11 Veröffentlichungsnummer:

0 293 745

A2

© EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88108362.0

(51) Int. Cl.4: D06P 5/17 , D06P 5/12

22 Anmeldetag: 26.05.88

Ein Antrag gemäss Regel 88 EPÜ auf Berichtigung von Seite 2, Zeile 11 der orginal eingereichte Beschreibung liegt vor. Über diesen Antrag wird im Laufe des Verfahrens vor der Prüfungsabteilung eine Entscheidung getroffen werden (Richtlinien für die Prüfung im EPA, A-V, 2.2).

- 3 Priorität: 03.06.87 DE 3718565
- Veröffentlichungstag der Anmeldung: 07.12.88 Patentblatt 88/49
- Benannte Vertragsstaaten:
 CH DE FR GB IT LI

7) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

© Erfinder: Hansen, Guenter, Dr.
Alwin-Mittasch-Platz 8
D-6700 Ludwigshafen(DE)
Erfinder: Etzbach, Karl-Heinz, Dr.
Carl-Boch-Ring 55

Carl-Boch-Ring 55 D-6710 Frankenthal(DE) Erfinder: Schefczik, Ernst, Dr.

Dubliner Strasse 7

D-6700 Ludwigshafen(DE)

Erfinder: Reichelt, Helmut, Dr.

Weinbachstrasse 20 D-6701 Niederkirchen(DE)

Erfinder: Strickler, Klaus Brunckstrasse 44a D-6701 Maxdorf(DE)

- Verfahren zur Herstellung von Ätzdrucken.
- Textilmaterial durch Behandlung des Textilmaterials mit Farbstoff und alkalisch wirkender Druckpaste in beliebiger Reihenfolge und anschließendem Dämpfen und Waschen des behandelten Textilmaterials, wobei man das Textilmaterial mit Thiophenazofarbstoffen der Formel

behandelt, in der R1, R2, R3, R4, X, Y und Z jeweils die in der Beschreibung genannte Bedeutung besitzen.

EP 0 293 745 A2

Verfahren zur Herstellung von Ätzdrucken

Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Ätzdrucken auf synthetischem Textilmaterial, wobei man das Textilmaterial mit einem Thiophenazofarbstoff und alkalisch wirkender Druckpaste in beliebiger Reihenfolge behandelt und das so behandelte Textilmaterial anschließend dämpft und wäscht.

Die Herstellung von Ätzdrucken auf synthetischem Textilmaterial mittels alkalischen Verbindungen ist an sich bekannt und beispielsweise in der GB-A-1 543 724 oder GB-A-2 071 707 beschrieben. Die bei diesem Verfahren verwendeten ätzbaren Dispersionsfarbstoffe weisen allerdings häufig Mängel auf.

Aufgabe der vorliegenden Erfindung war es, ein neues Verfahren zur Herstellung von Ätzdrucken bereitzustellen, mittels dessen die Ätzdrucke in vorteilhafter Weise erhalten werden.

Es wurde nun gefunden, daß die Herstellung von Ätzdrucken auf synthetischem Textilmaterial durch Behandlung des Textilmaterials mit Farbstoff und alkalisch wirkender Druckpaste in beliebiger Reihenfolge und anschließendem Dämpfen und Waschen des behandelten Textilmaterials vorteilhaft gelingt, wenn man das Textilmaterial mit Thiophenazofarbstoffen der Formel I

behandelt, in der

10

15

35

40

50

X Cyano, Nitro, C₁-C₄-Alkanoyl, Benzoyl oder C₁-C₄-Alkoxycarbonyl,

Y Halogen, Hydroxy, Mercapto, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkoxy, C_5 - C_7 -Cycloalkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkylthio, C_5 - C_7 -Cycloalkylthio, gegebenenfalls substituiertes Phenylthio, C_1 - C_6 -Alkylsulfonyl oder gegebenenfalls substituiertes Phenylsulfonyl,

