(1) Veröffentlichungsnummer:

0 287 554 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88890091.7

(s) Int. Cl.4: F 01 L 1/18

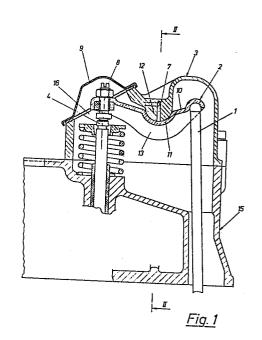
(2) Anmeldetag: 12.04.88

30 Priorität: 13.04.87 AT 927/87

(43) Veröffentlichungstag der Anmeldung: 19.10.88 Patentblatt 88/42

84 Benannte Vertragsstaaten: DE GB IT

(7) Anmelder: AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List Kleiststrasse 48 A-8020 Graz (AT)


72 Erfinder: Feichtinger, Gerhard Statteggerstrasse 87 c A-8045 Graz (AT)

> Skatsche, Othmar, Dipl.-Ing. Körblergasse 26 A-8010 Graz (AT)

(3) Vertreter: Krause, Walter, Dr. Dipl.-ing. et al Postfach 200 Singerstrasse 8 A-1010 Wien (AT)

(54) Ventilantrieb einer Brennkraftmaschine.

Ventilantrieb einer Brennkraftmaschine mit untenliegender Nockenwelle und mindestens einem im Zylinderkopf gelagerten Kipphebel dessen Steg eine Ausformung mit einer zylindrischen Lagerfläche aufweist, welche seitlich geführt ist. Erfindungsgemäß ist vorgesehen, daß die Lagerfläche für den U-förmig ausgebildeten Kipphebel (2) als halbzylindrischer Sattel (12) ausgebildet und ein integrierter Bestandteil eines am Zylinderkopf befestigbaren Zylinderkopfoberteils (3) ist, sowie daß der Schenkel (13) des Kipphebels (2) seitlich von Führungsflächen (14) des Zylinderkopfoberteils (3) geführt ist. Dadurch wird bei einfacher Konstruktion ein Antrieb erreicht, bei dem mit einem Minimum an Nacharbeit und Einzelteilen das Auslangen gefunden wird.

EP 0 287 554 A2

Ventilantrieb einer Brennkraftmaschine

5

10

15

20

35

40

45

55

60

Die Erfindung bezieht sich auf einen Ventilantrieb einer Brennkraftmaschine mit untenliegender Nokkenwelle und mindestens einem im Zylinderkopf gelagerten Kipphebel, dessen Steg eine Ausformung mit einer zylindrischen Lagerfläche aufweist, welche seitlich geführt ist.

1

Ein Ventiltrieb der eingangs genannten Art ist beispielsweise aus der DE-OS 24 36 091 bekannt. Eine von einem Nocken der Nockenwelle angetriebene Stoßstange arbeitet mit ihrem oberen Ende mit einem Kipphebel zusammen, welcher schwenkbar im Zylinderkopfdeckel abgestützt ist. Das andere Ende des Kipphebels steht in Kontakt mit dem Ventilschaft eines Tellerventils. Nachteiligerweise kommt es bei dieser Konstruktion zu einer relativ großen Reibfläche zwischen Zylinderkopfdeckel und Kipphebel. Überdies ist ein Zylinderkopfdeckel nach der genannten DE-OS aufgrund der in diesem Bereich auftretenden großen Kräfte nur bedingt in der Lage Führungs- und Lagerfunktionen zu über-

Ein weiterer Ventilantrieb wurde z.B. durch die EU-A2 64 836 bekannt. Bei dieser Lösung sind die Kipphebel an zylindrischen Auflagern abgestützt, die mittels die Stege der Kipphebel durchsetzender Schrauben am Zylinderkopf befestigt sind. Dabei ergibt sich allerdings aufgrund der Durchführung der Schrauben durch die Stege der Kipphebel eine erhebliche Verkleinerung der Lagerfläche, die zu einer entsprechend erhöhten spezifischen Flächenbelastung führt.

