, end panel 29 is folded under the gable roof formed
by the two roof panels. Also shown are first roof wing panel 38 and second roof wing
panel 39. The roof wing panels 38 and 39 are subpanels of roof panels 31 and 32, respectively.
A second triangular end panel, not shown in this figure, is usually adapted to remain
folded under the opposite gable roof, unless it is desired to open both gable ends
of the container.
[0033] FIG. 2 shows the container of FIG. 1 in which the spout has been partially opened.
The first and second foldback panels 41 and 42 and overlapping roof wing panels 38
and 39 are typically pushed outward and backward with thumb pressure to break the
seal between the inner surfaces of the first and second upper rib panels 57 and 58,
and between the outer surfaces of the first and second gable rib panels 46 and 47,
the latter panels not visible in this drawing. The gable rib panels 46 and 47 are
connected to the upper edge of foldback panels 41 and 42, and extend upwardly therefrom.
[0034] FIG. 3 shows the container at the point where foldback panels 41 and 42 have been
pushed backward about 90 degrees from their sealed position. These panels are roughly
triangular in shape, each having one edge defined by scoreline 34 or 35, where they
are attached to a lateral edge of first triangular end panel 29. First and second
gable rib panels 46 and 47 act as lips of the pouring spout, and meet at a common
gable rib score line 51. The upper terminus 52 of the common rib score line 51 at
the free edge 53 of the pouring lip comprises the tip of the pouring spout. First
and second upper rib panels 57 and 58 extend upwardly from the first and second roof
rib panels 54 and 55 to a level higher than the free upper edge 53 of gable rib panels
46 and 47.
[0035] To complete the unsealing and opening of container 1, foldback panels 41 and 42 are
pushed backward beyond the position shown in FIG. 3. The roof rib panels 54 and 55
and upper rib panels 57 and 58 will fold along foldline 60. The blank may or may not
be scored at that location.
[0036] When opened, the gable rib panels 46 and 47 are slightly longer than the unfolded
portion of the roof rib panels 54 and 55. After the panels are folded backward, a
subsequent forward and inward movement of wing panels 38 and 39, gable rib panels
46 and 47, roof rib panels 54 and 55, and upper rib panels 57 and 58 transmits opening
forces in a toggle-like action along the wing panels and gable rib panels and toward
the common line 51 between the gable rib panels. The forces further shorten the folded
portion of the roof rib panels 54 and 55. A component of the applied forces extends
outward and upward from line 51 and from end panel lateral edges 34 and 35 to pull
the gable rib panels 46 and 47 away from roof rib panels 54 and 55, the latter not
visible in FIG. 3, and to pull foldback panels 41 and 42 away from roof wing panels
38 and 39. Likewise, triangular end panel 29 is forced outward, and the distended
panels create a pouring spout. The various score lines delineating the panels act
as hinges for the panels as they are unfolded.
[0037] The force required to distend the spout in this fashion may be calculated theoretically.
If the gable rib panels are looked upon as a beam which is to be buckled in the center,
the force P required for bucking to occur may be described as:
P= CEI/(L²)
where:
C = (pi²) = 9.87 for hinged ends.
E = modulus of elasticity of beam.
I = moment of inertia of the beam.
I = bh³/12 where b = width and h = thickness of the beam.
and L = length of the beam.
Analysis of the opening forces is complex. In general however, the gable rib panels,
foldback panels, and roof rib panels must be relatively stiff to prevent the panels
from crumpling, and to transmit the applied opening forces to common line 51. The
sealing forces which bond the gable rib panels to the roof rib panels are preferably
only as high as required to maintain the desired seal. A nominal liquid-tight seal
common in milk cartons may be achieved with minimal or no bonding of gable rib panels
to roof rib panels, while a hermetic seal requires relatively highly strength bonding
over the continuous panel interface.
[0038] High bonding forces between the gable rib panels and the roof rib panels will require
greater stiffness in the spout panels to prevent buckling of the panels during the
opening process.
[0039] The features of this invention will produce an openable container spout seal, regardless
of whether the seal is merely liquid-tight or is hermetic, i.e., gas-tight. As illustrated
in FIG. 3, one or more fillets 56 overlie a portion of one or both of the gable rib
panels 46 and 47. The construction of fillet 56 is further described in reference
to FIG. 4.
[0040] As shown in an enlarged perspective sectional view in FIG. 4, each fillet 56 comprises
a stiffening strip 61 and an adhesive layer 62 by which the strip is attached to the
outside surface 63 of a portion of one of the pouring spout panels, such as gable
rib panels 46 and 47 as shown. In this embodiment, one surface 69 of strip 61 remains
free of adhesive. When the container spout is closed, surface 69 on one gable rib
panel abuts surface 69 on the other gable rib panel. The bond between the two surfaces
69 may be weak or strong, but in any case is less than the strong bond created by
the layer 62 of adhesive which bonds the strip or strips 61 to the respective gable
rib panels.