Z C₁-C₄-Alkyl, Chior, Brom, Nitro, Cyano, C₁-C₄-Alkanoyl, Benzoyl, C₁-C₄-Alkylsulfonyl, Phenylsulfonyl oder eine Gruppe der Formel -CH = CB¹B² oder -CH = N-B³, wobei B¹ und B² gleich oder verschieden sind und unabhängig voneinander jeweils für Cyano, C₁-C₆-Alkoxycarbonyl, dessen Alkylkette gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, oder C₃-C₆-Alkenyloxycarbonyl oder ein Rest B¹ oder B² für Cyano und der andere für C₁-C₄-Alkylsulfonyl, gegebenenfalls substituiertes Phenyl, Benzoyl, Phenylsulfonyl oder Carbamoyl und B³ für Hydroxy, C₁-C₄-Alkoxy, Phenoxy oder Phenylamino stehen,

R¹ den Rest A-COOB⁴, wobei A für C_1 - C_4 -Alkylen und B⁴ für C_1 - C_6 -Alkyl, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen und/oder durch Phenyl substituiert ist, C_5 - C_7 -Cycloalkyl oder Phenyl stehen,

R² den Rest R¹, Wasserstoff, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkyl, C_5 - C_7 -Cycloalkyl oder C_2 - C_4 -Alkyl, das durch Hydroxy, C_1 - C_4 -Alkanoyloxy, gegebenenfalls substituiertes Benzoyl, C_1 - C_4 -Alkoxycarbonyloxy, C_1 - C_4 -Mono-oder Dialkylaminocarbonyloxy oder gegebenenfalls substituiertes Phenylaminocarbonyloxy substituiert ist,

R³ Wasserstoff, Methyl, Methoxy, Chlor, gegebenenfalls substituiertes C₁-C₆-Alkanoylamino oder Benzoylamino und

R4 Wasserstoff, Methyl, Methoxy oder Ethoxy bedeuten.

Alle in den obigen Resten auftretenden Alkyl- und Alkenylgruppen können sowohl geradekettig als auch verzweigt sein.

Für den Fall, daß in der obengenannten Formel I substituierte Phenylreste auftreten, kommen als Substituenten z. B. C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen, insbesondere Chlor oder Brom, in Betracht.

Für den Fall, daß in der obengenannten Formel I Alkylreste auftreten, die durch ein oder mehrere Sauerstoffatome unterbrochen sind, sind solche Reste bevorzugt, die durch ein bis drei, insbesondere ein oder zwei Sauerstoffatome unterbrochen sind.

X und Z stehen beispielsweise für Formyl, Acetyl, Propionyl, Butyryl oder Isobutyryl.

Z steht weiterhin beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl oder sec-Butyl.

X steht weiterhin, ebenso wie B¹ und B², beispielsweise für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl oder Isobutoxycarbonyl.

B¹ und B² stehen weiterhin z. B. für Pentyloxycarbonyl, Isopentyloxycarbonyl, sec-Pentyloxycarbonyl, Hexyloxycarbonyl, 2-Butoxyethoxycarbonyl, Allyloxycarbonyl, Allyloxycarbonyl, Pentyloxycarbonyl, 2-Butoxyethoxycarbonyl, Allyloxycarbonyl, Allyloxycarbonyl, Pentyloxycarbonyl, Pe

bonyl, Methallyloxycarbonyl, Ethylallyloxycarbonyl, 4-Methylphenyl, 2-Ethoxyphenyl, 4-Chlorphenyl oder 2,4-Dichlorphenyl.

B¹ und B² stehen weiterhin, ebenso wie Y und Z, beispielsweise für Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, Isopropylsulfonyl, oder Butylsulfonyl.

Y steht weiterhin für Fluor, Chlor, Brom, Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec-Butoxy, Pentyloxy, Isopentyloxy, sec-Pentyloxy, tert-Pentyloxy, Hexyloxy, Benzyloxy, 1- oder 2-Phenylethoxy, Cyclohexyloxy, Cycloheptyloxy, 4-Methylphenoxy, 4-Isopropylphenoxy, 4-Methoxyphenoxy, 4-Bromphenoxy, Methylthio, Ethylthio, Isopropylthio, Benzylthio, 2-Phenylethylthio, Cyclohexylthio, 4-Chlorphenylthio, Pentylsulfonyl, Isopentylsulfonyl, Hexylsulfonyl oder 4-Methylphenylsulfonyl.