Bei anderen Konstruktionen solcher Antriebe wurden auch schon Kipphebel vorgeschlagen, die auf einer am Zylinderkopf gehaltenen Achse abgestützt sind, wobei sich aber der Nachteil eines sehr großen konstruktiven Aufwandes ergibt. Durch die EU-B1 74 875 ist auch schon eine Konstruktion bekannt geworden, bei der die Kipphebel auf einer Achse gelagert sind, die ihrerseits am Zylinderkopf abgestützt ist.

Ziel der Erfindung ist es, diese Nachtiele zu vermeiden und einen Antrieb der eingangs erwähnten Art vorzuschlagen, der sich durch eine einfache Konstruktion auszeichnet und bei dem mit einem Minimum an Nacharbeit und Einzelteilen das Auslangen gefunden werden kann.

Erfindungsgemäß wird dies dadurch erreicht, daß die Lagerfläche für den U-förmig ausgebildeten Kipphebel als halbzylindrischer Sattel ausgebildet und ein integrierter Bestandteil eines am Zylinderkopf befestigbaren Zylinderkopfoberteils ist, sowie daß der Schenkel des Kipphebels seitlich von Führungsflächen des Zylinderkopfoberteils geführt ist.

Alle Lager- und Führungsfunktionen werden demnach von einem stabilen Zylinderkopfoberteil übernommen, welcher als Lagerfläche einen halbzylindrischen Sattel geringer Reibfläche aufweist. Durch diese Maßnahmen wird bei einfacher Herstellbarkeit zusätzlich sichergestellt, daß die Führung des Kipphebels praktisch keine zusätzliche Bauhöhe erfordert und für die Abstützung des Kipphebels eine Fläche vorgesehen werden kann, welche keine Durchführungen für Befestigungsschrauben aufweist, wie sie z.B. gemäß der EU-A2 64 836 notwendig sind. Außerdem sind für die Führung der Kipphebel keine weiteren Bauteile außer dem Zylinderkopfoberteil erforderlich.

In einer Weiterbildung der Erfindung kann der Zylinderkopfoberteil im Bereich des Ventilschaftes eine mit einem Deckel verschließbare Wartungsöffnung aufweisen. Dadurch ist eine Einstellung des Ventils über die Einstellschraube möglich ohne den genannten Zylinderkopfoberteil zu entfernen.

Nach einem weiteren Merkmal der Erfindung kann der Zylinderkopfoberteil samt Sattel durch Druckgie-Ben hergestellt sein.

Dabei kann der Zylinderkopfoberteil in einem Arbeitsgang hergestellt werden, wobei sich überdies der Vorteil ergibt, daß keine spanabhebende Bearbeitung erforderlich ist.

Zur Erzielung einer guten Schmierung kann vorgesehen sein, daß an der Lagerfläche des Sattels ein im Zylinderkopfoberteil geführter Schmierölkanal endet

In weiterer Ausgestaltung der Erfindung kann der Kipphebel als Blechprägeteil oder als Feingußteil hergestellt werden, wodurch in beiden Fällen ebenfalls keine spanabhebende Bearbeitung der Lagerstelle erforderlich ist.

Die Erfindung wird nun anhand der Zeichnungen näher erläutert. Dabei zeigen:

Figur 1 einen Schnitt durch einen erfindungsgemäßen Ventilantrieb entlang der Linie I-I in Figur 3,

Figur 2 einen Schnitt entlang der Linie II-II in der Figur 1,

Figur 3 einen Schnitt entlang der Linie III-III in Figur 2 und

Figur 4 einen Schnitt entlang der Linie IV-IV in der Figur 3.

Wie insbesondere aus den Figuren 1 und 2 ersichtlich ist, weist der Kipphebel 2, der sich auf eine Stößelstange 1 und den Ventilschaft 4 abstützt, einen U-förmigen Querschnitt auf, wobei der Steg 10 des Kipphebels 2 eine als Lagerfläche dienende Ausformung 11 aufweist.

