(1) Publication number:

0 288 284 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 88303603.0

(s) Int. Cl.4: G 21 G 1/10

2 Date of filing: 21.04.88

30 Priority: 24.04.87 US 42129

Date of publication of application: 26.10.88 Bulletin 88/43

Designated Contracting States:
 CH DE FR GB IT LI NL

(7) Applicant: KING FAISAL SPECIALIST HOSPITAL AND RESEARCH CENTRE
P.O. Box 3354
Riyadh 11211 (SA)

(2) Inventor: Qureshi, Muhammad A.
King Faisal Specialist Hospital Research Centre
P.O box 3354 Riyadh 11211 (SA)

Sajjad Munawwar King Faisal Specialist Hospital Research Centre P.O box 3354 Riyadh 11211 (SA)

Lambrecht, Richard M. King Faisal Specialist Hospital Research Centre P.O Box 3354 Riyadh 11211 (SA)

(74) Representative: Heath, Derek James et al Bromhead & Co. 30 Cursitor Street Chancery Lane London EC4A 1LT (GB)

(54) Method of producing iodine 124 and meta-iodobenzylguanidine containing iodine 124.

This invention relates to a method for synthesising ¹²⁴I and ¹²⁴I-m-IBG comprising an innovative technique for preparing an irradiation target, irradiating the prepared target, and finally collecting ¹²⁴I created by the irradiation. In one embodiment of this invention, the method is further characterized by the synthesis of ¹²⁴I-m-IBG.

Description

20

30

40

METHOD OF PRODUCING IODINE¹²⁴ AND META-IODOBENZYLGUANIDINE CONTAINING IODINE¹²⁴

Field of The Invention

This invention relates generally to a method for synthesising 124I and 124I-m-IBG. More specifically, this method comprises an innovative technique for preparing an irradiation target, irradiating the prepared target, and finally collecting the resulting 124I; in one embodiment of the invention, the method is further characterized by the synthesis of 124l-m-IBG.

Background of the Invention

lodine¹²³ and lodine¹³¹ radioisotopes are presently used in medical diagnosis and radiation therapy. Meta-lodobenzylguanidine sulfate (m-IBG) labelled with 123I and 131I has been used clinically in the diagnosis and treatment of pheochromocytomas, neuroblastomas and other paragagliomas.

Although perhaps less popular, lodine 124 is another iodine isotope which is useful in nuclear medicine. lodin¹²⁴ decays by positron emission (25%) and can therefore be used in positron emission tomography for non-invasive quantitative physiological studies. When m-IBG is labelled with 124I-iodide (124I-m-IBG), it is useful in obtaining quantitative images of the brain, adrenal, and myocardium.

However, lodine 124 and 124I-m-IBG are not commonly available substances. A known method of producing lodine 124 is by the 124Te(p,n) 124I reaction disclosed in Kondo K., Lambrecht, R.M., Norton E.F. and Wolf A.P., 28 Int. J. App. Rad. and Isotopes 765 (1977). However, this reaction is not efficient and typically results in low

Consequently, it is an object of this invention to provide an efficient and commercially feasible method for synthesizing lodine 124.

A further object of this invention is to provide an efficient and commercially feasible method for synthesizing 124I-m-IBG.

A further object of this invention is to provide a method of synthesizing lodine 124 which is safe and reliable. A further object of this invention is to provide a method of synthesizing 124l-m-IBG which is safe and reliable. Other objects and features of this invention will become apparent to those skilled in the art from the

following specification when read in the light of the annexed drawings.

Summary of the Invention

This invention relates to a method for synthesising 124I and 124I-m-IBG comprising an innovative technique for preparing an irradiation target, irradiating the prepared target, and finally collecting the resulting 1241. In one embodiment of this invention, the method is further characterized by the synthesis of 124I-m-IBG which is useful in nuclear medicine applications.