[0041] FIG. 5 illustrates an exemplary flat sheet material blank of this invention for constructing
a gable-top container. The outer surface or face is shown, and it may be coated with
a thermoplastic such as polyethylene. The inner surface may also be similarly coated.
The sheet material may include a gas impermeable layer such as aluminum foil. An appropriate
pattern of score lines divides blank 1A into a plurality of panels and sub-panels
which are used as walls of the container and its closure parts when the container
is erected.
[0042] The central portion of blank 1A comprises a body 28 with four body panels 2, 3, 4,
and 5, having their lower edges along bottom score line 13, and their upper edges
along top score line 33. These transverse score lines are shown as extending from
blank edge 6 to opposite blank edge 12 in substantially parallel relationship across
the face of the blank. Vertical score lines 7, 8 and 9 transect the blank to define
the lateral edges of the body panels 2, 3, 4 and 5, and other panels above the body
panels. These and other score lines are not necessarily straight, but may be slightly
offset in certain sectors of the blank to improve the fit of the various panels in
the erected container.
[0043] In the example shown in FIG. 5, side seam flap 11 is connected to one lateral edge
10 of a body member for sealing to the edge of another body member 2 by the container
sealing process. Bottom closure means 26 is shown as a group of bottom closure panels
14 through 21 attached to the body members along bottom score line 13, and extending
downward therefrom. Bottom closure score lines 22 through 25 enable bottom closure
panels 14, 16, and 18-21 to be folded under closure panels 15 and 17 and sealed to
provide a leakproof container bottom. Such a closure means is well-known in the art.
A separately formed structure may alternatively be used to close the bottom of the
container. In fact, any closure means which results in a satisfactorily tight seal
may be used.
[0044] The gable top of the container is formed from a series of panels above top score
line 33. First and second roof panels 31 and 32 are connected to the upper edges of
the first and second side panels 3 and 5, respectively. The roof panels are oppositely
disposed and when erected, converge upwardly to meet along score line 45 to form a
gable roof. Connected to the upper edge of the front panel 4 is a first substantially
triangular end panel 29 whose two lateral edges 34 and 35 formed by score lines extend
upwardly to score line 45. Similarly, second triangular end panel 30 is connected
to the upper edge of back panel 2, and has lateral edges 36 and 37 which extend upwardly
to score line 45.
[0045] On each side of triangular end panel 29 is a foldback panel. First foldback panel
41 is connected to triangular end panel 29 along edge 34, and to first roof wing panel
38 along score line 8. Panel 41 has score line 45 as its upper edge. Similarly, second
foldback panel 42 is connected to triangular end panel 29 along edge 35, and to second
roof wing panel 39 along score line 9. It has score line 45 as its upper edge.
[0046] Similarly, third and fourth foldback panels 43 and 44 are connected to triangular
end panel 30 along lateral edges 37 and 36, respectively. When the carton is erected,
the fourth foldback panel 44 is attached to the second roof panel 32 by flap 11. Edge
6 is then generally continuous with scoreline 10. The third foldback panel 43 is connected
to the first roof panel 31 along scoreline 7.
[0047] Attached to the upper edge of each foldback panel 41, 42, 43 and 44 along score line
45 is a gable rib panel 46, 47, 48 and 49, respectively. Similarly, attached to the
upper edge of first and second roof panels 31 and 32 are first and second roof rib
panels 54 and 55, respectively. First and second gable rib panels 46 and 47 are connected
to each other at a common score line 51, and third and fourth gable rib panels 48
and 49 are connected to each other at common score line 50. The uppermost end 52 of
line 51 is the tip of the pouring spout of the erected container.
[0048] First gable rib panel 46 is connected to first roof rib panel 54 at score line 8,
and second gable rib panel 47 is connected to second roof rib panel 55 at score line
9.
[0049] First roof wing panel 38 comprises a triangular portion of first roof panel 31 defined
by score lines 40 45 and 8, and is adjacent first foldback panel 41. Second roof wing
panel 39 comprises a triangular portion of second roof panel 32, and is defined by
score lines 40, 45 and 9. Panel 39 is adjacent second foldback panel 42. These roof
wing panels are more or less coextensive with the adjacent foldback panel when the
erected container is closed.
[0050] A first upper rib panel 57 is connected to the upper edge of the first roof rib panel
54. Likewise, a second upper rib panel 58 is connected to the upper edge of the second
roof rib panel 55. The score line 9 separates the upper rib panels from the adjacent
roof rib panels, and is substantially continuous with the free upper edge 53 of the
first and second gable rib panels 46 and 47. The latter panels serve as lips of the
pouring spout of the erected container.
[0051] The score lines may be applied to blank 1A before or after an optional thermoplastic
coating is applied to the blank. The score lines may be applied to either surface
or both surfaces of the blank. For purposes of clearer delineation of the various
panels, score lines are shown in the drawings on either or both of the inner and outer
surfaces of the blank and container.