Mit dieser Ausformung 11 stützt sich der Kipphebel 2 schwenkbar an dem mit dem Zylinderkopfoberteil 3 einstückig ausgebildeten Sattel 12 ab, dessen Lagerfläche halbzylindrisch und im wesentlichen gegengleich zur Lagerfläche des Kipphebels 2 an der Ausformung 11 ausgebildet ist.

Da die Schenkel 13 durch die Führungsflächen 14 im vorzugsweise als Druckgußstück ausgebildeten Zylinderkopfoberteil 3 geführt sind, ist der Kipphebel 2 lediglich im Zylinderkopfoberteil 3 gehalten, der auf dem Zylinderkopf 15 mittels der Schrauben 5 und 6 befestigbar ist. Diese Konstruktion eignet sich hervorragend zur Aufnahme der in diesem Bereich auftretenden Lager- und Führungskräfte.

Um eine Einstellung des Ventils zu ermöglichen,

2

ist in dem Zylinderkopfoberteil 3 eine Wartungsöffnung 16 vorgesehen, die mit dem Wartungsdeckel 9 abgedeckt ist. Dadurch ist ein Zugang zur Einstellschraube 8 möglich. Auf einen solchen Wartungsdeckel, bzw. die Wartungsöffnung kann eventuell verzichtet werden, wenn der Ventiltrieb mit hydraulischen Ventilspielausgleichselementen versehen ist.

Wie aus der Figur 1 ersichtlich ist, mündet an der Lagerfläche des Sattels 12 ein Schmierkanal 7. Diese Schmierkanäle werden, wie aus der Figur 3 ersichtlich ist, paarweise von einem Zuführkanal 17 versorgt, der mit einer nicht dargestellten Druckölquelle in Verbindung steht und im Zylinderkopfoberteil 3

5

10

15

Patentansprüche

(16) aufweist.

stellt ist.

1. Ventilantrieb einer Brennkraftmaschine mit untenliegender Nockenwelle und mindestens einem im Zylinderkopf gelagerten Kipphebel. dessen Steg eine Ausformung mit einer zylindrischen Lagerfläche aufweist, welche seitlich geführt ist, dadurch gekennzeichnet, daß die Lagerfläche für den U-förmig ausgebildeten Kipphebel (2) als halbzylindrischer Sattel (12) ausgebildet und ein integrierter Bestandteil eines am Zylinderkopf befestigbaren Zylinderkopfoberteils (3) ist, sowie daß der Schenkel (13) des Kipphebels (2) seitlich von Führungsflächen (14) des Zylinderkopfoberteils (3) geführt ist.

2. Antrieb nach Anspruch 1, dadurch gekenn-

3. Antrieb nach Anspruch 1 oder 2, dadurch

4. Antrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an der Lagerflä-

che des Sattels (12) ein im Zylinderkopfoberteil

5. Antrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Kipphebel (2)

6. Antrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Kipphebel (2)

(3) geführter Schmierölkanal (7) endet.

als Blechprägeteil hergestellt ist.

als Feingußteil hergestellt ist.

gekennzeichnet, daß der Zylinderkopfoberteil (3) samt Sattel (12) durch Druckgießen herge-

zeichnet, daß der Zylinderkopfoberteil (3) im Bereich des Ventilschaftes (4) eine mit einem Deckel (9) verschließbare Wartungsöffnung