B³ steht beispielsweise für Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy oder sec-Butoxy.

 $C_2H_4OCOOC_3H_7$, $C_2H_4OCOOC_4H_9$, $C_2H_4OCONH-C_3H_7$, $C_2H_4OCONHC_4H_9$, $C_2H_4OCONHC_6H_5$, CH_2-CH_4 (CH_3) $OCOCH_3$, $CH_2CH(CH_3)OCOC_2H_5$, $CH_2CH(C_2H_5)OCOCH_3$, $CH_2CH(C_2H_5)OCOC_2H_5$, $CH(CH_3)-CH_2OCOCH_3$, $CH(CH_3)-CH_2OCOC_2H_5$, $CH(C_2H_5)CH_2OCOC_2H_5$.

R1 steht, ebenso wie R2, beispielsweise für

10

30

45

50

Für den Fall, daß R³ für substituiertes C_1 - C_6 -Alkanoylamino steht, kommen als Substituenten z. B. Chlor, Cyano, Hydroxy, C_1 - C_4 -Alkoxy, Phenoxy oder C_1 - C_4 -Alkoxycarbonyl in Betracht.

Reste R³ sind im einzelnen neben den bereits genannten, beispielsweise NHCOCH₃, NHCOC₂H₅, NHCOCG₃H₀, NHCOCH₂OCH₃, NHCOCH₂OCG₂H₅, NHCOCH₂OCGH₃, NHCOCH₂CI, NHCOCH₂CN oder NHCOC₂H₄OCH₃.

Bevorzugt ist eine Verfahrensweise, in der man das Textilmaterial mit Thiophenazofarbstoffen der Formel I behandelt, in der

- X Cyano oder C₁-C₄-Alkoxycarbonyl
- Y Chlor, Brom, C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylthio, Phenylthio oder Phenylsulfonyl,
- Z Formyl, Cyano, Nitro oder eine Gruppe der Formel -CH = CB¹B², wobei B¹ und B² gleich oder verschieden sind und jeweils unabhängig voneinander für Cyano oder C₁-C₄-Alkoxycarbonyl stehen,
- R¹ C₁-C₄-Alkoxycarbonylethyl und
 - $R^2 \qquad C_2 C_4 Hydroxyalkyl, \ C_1 C_4 Alkanoyloxy C_2 C_4 alkyl \ oder \ C_1 C_4 Alkoxycarbonylethyl \ bedeuten \ und$
 - R³ und R⁴ jeweils die obengenannte Bedeutung besitzen.

Insbesondere bevorzugt ist eine Verfahrensweise, in der man das Textilmaterial mit Thiophenazofarbstoffen der Formel I behandelt, in der

- 40 X Cyano oder C₁-C₂-Alkoxycarbonyl,
 - Y Chlor, Brom, Ethoxy, Phenylthio oder Phenylsulfonyl, insbesondere Chlor,
 - Z Formyl oder Cyano, insbesondere Formyl,
 - R¹ C₁-C₄-Alkoxycarbonylethyl,
 - R^2 C_2 - C_4 -Hydroxyalkyl, C_1 - C_4 -Alkanoyloxy- C_2 - C_4 -alkyl oder C_1 - C_4 -Alkoxycarbonylethyl, insbesondere C_1 - C_4 -Alkoxycarbonylethyl,
 - R³ Wasserstoff, Methyl, Methoxy, Chlor, Acetylamino oder Benzoylamino
 - R⁴ Wasserstoff, Methoxy oder Ethoxy bedeuten.

Die im erfindungsgemäßen Verfahren verwendeten Farbstoffe sind an sich bekannt und beispielsweise in der EP-A-201 896 oder der DE-A-3 535 133 beschrieben.

Als synthetisches Textilmaterial dient solches auf Basis von Polyacrylnitril, Polyamid oder Polyester, wobei Textilmaterial auf Basis von Polyester bevorzugt ist.