[0052] In the embodiment shown in FIG. 5, a single stiffening fillet 56 overlies portions
of the first and second gable rib panels 46 and 47. Fillet 56 comprises a strip 61
of stiff material having a layer 62 of adhesive on one surface, by which the strip
is bondingly attached to the outer surface 63 of the gable rib panels 46 and 47. Strip
61 may be formed from any solid material which is resistant to deleterious effects
of the container sealing process, and is sufficiently rigid so that, together with
adhesive layer 62, it provides sufficient strength to reinforce the panel to achieve
the necessary stiffness. Thus, for some containers, the modulus of elasticity of strip
61 must be at least 100,000 psi (0.7 × 10⁸ kg/m²), and is preferably at least 200,000
psi (1.4 × 10⁸ kg/m²). For hermetic sealing cartons and other containers with relatively
heavy gauge walls, the modulus of the strip is preferably at least 400,000 psi (2.8
× 10⁸ kg/m²).
[0053] Strip 61 must not melt, or otherwise degrade at the conditions, e.g., elevated temperature
and pressure, of the container sealing process. Of course, a container sealing process
of significant compression of the panels at an elevated temperature my tend to increase
the area of intimate contact and relieve elastic stresses, causing adhesion of the
abutting strip surfaces 69, or adhesion of strip surface 69 to the panel outer surface
63 if fillet 56 is present on only one of the gable rib panels 46 or 47. The bond
strength of this pressure-produced adhesion will, however, be significantly less than
the bond strength of the adhesive layer 62 which bonds strip 61 to the gable rib panel
46 or 47.
[0054] Material such as metallic foil, polyester film, and polycarbonate film are examples
of strip materials which are unaffected by the temperatures used for sealing panels
coated with polyethylene, and have a sufficiently high modulus of elasticity. Thermoplastic
coatings like polyethylene are typically sealed at temperatures of 250 to 400°F (81
and 205°C). In one preferred embodiment of the invention, the material of the strip
is unoriented polypropylane, such as that utilized as a film backing in a pressure
sensitive adhesive tape marketed under the trademark "Y-8450" by Minnesota Mining
and Manufacturing Company of St. Paul, Minnesota. A fillet constructed of unoriented
polypropylene exhibits several advantages over strips constructed of other materials.
Specifically, unoriented polypropylene has a lower modulus of elasticity than polyester
(i.e. as low as 0.2 × 10⁶psi). Therefore, a more compliant strip may be constructed
which is better able to conform to the scorelines between the pouring spout panels.
Thus, a notch, such as is shown in Figures 9, 10 and 12 and discussed hereinafter,
is not required. This simplifies the process of positioning and aligning the fillet
on the panels. The optmium temperature range per bonding the unoriented polypropylene
strip is 260° - 320°F. Unoriented polypropylene is the preferred material for the
strip in that it is dimensionally stable, even when subjected to the elevated temperatures
and pressures experienced when a container is sealed. Oriented polypropylene, although
having increased tensive strength, has a tendency to return to its unoriented state
when exposed to temperatures (i.e., 180°-200°F) below the sealing temperatures. This
distortion of oriented polypropylene results in buckling and separation of the polypropylene
from a mounting surface.
[0055] The strip 61 and adhesive layer 62 may be preformed as a tape which is applied by
machine to the blank 1A.
[0056] Neither strip 61 or adhesive layer 62 has direct contact with the container contents,
so governmental approval for the materials from which the fillet components are fabricated
may not generally be required. Nevertheless, strip materials and adhesives approved
for food contact are available.
[0057] The stiffness of the fillet 56 must be such that the panel with the attached fillet
has greater stiffness than a panel without the fillet. Expressed in another way, the
fillet 56 must enable the panel 46 and/or 47 to carry and transfer a greater longitudinal
force to open the container. This relationship may be expressed as follows:
E₂>E₁(h₁)³/(h₂)³
where:
E₁ = modulus of elasticity of panel.
E₂ = modulus of elasticity of panel + fillet.
h₁ = thickness of panel.
h₂ = thickness of panel + fillet.
For hermetic sealing containers, it is preferred that E₂ be greater than 0.2 × 10⁶
pounds per square inch (1.406 × 10⁸ kg per square meter) to provide the desired stiffness.
The thickness of the panel or panel plus fillet affects the resistance to buckling
and bending. The adhesive is important in rigidity spacing strip 61 from the panel
surface to provide the necessary effective thickness of the panel and fillet. The
adhesive used may be sealable by pressure, heat, or other process, but is preferably
a pressure-sensitive adhesive whose bonding strength is increased by the container
sealing process.
[0058] FIG. 6 is an enlarged cross-sectional view through the rib portion of a container
formed from this invention, showing the panel members and fillet exaggerated in thickness
for the sake of clarity. It is understood that all of the panel members shown may
include a thermoplastic coating on at least one of the blank surfaces, and preferably
on both the inner and outer surfaces. Additionally, the panel members may include
a film or foil of gas-impermeable material such as aluminum, overcovered by the thermoplastic
coating.