20

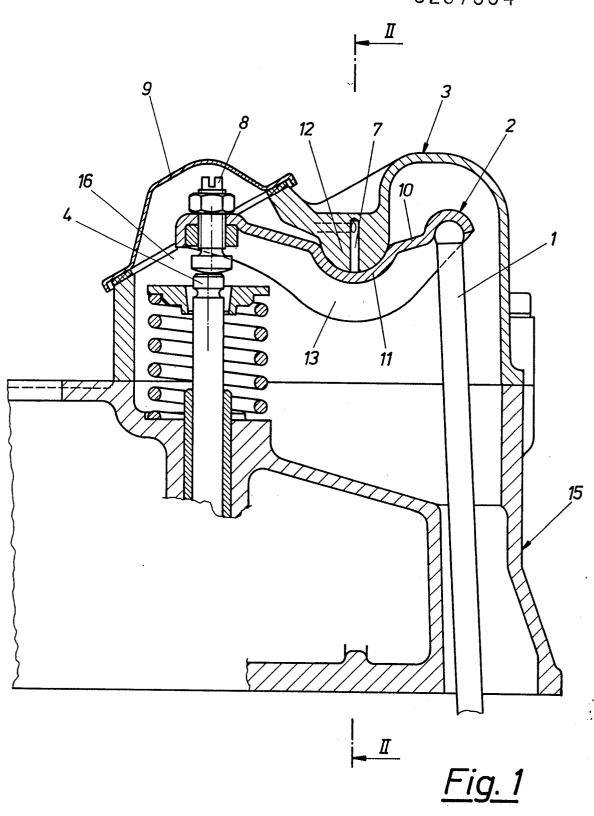
25

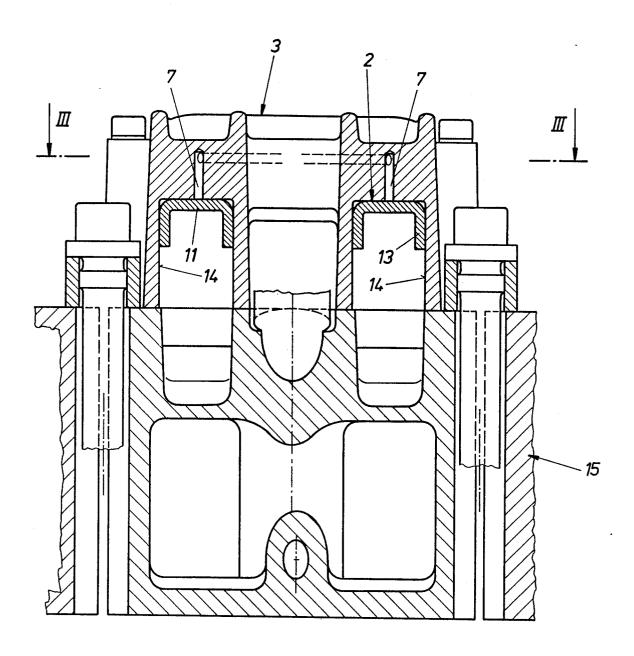
30

35

40

45

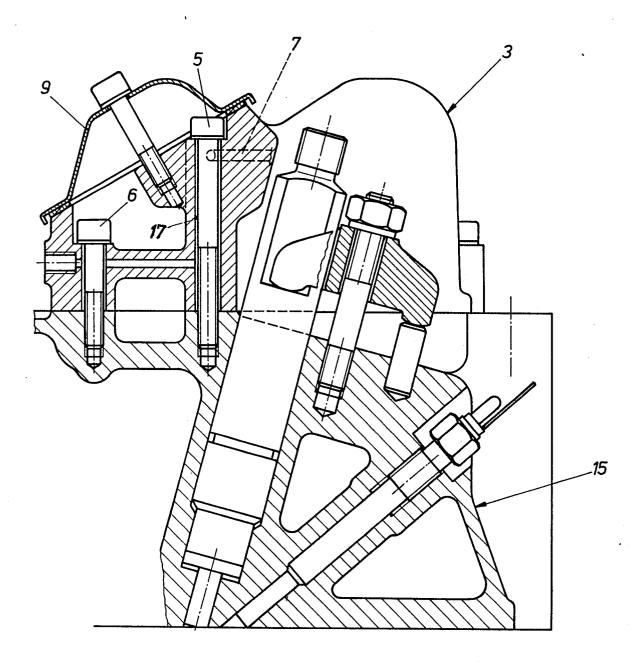

50


55

60

65

3



<u>Fig. 2</u>

<u>Fig. 3</u>

<u>Fig. 4</u>