DISCLOSURE OF THE PREFERRED EMBODIMENT

I. SYNTHESIS OF 1241

A. Preparation of Tellurium¹²⁴ Targets

In synthesising 1241, a copper metal plate is first milled and uniformly lapped to the dimensional specifications required for ultimately placing the target matrix in the accelerated subatomic particle path of a nuclear accelerator apparatus. The surface of the copper plate is sanded, washed with distilled water, and dried. The copper plate is then placed in a nickel plating solution prepared from a salt, such as nickel sulfate hexahydrate, and is then electroplated using a platinum electrode as the anode.

The copper plate is then placed in a tellurium plating solution comprising isotopically enriched Tellurium 124 dioxide dissolved in a solution of potassium hydroxide. The tellurium is electroplated onto the copper plate using a platinum electrode. The target thickness of the Tellurium¹²⁴ is typically 10-14 milligrams per square centimeter for routine production targets.

B. Processing the Iodine 124

After irradiating the Terrurium124 by means of the the internal beam line of a cyclotron, such as the King Faisal Specialist Hospital and Research Centre CS-30 Cyclotron accelerator, the irradiated Tellurium¹²⁴ is dissolved from the copper plate by means of a sodium hydroxide solution, preferably 5 molar, and about 30% hydrogen peroxide and water. The solution is transferred to a vessel containing about 250 milligrams of aluminum powder. Following dissolution by gradual heating, the solution is purged with air, then carbon dioxide gas. The solution volume may be reduced by boiling the solution. The solution is then passed through a filter to collect solid materials for subsequent recovery of the isotopically enriched Tellurium 124 by use of methods known to those skilled in the art.

Table 2 illustrates lodine 124 production yields and levels of lodine 126 impurity 48 hours after irradiation of the Tellurium¹²⁴ target of greater than 95% isotopic enrichment. Radioanalysis by gamma-ray spectrometry was performed to assess the radionuclidic purity and to identify the impurities. Irradiation conditions in the

2

examples range from 25 to 80 microampere deutron beam current with irradiation doses ranging from 100 to 550 microampere hours.

The Iodine¹²⁴ was prepared in quantities of greater than 100 mCi by 15 megavolt deuteron irradiation of enriched Tellurium¹²⁴ by the ¹²⁴Te(d,2n)¹²⁴I nuclear reaction. Enriched Tellurium¹²⁴ was plated in the quantity of about 13 mg/cm² on a nickel plated copper target. These targets were irradiated in the internal beam line of the King Faisal Specialist Hospital and Research Centre CS-30 Cyclotron. The current was varied from 25 to 60 micro-amperes, and the irradiation time was varied from 4-8 hours. Iodine¹²⁴ was separated from the tellurium target using the chemical procedure already discussed.

For synthesis of labelled organic molecules, the ¹²⁴I-I was passed through a cation-exchange column to remove trace tellurium. The radioanalysis was done by gamma-ray spectrometry. The gamma-spectrum was obtained by using a 45-Cm³ Ge(Li) detector (full width at half-maximum of 1.87 KeV at 1.33 MeV photopeak of ⁶⁰Co, peak-to-compton ratio of 32:1 and an efficiency of 7.7%) and a Canberra Series 80 pulse height analyzer.

Synthesis of 124I-m-IBG

Non-radioactive m-IBG was synthesized by the method of Wieland, disclosed in Wieland, D.M., Wu, Jiann-long, Brown, L.E., Mangner,I T.J., Swanson, D.P., Beierwaltes, W.H., 21 Journal of Nulear Medicine 349 (1980). The m-IBG was characterized on a Nicolet Model 5DX FT-IR:(KBr) which showed broad peaks between 3100-3448 (NH₂,NH), 1660(C=N), 1590 (aromatic C=C), 772 &; 687 cm⁻¹ (m-disubstituted phenyl). Mass spectrum analysis (direct probe insertion) was performed on a Finnegan MAT Model-311: molecular ion (M+) and a base peak (rel. intensity 100%) at m/z 276, a peak (rel. intensity 060%) at m/z 233 (M-43) representing the split of the -C group. HNMR analysis was performed on a Varian Model T-60A: (DMSO-d6); delta 7-7.8(m,4H aromatic), the benzylic CH₂ group is overmasked by the water peak at delta 3.4. Melting point: 167.3° (corr), Lit. 167.0° (uncorr).