[0059] First and second roof rib panels 54 and 55 overlie first and second gable rib panels
46 and 47. The gable rib panels 46 and 47 are separated from foldback panels 41 and
42 by scorelines 45, and the roof rib panels 54 and 55 are likewise separated from
roof wing panels 38 and 39 by scorelines 45. Upper rib panels 57 and 58 are separated
by score line 59 from the roof rib panels 54 and 55, and extend upwardly therefrom.
Each of the panels shown in the figure may include a coating of thermoplastic on at
least one of the surfaces. Stiffening fillet 56 is shown attached to the outer face
63 of gable rib panels 46 and 47. The fillet includes resistant strip 66 and adhesive
layer 72, so that when the container is closed and sealed, as shown here, the surfaces
69 of the folded strip 61 form a strip-strip interface 64 with an intervening adhesive.
[0060] Fillet 56 may comprises a tape having a relatively thick backing or strip 61 of a
stiff material whose bond to itself is weaker than its bond to adhesive layer 62.
The adhesive layer 62 may be thermoplastic in nature, but preferably is a pressure-sensitive
adhesive. The latter affords easier positioning during application to the blank 1A,
and does not require the application of heat for positioning. However, the thermal
carton sealing process has been found to significantly enhance the sealing strength
of the pressure-sensitive adhesives (PSA's) which were tested.
[0061] In FIG. 6, the container contents occupy the space between panel 38 and panel 41,
and the space between panel 39 and panel 42. The spout seal interface 65 between gable
rib panels 46, 47 and respective roof rib panels 54, 55 may include an adhesive layer,
if bonding of the panels is not desirable. In other cases, such as in hermetic seals,
these panels are bonded by fusing of the thermoplastic coating on the panels, by adding
adhesives, or by other means. If the panels are bonded tightly along interface 65,
the force required to break the seal and open the container spout may be considerably
greater than the gable rib panels can transfer. Use of the fillet enhances the force
carrying capability of the gable rib panels to provide an openable container.
[0062] When the first sealing process is thermal in nature, the upper rib panels, the gable
rib panels, and the roof rib panels are heated to the softening or melting point of
the thermoplastic coating, and compressed together as shown in FIG. 6. The upper rib
panels are bonded on their inner surfaces at interface 67, providing the major bonding
to maintain the integrity of the gable top during handling and storage.
[0063] The adhesion of strip 61 to the pouring spout panels such as gable rib panels 46
and/or 47 should preferably produce a peel strength greater than 50 oz. per inch of
width (612 grams per cm width) at room temperature, so that the fillet will remain
an integral part of the panel to which it is attached, both before and after the spout
panels are unsealed and unfolded.
[0064] The thickness of both the strip 61 and the adhesive layer 62 will depend upon the
force which must be transferred by the gable rib panels, the modulus of elasticity
of the strip, and to a lesser extent, the adhesive properties. The same resistance
to buckling can be achieved with various combinations of adhesive thickness, strip
thickness, strip material and type of adhesive. For example, when a polyester strip
is used, a strip thickness of 0.001-0.004 inch (0.0025-0.01 cm) is generally desirable,
and an adhesive layer of the same range of thickness may be optimal for achieving
the desired additional stiffness. A fillet adhesive layer of about 0.002 inch (0.005
cm) has proven optimal for certain pressure-sensitive adhesives used in fillets to
reinforce polyethylene coated containers. With other adhesives, a thickness of up
to 0.004 inch (0.0102 cm) may be used. Even monomolecular layers of adhesives may
be used in the fillet. However, for strips constructed of unoriented polypropylene,
an adhesive layer having a thickness of approximately 0.003 inches (0.008 cm) has
been found to be preferred.
[0065] FIG. 7 shows a cross-section through another embodiment of this invention. This embodiment
differs from that of FIG. 6 in that the fillet 56 not only overcovers a portion of
the gable rib panels 46 and 47, but also extends downward to overcover portions of
the outside surfaces 66 of the foldback panels 41 and 42. Such downward extension
adds stiffness to the entire spout, strengthening the gable rib panels 46 and 47.
Furthermore, in a thermal container sealing process, the temperature of the foldback
panels is not as high as that of the gable rib panels, and fillet 56 will not slip
from its proper position. Some pressure-sensitive adhesive materials tend to hold
the strip less tightly when they are heated to a temperature of 250-400°F (81-205°C).
[0066] FIGS. 8 and 9 depict a modification of the invention in which a secondary layer 70
of adhesive overcovers surface 69 of strip 61. The panel 46, adhesive layers 62 and
70, and strip 61 are shown with exaggerated thickness for clarity. The secondary adhesive
may be pressure-sensitive or activated by the container sealing process, e.g., elevated
temperature. The bond strength of the secondary layer 70 is substantially less than
the bond strength of the primary adhesive layer 62. Thus, in FIG 8, strip 61 is shown
fixedly attached to the outer surface 63 of gable rib panel 46 by adhesive layer 62.
Secondary adhesive layer 70 overcovers the opposite surface of strip 61. When the
container gable top is folded for closure, the mirror image fillets 56 on each of
the gable rib panels 46 and 47 abut one another. The secondary adhesive layers 70
become joined, so that the outer surfaces 63 of the gable rib panels are sealed together.