Das erfindungsgemäße Verfahren wird im allgemeinen so durchgeführt, daß das Textilmaterial entweder zunächst mit dem Thiophenazofarbstoff der Formel I und dann mit alkalisch wirkender Druckpaste oder zunächst mit der alkalisch wirkenden Druckpaste und dann mit dem Thiophenazofarbstoff der Formel I behandelt wird.

Die Behandlung des Textilmaterials mit dem Farbstoff erfolgt dabei immer über die gesamte Oberfläche, während die alkalisch wirkende Druckpaste, zweckmäßig mit Hilfe einer Schablone, nur auf diejenigen Stellen des Textilmaterials aufgebracht wird, die am Ende frei von Thiophenazofarbstoff sein sollen.

Für den Fall, daß zunächst der Farbstoff auf das Textilgut aufgebracht wird, geschieht dies zweckmäßig durch Aufklotzen und anschließendem Trocknen (z.B. 60 bis 90 sec) bei einer Temperatur von beispielsweise 80 bis 100°C. Danach erfolgt das Aufdrucken der alkalisch wirkenden Druckpaste mit anschließendem Trocknen bei einer Temperatur von beispielsweise 80 bis 100°C.

Für den Fall, daß zunächst die alkalisch wirkende Druckpaste auf das Textilgut aufgedruckt wird, wird direkt anschließend der Farbstoff, zweckmäßig ebenfalls in Form einer Druckpaste, der sogenannten Fonddruckpaste, aufgedruckt. Danach erfolgt ein schnelles Trocknen (z.B. 60 bis 120 sec) bei einer Temperatur von beispielsweise 90 bis 120 °C.

Die alkalisch wirkende Druckpaste enthält im allgemeinen neben Wasser alkalische Mittel, Verdickungsmittel, Lösungsvermittler, Glycerin sowie gegebenenfalls weitere Hilfsmittel, z.B. Netz- oder Dispergiermittel.

Als alkalische Mittel dienen z. B. Alkalihydroxide, Alkalicarbonate oder Alkalihydrogencarbonate. Insbesondere sind dabei die Lithium-, Natrium-oder Kaliumsalze zu nennen. Auch Tetraalkylammoniumhydroxide, wie Tetraethylammoniumhydroxid, sind als alkalische Mittel geeignet.

Verdickungsmittel sind meist solche auf Polysaccharidbasis, z. B. Galactomannane, Alginate, Xanthane oder carboxymethylierte Polysaccharide, oder auch auf Basis von Polyacrylsäurederivaten.

Als Lösungsvermittler dient überwiegend Polyethylenglykol mit einem Molekulargewicht von 200 bis 600.

Für den Fall daß der Farbstoff ebenfalls in Form einer Druckpaste aufgedruckt wird, enthält diese neben dem Farbstoff und Wasser ebenfalls die bereits genannten Verdickungsmittel sowie einen Säurespender (üblicherweise Zitronensäure) und gegebenenfalls weitere Hilfsmittel, z.B. Netz- oder Dispergiermittel.

Nachdem das zu bedruckende Textilgut sowohl mit Farbstoff als auch mit alkalisch wirkender Druckpaste behandelt ist, erfolgt der Dämpfprozess. Dabei wird das Textilgut bei einer Temperatur von ca. 160 bis 190°C mit Heißdampf behandelt. Diese Behandlung erstreckt sich üblicherweise über einen Zeitraum von 5 bis 10 Minuten.

Während des Dämpfprozesses wird an denjenigen Stellen, die sowohl Farbstoff als auch alkalisch wirkende Druckpaste aufweisen, der vorliegende Thiophenazofarbstoff durch den Einfluß des alkalischen Mittels in eine wasserlösliche Verbindung übergeführt, die beim anschließenden Waschprozeß, der üblicherweise eine reduktive Reinigung enthält, vom Textilmaterial entfernt wird.

Die folgenden Beispiele sollen die Erfindung näher erläutern.