The exchange reaction to prepare ¹²⁴I m-IBG was adopted with a modification from the method of Van Doremalen, P. A. P. M., Janssen, A.G.M., 96 J. Radioanal. Nucl. Chem., Letters., 97 (1985). In a 10 mL borosilicate serum vial 2.7 micro-moles of "cold" meta-iodobenzylguanidine sulphate was mixed with 6.2 micro-moles of Cu(NO₃)₂. ¹²⁴I (5 to 20 mCi) was added. The total volume was brought to approximately 0.8 ml with water, and the mixture was then adjusted to pH 5. The vessel was stoppered and heated to 150° in an oil bath for 45 min. Upon cooling, I.5mL of 2.45% sodium biphosphate buffer solution was added to precipitate copper. Copper phosphate precipitate was then removed by filtering through 0.22_{um}millipore filter. The filtrate was passed through 100-200 mesh Bio-Rad AGI-X8 anion-exchange resin to remove the unreacted iodide.

Chromatography

Chromatographic and radiochemical procedures were applied to obtain less than 95% lodine 124 activity in th iodide anion form for further radiochemical syntheses. Sodium lodide 124 solution was analyzed by thin layer chromatography (TLC) using a model SG ITLC, available from Gelman Instrument Co., Ann Arbor, Michigan. The developing solvent was the organic phase prepared by mixing 3ml of NH₄OH in 12ml of water with 12ml of 1-butanol; R_f values: |-10.8|; |-10.8|; |-10.8|; |-10.8|; |-10.8| and other radiochemical impurities: 0.0-0.15. |-10.8|; |-10.8|

Analysis was performed on an Altech C-18, 10 column. The column was eluted with an eluate composed of 60% 0.05M NH₄H₂Po4: 40% CH₃CN, at a flow rate of 2mL/min. Retention time for m-IBG was 4.68 min, while the unbound ¹²⁴I- and/or Cu⁺² eluted with the solvent front.

Large quantities (150 mCi) of lodine¹²⁴ are routinely produced by the ¹²⁴Te(d,2n)¹²⁴I reaction. The production yield data is given in Table 1. lodine¹²⁴ can be produced in higher yields and final product purity by using this reaction rather than by the ¹²⁴Te(p,n)¹²⁴I reaction. The yields for the ¹²⁴Te(d,2n)¹²⁴I was 0.57mCi/micro-ampere, compared to 0.093 mCi/micro-ampere-h for the¹²⁴Te(p,n) ¹²⁴I reaction reported in Kondo K., Lambrecht, R. M., Norton E. F. and Wolf A. P., 28 Int. J. App. Rad. and Isotopes., 765, (1977). The production yield of ¹²⁴I was directly proportional to the dose. The current could be increased to 60 micro-amperes without damaging the target. The TLC analysis indicated that greater than 95% of the radioactivity was present as iodide anion.

Incorporation of ¹²⁴I into m-IBG was accomplished in a radiochemical yield of 70-90%. HPLC analysis of the filtrate after removal of copper phosphate precipitate indicated the presence of unreacted iodide and occasionally the unprecipitated copper. However, a careful passage of the filtrate through a Bio-Rad anion exchange resin completely removed the ¹²⁴I, rendering the filtrate greater than 95% radiochemically pure (Figure 2). Complete precipitation of copper was ensured by adjustment of the pH and concentration of the phosphate buffer. With this modification, the final preparation contained less than 1 g/ml of copper by wet chemical analysis.