[0067] FIG. 9 shows an exaggerated section through the rib portion of a closed and sealed
container according to this embodiment. Roof wing panels 38, 39, foldback panels 41,
42, roof rib panels 54, 55, gable rib panels 46, 47, and upper rib panels 57, 58 are
shown in the same manner as in FIGS. 6 and 7. A fillet 56 comprising strip 61, adhesive
layer 62, and secondary adhesive layer 70 is attached to the outside surface 63 of
each of the gable rib panels 46, 47. In this sealed condition, the two secondary layers
70 become joined to effectively form a single layer 71. Layer 71 may be adapted to
delaminate within the layer itself, or to peel from one of the strip surfaces 69.
The bond strength of layer 71 is substantially less than that of adhesive layer 62,
so that the fillet or fillets 56 remain firmly attached to the gable rib panels 46,
47 during the use of the container.
[0068] If desired, the fillet or fillets 56 may extend downwardly to over-cover portions
of foldback panels 41 and 42 in a manner similar to that previously shown in FIG.
7.
[0069] An advantage of this embodiment is that the secondary bonding strength can be varied
over a wide range to achieve the desired first stage opening force requirement. The
bonding strength may range from essentially zero up to a strength slightly less than
the strength of the gable rib panels 46 and 47.
[0070] FIGS. 10 through 13 show a portion of the blank 1A, including those panels which
become the pouring spout. These figures depict various embodiments of fillet 56 in
terms of the particular panel area or areas covered thereby. Each figure shows panels
3-5, 29, 31-32, 38-39, 41-42, 46-47, 54-55, and 57-58, with one or more fillets 56
attached to the gable rib panels 46, 47.
[0071] In FIG. 10, a single fillet 56 overcovers all or a portion of both gable rib panels
46 and 47. The upper edge 72 of fillet 56 is shown as generally continuous with the
upper free edge 53 of the gable rib panels, but it may be spaced therefrom, either
upward or downward. Preferably, upper edge 72 does not extend above free edge 53 by
more than 0.15 inch (0.38 cm). When the gable rib panels are coated with thermoplastic,
a fillet covering all of the panels effectively removes the adhesive effect of the
thermoplastic upon the required first stage opening force. When the upper edge 72
of fillet 56 is lower than free edge 53 by more than 0.3 inches (0.76 cm), an excessive
sealing area for the thermoplastic carton sealing process may result. This produces
a strong seal which may require an excessive opening force to break the seal.
[0072] When the fillet or fillets 56 are adhesively attached to both gable rib panels 46
and 47, and the upper edge 72 of the fillets extend above the upper free edge 53 of
the gable rib panels, the exposed portion of adhesive layers 62 will become bonded
to the roof rib panels 54 and 55. Therefore, it is generally desirable to limit such
upward extension of the fillet or fillets 56 above the gable rib panels 46 and 47
to not more than 0.15 inches (0.38 cm), unless the adhesive of layer 62 has a relatively
low bonding strength. High bond strength in layer 62 may result in tearing or delamination
of the roof rib panels 54 and 55.
[0073] Each end of the fillet 56 may be spaced from scorelines 8 and 9, if desired.
[0074] FIG. 11 illustrates a blank with two fillets 56 overcovering a portion of the gable
rib panels 46 and 47. Each fillet 56 is spaced from scoreline 51. This spacing 73
permits the gable rib panels 46, 47 to more readily fold along scoreline 51 when the
container is closed and sealed. In order to transfer the required opening forces to
scoreline 51, however, spacing 73 must be reasonably limited. Thus, for a half-gallon
container with gable rib panels 46, 47 or 1.5-2.0 inches length, fillet 56 must not
be spaced from scoreline 51 by more than 0.6 inches (1.5 cm). Preferably, the spacing.
73 between score line 51 and fillet 55 is no more than 0.3 inches (0.76 cm).
[0075] Fillet 56 may also extend downwardly to overlie an upper portion of foldback panels
41 and 42. Furthermore, this downward extension may overcover an upper portion of
first triangular end panel 29. This mode is illustrated in both FIGS. 12 and 13.
[0076] The advantage of this downward extension is evident when the container sealing process
is one which affects the bonding strength of the fillet adhesive layer 62. In common
heat sealing processes used to seal polyethylene coated blanks, heat is directly applied
to the panels to be sealed, i.e., the rib panels. Panels below the rib panels are
only incidentally heated and attain a considerably lower temperature. The sealing
temperature is difficult to accurately control, and if the fillet adhesive layer 62
softens excessively, the fillet strip 61 may slide downward, not retaining its proper
alignment on the gable rib panel or panels 46 and 47. The portion of the fillet 56
below the gable rib panels will be much less affected because of the lower temperature,
and will maintain the desired original position of the fillet. The adhesion of adhesive
layer 62 is regained upon cooling.