30

Beispiel 1

50 g des Farbstoffs der Formel

35

40

wurden in feinverteilter Form in eine Klotzflotte gegeben, die 925 ml Wasser, 8 g Mononatriumphosphat, 7 g Natriumchlorat und 10 g eines Polymerisationsproduktes auf Basis von Acrylsäure als Antimigrationsmittelenthielt. Man klotzte auf einem Zweiwalzenfoulard bei einer Flottenaufnahme von 70 %. Nach dem Zwischentrocknen wurde mit einer Druckpaste, die 275 g einer 10 gew.%igen Stärkeetherverdickung, 275 g einer 10 gew.%igen Alginatverdickung, 80 g Pottasche, 75 g Polyethylenglykol (Molgewicht 300), 75 g Glycerin und 220 ml Wasser enthielt, überdruckt. Nach dem Trocknen bei 90-100 °C wurde 7 Minuten bei 175 °C mit überhitztem Dampf fixiert, anschließend reduktiv gereinigt, gespült und getrocknet.

Es resultierte ein blauer Druck mit guten Echtheiten und mit einem an den geätzten Stellen sehr guten Weißfond mit scharfen Konturen.

Beispiel 2

10

20

25

Man bedruckte ein Polyestergewebe mit einer Druckpaste, die 300 g einer 10 gew.%igen Stärkeetherverdickung, 300 g einer 10 gew.%igen Kernmehletherverdickung, 80 g Soda, 80 g Polyethylenglykol (Molgewicht 400) und 240 ml Wasser enthielt mit einer gemusterten Flachfilmdruckschablone. Im gleichen Arbeitsgang wurde mit einer zweiten Schablone, die vollflächig offen ist, mit einer Druckpaste überdruckt, die 50 g des Farbstoffs der Formel

in dispergierter Form, 2 g Zitronensäure, 550 g einer 10 gew.%igen Alginatverdickung und 398 ml Wasser enthielt.

Nach einer Zwischentrocknung bei 80°C wurde 6 Minuten bei 180°C mit überhitztem Dampf fixiert, danach reduktiv gereinigt, gespült und getrocknet.

Man erhielt einen marineblauen Druck mit guten Echtheiten, der an den mit der sodahaltigen Druckpaste vorgedruckten Stellen weiße Muster mit scharfem Stand aufweist.

Analog den Beispielen 1 und 2 erhält man ebenfalls durch Alkali weißätzbare Drucke mit sehr guten coloristischen Eigenschaften, wenn die in der folgenden Tabelle aufgeführten Farbstoffe der Formel

verwendet werden.