65

60

5

10

15

20

25

30

35

40

45

50

55

Table 1: Iodine¹²⁴ Production Yield Data

(\$) (After 48 hours)	99.1	99.5	99.4	99.6	99.6
126 mc1 124 (%) (EOB) (After 48 hours	0.5	9.0	0.7	0.5	9.0
124 mci (EOB)	57.0	119.0	124.0	143.0	150.0
mci/micro-ampere hour	0.56	09.0	0.52	0.57	0.59
Current	25 micro-A	25 micro-A	40 micro-A	50 micro-A	60 micro-A
Dose	100 micro-ampere-hours	200 micro-ampere-hours	240 micro-ampere-hours	0 micro-ampere-hours	300 micro-ampere-hours

Table 2: Iodine-124 Production Yield Data

Date of Production	02 Nov 86	09 Nov 86	23 Nov 86	07 Dec 86	25 Jan 87	15 Mar 87	08 Feb 87	01 Mar 87	29 Mar 87
124 _I (%) (after 48 hours)	99.1	5.66	4.66	9.66	93.6	5.66	99.3	99.3	99.3
126 _{I mCi} (EOB)	0.5	9.0	0.7	0.5	9.0	¥1.2	<0.65	<1,3	<\$.83
124 _I mCi (EOB)	57.0	119.0	124.0	143.0	150.0	, 260.0	93.7	201.0	269.66
mCi/µAh	0.56	09.0	0.52	0.57	0.59	0.48	0.44	0.62	0.54
Fluence, µA	25	25	07	50		75	70	65	80
Dose, mAh	100	200	240	250	300	200	210 ·	325	200

Claims

5

10

15

20

25

30

35

40

45

- 1. A method of synthesizing lodine 124, said method comprising:
 - (a) placing a target means comprising copper in a nickel plating solution and electroplating said target means with nickel:
 - (b) placing the resulting target means in a Tellurium 124 plating solution and electroplating said target means with Tellurium 124;
 - (c) placing the resulting target means in line with the particle beam of a cyclotron, thereby irradiating the Tellurium 124 and creating lodine 124 and;
 - (d) separating the lodine 124 from the target means.

2. The method of synthesizing lodine 124 of claim 1 wherein:

the target means is a copper metal plate which is first milled and uniformly lapped to the dimensional specifications required for ultimately placing the target matrix in the particle path of the cyclotron, said copper metal plate being sanded, washed with distilled water, and dried prior to electroplating.

3. The method of synthesizing 124 of claim 2 wherein:

the copper plate target is electroplated with nickel by means of a nickel sulfate hexahydrate salt solution and a platinum electrode anode, and the Tellurium 124 electroplating is accomplished by means of a solution of isotopically enriched Tellurium¹²⁴ dioxide dissolved in a solution of potassium hydroxide and by means of a platinum electrode.

4. The method of synthesizing 124l of claim 3 wherein:

the target thickness is between 10 and 14 milligrams per square centimeter.

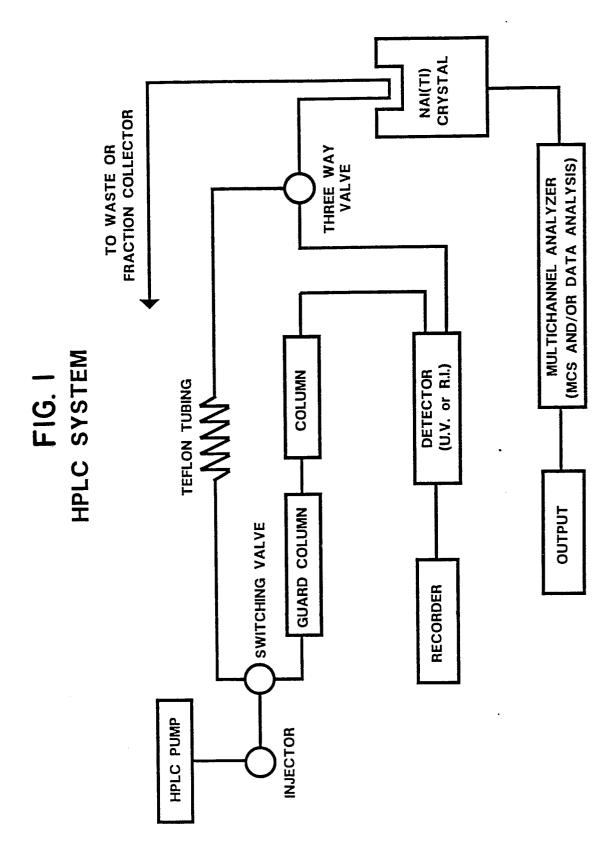
- 5. The method of synthesizing ¹²⁴l of claim 1 wherein the irradiated target is placed in a solution of sodium hydroxide solution containing hydrogen peroxide and water, subsequently, the solution is transferred to a vessel containing aluminum powder, thereafter the solution is purged with air, then carbon dioxide gas, particles in the solution are then filtered out and passed through a cation-exchange column.
- 6. The method of Claim 5 wherein irradiation is conducted in the range of 25 to 80 microamperes deutron beam current with irradiation doses ranging from 100 to 550 microampere hours.