[0077] FIG. 12 shows the fillet as overlying score line intersection 74 at the top of triangular
end panel 29, and extending downward to overcover portions of the foldback panels
41, 42 and triangular end panel 29.
[0078] It has been discovered that enhanced sealing results from slotting the fillet 56
where it overcovers the common gable rib scoreline 51. Thus, in FIG. 13, fillet 56
includes a slot 75 extending downwardly from the upper edge 72 of the fillet, along
at least a portion of the common line 51. This enables easier folding of the gable
rib panels 46, 47, without distortion along line 51. The notch may optionally extend
downwardly to expose intersection 74, or may extend downward as a slot through the
fillet to divide it into two fillets. When a notch or slot exposes the common line
51, the edge of the fillet strip is preferably separated form a portion of the common
line by no more than 0.3 inches (0.76 cm). When there are two fillets, each overcovering
a portion of one of the gable rib panels, the maximum spacing of each fillet from
common line 51 is also preferably 0.3 inches (0.76 cm). A greater spacing may result
in insufficient stiffening of the panels in the vicinity of common line 51.
EXAMPLE 1
[0079] Commercial hermetically sealed 0.5 gallon (1.9 liter) gable-top containers were manually
opened. After folding back the wing panels, simple forward hand pressure on the roof
rib panels resulted in buckling and distortion of the gable rib panels, without opening
the tip of the spout at the common fold line. In all cases, insertion of a knife blade
between the gable rib panels and roof rib panels near the common fold line was required
to open the spout.
[0080] Container blanks of the same material were sealed by hand, using a Liquipak™ model
010 hand sealer. Attempts to open the containers produced the same results as were
obtained with the commercially sealed containers. An applied force of 15 pounds-force
(6.8 kg-force) resulted in tearing and buckling of the panels, without opening the
spout.
[0081] The opening force required by a previously opened hermetically sealed carton was
determined to be abut 2.6 pounds-force (1.2 kg-force).
[0082] For the sake of comparison, a common milk carton opened from the sealed condition
with an applied force of about 3.0 pound-force (1.36 kg-force), without tearing of
the spout panels. This carton is sealed only to the extent of preventing liquid leaks,
and a hermetic barrier is not provided.
EXAMPLE 2
[0083] Several types of fillet were applied to polyethylene coated cardstock for determining
the effect upon panel stiffness and ease of container opening.
[0084] The container material was manufactured by International Paper Company for hermetically
sealed cartons, and comprised paperboard having an aluminum film bonded to the inside
surface, and both sides then coated with thermoplastic polyethylene.
[0085] The types of adhesive used in the fillets included (a) ethylene-vinyl acetate (EVA)
copolymer, (b) medium density polyethylene (MDPE), and (c) a pressure-sensitive adhesive
(PSA).
[0086] The modulus of elasticity was determined by measuring the deflection caused by a
weight placed on the center of a simple beam formed from the cardstock. Measurements
were made on the cardstock itself, on a pair of gable rib panels from a blank, and
from the entire outer spout assembly comprising the gable rib panels, triangular end
panel, and foldback panels. The formula used to calculate the modulus was:
E = fL³/4ba³Y
where
E = modulus of elasticity.
f = force applied, 0.11 pound (50 g) for most tests.
a = thickness of beam.
b = width of beam, 1.0 inch (2.54 cm).
Y = deflection, inches (cm).
L = length of beam = 3.7 inches (9.4 cm).
The results were as follows:

[0087] The results indicate that the modulus of elasticity is approximately the same, i.e.,
0.4 × 10⁶ psi (2.8 × 10⁸ kg/m²) for preflexed panels, either with or without the added
fillet.
[0088] Buckling forces were calculated from the data of Table 2 using
P
crit = CEh³b/12L²,
where
P
crit is the forward-directed force merely required to open the preflexed spout from a
closed but unsealed condition, 1b-force;
C is pi²,
E is the modulus of elasticity, approximately 0.4 × 10⁶ psi;
h is thickness, 0.027 inches (0.069 cm);
b is width, 1.0 inch (2.54 cm); and
L is length, 3.7 inches (9.40).
The calculated force required to open the unsealed spout of unreinforced cardstock
was 0.5 pounds (0.23 kg.).
[0089] The force carried by both of the unreinforced gable rib panels prior to buckling
was calculated to be 1.9 pounds (0.86 kg.), using L = 1.85 inches. This leaves 1.9
- 0.5 = 1.4 pounds (0.64 kg.) of force for breaking the bond at the tip of the spout.
[0090] Reinforcement of the gable rib panels with a 0.002 inch (0.005 cm) thick polyester
strip and 0.002 inch (0.005 cm) layer of PSA adhesive provided a higher calculated
available force of 2.9 - 0.5 = 2.4 pounds for breaking the bond at the spout tip.
In this case, the net panel thickness was 0.031 inches (0.079 cm.).