35

40

45

50

	Bsp. Nr.	X	Y	Z	R ¹	R 2	R3	R 4	Farbton auf PES
5	3 .	CN	C1	CHO	C2H4CO2CH3	C2H4CO2CH3	0CH3	Н	blau
	4	CN	C1	сно	C2H4CO2CH3	C2H4CO2CH3	н	Н	violett
	5	CN	Cl	сно	C2H4CO2CH3	C2H4CO2CH3	Н	OCH3	blau
	6	CN	Cl	сно	C2H4C02CH3	C2H4CO2CH3	H	CH ₃	blau
10	7	CN	C1	CHO	C2H4CO2CH3	C2H4CO2CH3	CH3	OCH3	blau
	8	CN	Cl	CHO	C2H4CO2CH3	C2H4CO2CH3	NHCOCH3	0CH3	grūnst.
									blau
	9	CN	Cl	сно	C2H4CO2CH3	C2H4CO2CH3	NHCOCH3	OC ₂ H ₅	grünst.
15					-			-	blau
	10	CN	Cl	CHO	C2H4CO2CH3	C2H4CO2CH3	NHCOC6H5	H	blau
	11	CN	Cl	CHO	C2H4CO2CH3	C2H4CO2CH3	NHCOCH2OC2H5	Н	blau
	12	CN	CI	СНО	C2H4C02CH3	C2H4CO2CH3	Cl	H	violett
20	13	CN	C1	СНО	C2H4C02C2H5	C2H4C02C2H5	CH3	H	blau
	14	CN	Cl	СНО	C2H4CO2C2H5	C2H4C02C2H5	NHCOCH3	H	blau
	15	CN	Cl	CHO	C2H4CO2C2H5	C2H4CO2C2H5	СНЗ	OCH3	blau
	16	CN	Cl	СНО	C2H4CO2C2H5	C2H4CO2C2H5	OCH3	OCH3	blau
25	17	CN	C1	CHO	C2H4CB2C4H9	C2H4C02C4H9	CH3	H	blau
	18	CN	Cl	CHO	C2H4CO2C4H9	C2H4C02C4H9	CH3	OCH3	blau
	19	CN	Br	CHO	C2H4C02CH3	C2H4CO2CH3	CH3	н	blau
	20	CN	Br	СНО	C2H4CO2CH3	C2H4C02CH3	NHCOCH3	Н	blau
30	21	CN	Cl	CN	C2H4C02CH3	C2H4CO2CH3	NHCOCH3	Н	blau
	22	CN	Cl	CN	C2H4CO2C2H5	C2H4CD2C2H5	CH3	H	blau
	23	CN	Cl	CN	C2H4CO2C2H5	C2H4CO2C2H5	CH3	OCH3	blau
	24 -	CN	Cl	CN	C2H4CO2C3H7	C2H4CO2C3H7	CH3	OCH3	blau
35	25	CN	Cl	CN	C2H4CO2C3H7	C2H4CO2C3H7	н	OCH3	blau
	25	CN	Cl	CN		C2H4C02C4H9		H	blau
	27	CO2Et	Cl	CHO	C2H4C02C4H9	C2H4CO2C4H9	CH3	H	blau
	28	CO ₂ Et	Cl	СНО	C2H4C02CH3	C2H4CO2CH3	NHCOCH3	H	blau
40	29	CO ₂ Et	Cl	CHO	C2H4CO2CH3	C2H4C02CH3	CH3	OCH3	blau
	30	CO2Et	Cl	CHO	C2H4CO2CH3	C2H4CO2CH3	NHCOCH3	OCH3	blau
	31	CO ₂ Et	Cl	CHO	C2H4CO2CH3.		_0.CH3	0CH3	blau
	32	CO ₂ Et	Cl	CHO	C2H4CO2C3H7	C2H4CO2C3H7	CH3	OCH3	blau
45	33	CN	1)	CHO	C2H4CO2CH3	C2H4CO2CH3	CH3	0CH3	blau
	34 -	CN	1)	CHO	C2H4CO2CH3	C2H4CO2CH3	CH3	H .	blau