7. A method of synthesizing ¹²⁴I-m-IBG, said method comprising:

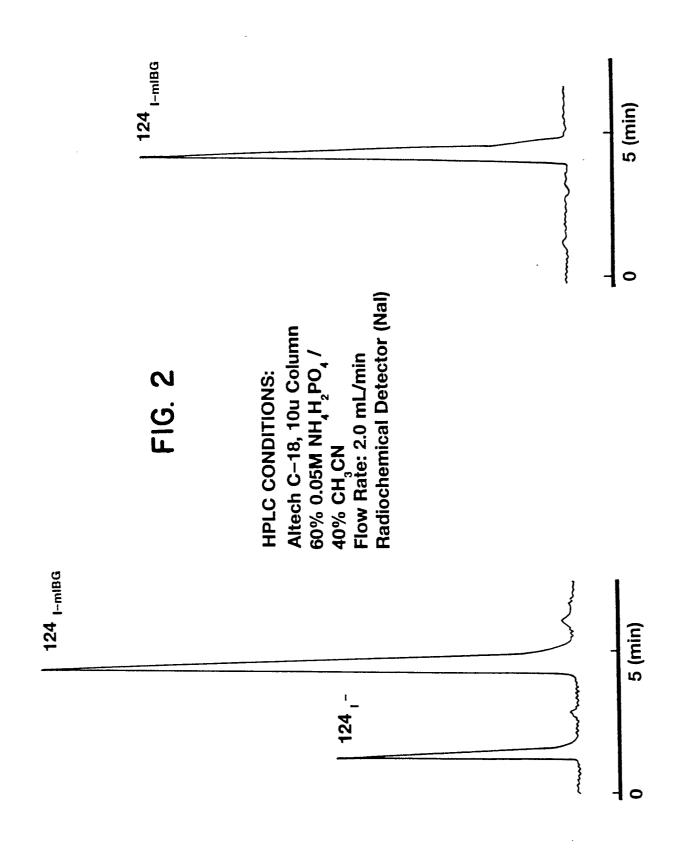
- (a) placing a target means comprising copper in a nickel plating solution and electroplating said target means with nickel;
- (b) placing the resulting target means in a Tellurium¹²⁴ plating solution and electroplating said target means with Tellurium 124;
- (c) placing the resulting target means in line with the particle beam of a cyclotron, thereby irradiating the Tellurium¹²⁴ and creating lodine¹²⁴;
 - (d) separating the lodine 124 from the target means; and
 - (e) combining the lodine 124 with m-IBG.

8. The method of Claim 7 wherein

the lodine 124 is combined with the m-IBG in a method comprising the mixing of meta-iodobenzylguanidene sulphate with Cu(NO3)2 in a borosilicate serum vial, adjusting the pH to about 5, heating the solution to 150 degrees centigrade, cooling, adding a sodium biphosphate buffer solution, and passing the filtrate through an anion-exchange resin.


50

55


60

65

ı