[0091] Reinforcing the gable rib panels with 0.004 inch (0.010 cm) thick polyester and a
0.002 inch (0.005 cm) layer 62 of EVA adhesive provided a calculated available force
of 4.6-0.5 = 4.1 pounds (2.09 kg.) for breaking the bond at the spout tip. In this
case, the net panel thickness was 0.036 inches (0.142 cm). Thus, as a thicker, stiffer
reinforcement strip is added, the ability to transfer applied forward-directed opening
forces for opening the spout tip greatly increases.
[0092] Measurements were made of the force required to open a previously opened gable top
hermetic sealing carton, using a spring gauge. The average measured force of 2.4 pounds
(1.09 kg.) included the force required to buckle the extreme tip of the unreinforced
spout, that is, the common fold line of the gable rib panels. Thus, the calculated
value of the force transmitted by the unreinforced spout panels is only 1.9 pounds
(0.86 kg.), nearly equal to the measured force of 2.4 pounds (1.09 kg) required to
open the previously opened carton. This demonstrates that the greater joint strength
of a sealed spout will result in buckling of the cardstock when opening forces are
applied to the spout panels. On the other hand, when the gable rib panels were reinforced
with a fillet according to this invention, the added stiffness provided an available
opening force greater than 2.4 pounds to the common fold line, and the containers
were opened without buckling or delamination of the panels.
[0093] With polyethylene coated blanks made for hermetic sealing, and similar gable top
containers, ease of second stage opening will be enhanced by (a) an increase in gable
rib area covered by the fillet, (b) fillets of greater stiffness, (c) slotting the
fillet 56 along the common fold line 51 between the gable rib panels, (d) leaving
uncovered the score line intersection 74 where the triangular end panel 29 touches
the common fold line, and (e) a reduction of fillet 56 area which extends above the
gable rib panels 46, 47 to seal to the roof rib panels 54 and 55.
EXAMPLE 3
[0094] Several types of adhesive tapes were evaluated for use as fillets, that is, for ease
of positioning on the gable rib panels and adhesion to the gable rib panels. The following
tapes were applied to gable rib panels of polyethylene-coated container blanks, which
were then heat-sealed.
Scotchpak™ 26: 0.004 inch (0.01 cm) polyester backing as the strip, with 0.002 inch
(0.005 cm) EVA adhesive.
Scotchpak™ 48: 0.0005 inch (0.0012 cm) polyester backing with 0.004 inch (0.01 cm)
MDPE adhesive.
Scotchtab™: 0.002 inch (0.005 cm) polyester backing as the strip, with 0.002 inch
(0.005 cm) PSA adhesive.
Scotchpak™ 26 with 0.003 inch (0.0075 cm) PSA adhesive applied over the EVA adhesive.
Polyester/PSA: 0.002 inch (0.005 cm) polyester film backing as the strip, with 0.003
inch (0.0076 cm) PSA adhesive.
Control: No fillet.
[0095] The pressure-sensitive adhesive (PSA) used in this test was a typical rubber resin
adhesive.
[0096] The results of the tests were as follows:
Scotchpak™ 26 with EVA adhesive was difficult to position for sealing, and required
preliminary heat sealing to provide a good seal.
Scotchpak™ 48 with MDPE adhesive was difficult to position and required preliminary
heat sealing. Insufficient stiffness was added by the fillet to consistently transfer
the required opening forces to the spout tip.
Scotchtab™ with PSA adhesive was easy to position, and required heat sealing to strongly
bond to the panels. Sufficient opening forces were transferred.
Scotchpak™ 26 with PA adhesive was easy to position, and heat-sealing provided a good
seal. Sufficient opening forces were transferred to open the seal.
[0097] The control gable top carton spout, heat-sealed according to the commercial process,
could not be opened without buckling and delamination of the cardstock.
EXAMPLE 4
[0098] An unoriented polypropylene adhesive tape was evaluated as a stiffening fillet in
a one-half gallon gable top container blank, which was then heat sealed with a Liquipak
Model 010 heat sealer.
[0099] The tape was applied to the outside of the spout flush to the spout edge. The fillet
was one-and-one half of an inch wide and three and three eights of an inch long. The
fillet was centered on the spout tip.
[0100] The tape had a 0.0065 inch thick unoriented polypropylene backing and a 0.003 inch
thick rubber/resin pressure sensitie adhesive.
[0101] The carton was opened in the normal manner. The carton opened with difficulty but
did open. The inside spout lips had fully bonded and had full paper tear when opened.
A similar carton without the fillet would have a force in excess of 12 pounds applied
and would buckle and not open.
[0102] The polypropylene was not significantly bonded to itself.
[0103] While the present invention has been particularly set forth in terms of specific
embodiments thereof, it will be understood in view of the instant disclosure that
numerous variations upon the invention are enabled to those skilled in the art, which
variations yet reside within the scope of the present teaching. Accordingly, this
invention is to be broadly construed, and limited only by the scope of the claims
now appended hereto.
1. A sheet material blank for constructing a sealed gable-top container having inner
and outer surfaces responsive to a container sealing process, the blank including
a container body having sides, a bottom, and a top, and an extensible pouring spout
including a substantially triangular end panel connected to the container body top,
first and second foldback panels, the first foldback panel connected to the container,
body top and to one lateral edge of the triangular end panel, and the second foldback
panel connected to the container body to and to the other lateral edge of the triangular
end panel, a first roof wing panel adjoining the first foldback panel and connected
thereto, a second roof wing panel adjoining the second foldback panel and connected
thereto, third and fourth foldback panels, the third foldback panel connected to the
first roof panel and to one lateral edge of the second triangular end panel, and the
fourth foldback panel connected to the other lateral edge of the second triangular
end panel and adapted to be connected to the second roof panel, first and second gable
rib panels connected to upper edges of the first and second foldback panels, respectively,
to extend upwardly therefrom, having upper edges and lateral edges, and connected
to each other at a common line, third and fourth gable rib panels connected to upper
edges of the third and fourth foldback panels, respectively, and to each other, first
and second roof rib panels connected to upper edges of the first and second roof panels,
respectively, each the roof rib panel connected at one side thereof to one of the
first and second gable rib panels, first and second upper rib panels connected to
upper edges of the first and second roof rib panels, respectively, the invention characterized
in that: at least one stiffening fillet overlies a portion of, and is bonded to the
outer surface of at least one of the pouring spout panels, for stiffening the at least
one panel to transfer applied opening forces along the at least one panel to open
the container, said fillet comprising (x) a strip of material resistant to the container
sealing process and having a modulus of elasticity of at least 0.1 × 10⁶ psi, and
(xx) a layer of adhesive attached to one side of said strip and to the outer surface
of the at least one panel for bonding said strip thereto.
2. The blank according to claim 1, further characterized in that at least one of the
inner and outer surfaces is a thermoplastic responsive to a container sealing process
of elevated temperature and pressure, and said strip is resistant to said elevated
temperature and pressure.
3. The blank according to claim 2 further characterized in that the blank is adapted
to be formed into a container by a container sealing process at a temperature of 260-320°F
(121-205°C) wherein panels to be sealed are compressed together.
4. The blank according to claim 1 further characterized in that said fillet comprises
a tape having said layer of adhesive preapplied on one side thereof.
5. The blank according to claim 4 further characterized in that the adhesion peel
strength of said tape to said surface of the sheet material equals or exceeds 50 ounces
force per inch (612 gram-force per cm.) of tape width.
6. The blank according to claim 1 further characterized in that said adhesive comprises
a pressure-sensitive adhesive.
7. The blank according to claim 1 further characterized in that mirror image portions
of the foldback panels are overcovered by said fillet having said adhesive layer on
one surface of said strip thereof, and further comprising a layer of secondary adhesive
covering a portion of the opposite surface of said strip on at least one of the foldback
panels, wherein said secondary adhesive delaminates or peels under applied opening
forces to separate the panel surfaces joined by said secondary adhesive.
8. The blank according to claim 1 further characterized in that said strip comprises
one of metallic foil, polyester film, polycarbonate film and unoriented polypropylene
film.
9. A sealed gable-top container having a thermoplastic outer surface coating, the
container including a container body having sides, a bottom, and a top, and an extensible
pouring spout including a substantially triangular end panel connected to an upper
edge of at least one of the container panels, first and second foldback panels, the
first foldback panel connected to at least one of the container panels and to one
lateral edge of the triangular end panel, and the second foldback panel connected
to at least one of the container panels and to the other lateral edge of the triangular
end panel, a first roof wing panel adjoining the first foldback panel and connected
thereto, a second roof wing panel adjoining the second foldback panel and connected
thereto, third and fourth foldback panels, the third foldback panel connected to the
first roof panel and to one lateral edge of the second triangular end panel, and the
fourth foldback panel connected to the other lateral edge of the second triangular
end panel and connected to the second roof panel, first and second gable rib panels
connected to upper edges of the first and second foldback panels, respectively, and
extending upwardly therefrom, and to each other at a common line, third and fourth
gable rib panels connected to upper edges of the third and fourth foldback panels,
respectively, and to each other, first and second roof rib panels connected to the
upper edges of the first and second roof panels, respectively, each the roof rib panels
connected at one side thereof to one of the first and second gable rib panels; first
and second upper rib panels connected to upper edges of the first and second roof
rib panels, respectively, the invention characterized in that at least one stiffening
fillet overlies a portion of, and is bonded to the outer surface of at least one of
the pouring spout panels, for stiffening the at least one panel to transfer applied
opening forces along the at least one panel to open the container, said fillet comprising
(x) a strip of material resistant to the container sealing process and having a modulus
of elasticity of at least 0.1 × 10⁶ psi, and (xx) a layer of adhesive attached to
one side of said strip and to the outer surface of the at least one panel for bonding
said strip thereto.
10. The container according to claim 9 further characterized in that the surface of
said strip opposite said adhesively bonded fillet is bonded by a secondary adhesive
layer of lower bonding force than said bonding force between said strip and the panel
surface, for peeling or delamination under applied opening forces.