	Bsp.	X	Y	Z	R ¹	R 2		R3	R 4	Farbton
	Nr.		٠							auf PES
5										
	35	CN	1)	CHO	C2H4CO2CH3	C2H4CO2CH3	NHC	OCH3	H	blau
	36	CN	2)	CHO	C2H4CO2CH3	C2H4CO2CH3	NHC	OCH3	H	blau
	37	CN	2)	CHO	C2H4CO2CH3	C2H4CO2CH3	CH3		OCH3	blau
10	38	CN	2)	CHO	C2H4CO2CH3	C2H4CO2CH3	ОСН	3	OCH3	blau
	39	CN	2)	CHO	C2H4CO2C2H5	C2H4C02C2H5	CH3		Н	blau
	40	CN	2)	CHO	C2H4CO2C2H5	C2H4CO2C2H5	H		OCH3	blau
	41	CN	3)	CHO	C2H4CO2C2H5	C2H4C02C2H5	CH3		0CH3	blau
15	42	CN	3)	CHO	C2H4CO2CH3	C2H4CO2CH3	CH3		0CH3	blau
	43	CN	3)	CHO	C2H4C02CH3	C2H4CO2CH3	осн	3	н	blau
	44	CN	3)	CHO	C2H4CO2CH3	C2H4CO2CH3	Н	•	H	rotsti.
										blau
20	45	CN	Cl	NO ₂	C2H4CO2CH3	C2H4CO2CH3	H		H	blau
	46	CN	Cl	NO ₂	C2H4CO2CH3	C2H4CO2CH3	СНЗ		Н	blau
	47	CN	Cl	NO ₂	C2H4C02C2H5	C2H4CO2C2H5	CH3		Н	blau
	48	CN	Cl	4)	C2H4CO2CH3	C2H4CO2CH3	Н		н	blau
25	49	CN	Cl	4)	C2H4CO2CH3	C2H4CO2CH3	CH3		Н	blau
	50	CN	Cl	5)	C2H4CO2CH3	C2H4CO2CH3	Н		Н	blau
	51	CN	Cl	3)	C2H4CO2CH3	C2H4CO2CH3	CH3		OCH3	blau
	52	CN	Cl	3)	C2H4CO2CH3	C2H4CO2CH3	NHC	OCH3	OCH3	grūnst.
30	•									blau
	53	CN	0C2H5	4)	C2H4CO2CH3	C2H4CO2CH3	CH3		Н	blau
	54	CN	Cl	CHO	C2H4CO2CH3	C2H4OH		NHCOCH3	Н	blau
35	55	CN	Cl	CHO	C2H4CO2CH3	C4H8OH		CH3	H	blau
	56	CN	Cl	CHO	C2H4CO2CH3	C2H40C00	:H3	CH3	OCH3	blau
	57	CN	Cl	CHO	C2H4CO2CH3	C2H40C00	H ₃	NHCOCH3	Н	blau
	58	CN	C1	CHO	C2H4CO2CH3	C4H80C00	Нз	CH3	Н	blau
40	59	CN	Cl	CHO	C2H4CO2CH3	6)		CH3	Н	blau
	60	CN	Cl	CHO	C2H4CO2C2H5	C2H40C00	:H3	Н	OCH3	blau
	6,1	CN	Cl	CHO	C2H4CO2C2H5	C2H5		CH3	Н	blau
	62	CN	CI	CHO	C2H4CO2C2H5	C4H9		CH3	OCH3	blau
45	63	CN	CI	CHO	C2H4CO2C2H5	CH2C6H5		CH3	Н	blau
	64	CN	Cl	CHO	C2H4CO2CH3	H		Н	OCH3	blau
	65	CN	Cl	CN	C2H4CO2CH3	C2H40C00	:H3	CH3	OCH3	blau
	66	CN	Cl	CN	C2H4CO2CH3	C ₂ H ₄ OH		CH3	Н	blau
50	67	CN	Cl	NO ₂	C2H4CO2CH3	C4H80C00	:H3	Н	H	blau

	Bsp. Nr.	X	Υ .	7	R 1	R 2	R3	R4	Farbton auf PES	
5	68	CN	Cl	CH=-⟨CN CO ₂	C2H4CO2CH3	C ₂ H ₄ OH	Н	Н	blau	
										ã.
10	69	CN	Cl	СНО	CH2CO2CH3	CH2CO2CH3	NHCOCH3	Н	violett	
	70	CN	CI	СНО	CH2CO2CH3	C ₂ H ₅	H	Н	violett	*
	71	CN	Cl	сно	CH2CO2CH3	CH2-	NHCOCH3	н	blau	

20 Ansprüche

15

30

1. Verfahren zur Herstellung von Ätzdrucken auf synthetischem Textilmaterial durch Behandlung des Textilmaterials mit Farbstoff und alkalisch wirkender Druckpaste in beliebiger Reihenfolge und anschließendem Dämpfen und Waschen des behandelten Textilmaterials, dadurch gekennzeichnet, daß man das Textilmaterial mit Thiophenazofarbstoffen der Formel I

$$Z = X \qquad X \qquad R^4 \qquad (1)$$

behandelt, in der

X Cyano, Nitro, C₁-C₄-Alkanoyl, Benzoyl oder C₁-C₄-Alkoxycarbonyl,

Y Halogen, Hydroxy, Mercapto, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkoxy, C_5 - C_7 -Cycloalkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkylthio, C_5 - C_7 -Cycloalkylthio, gegebenenfalls substituiertes Phenylthio, C_1 - C_6 -Alkylsulfonyl oder gegebenenfalls substituiertes Phenylsulfonyl,

Z C₁-C₄-Alkyl, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkanoyl, Benzoyl, C₁-C₄-Alkylsulfonyl, Phenylsulfonyl oder eine Gruppe der Formel -CH = CB¹B² oder -CH = N-B³, wobei B¹ und B² gleich oder verschieden sind und unabhängig voneinander jeweils für Cyano, C₁-C₆-Alkoxycarbonyl, dessen Alkylkette gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, oder C₃-C₆-Alkenyloxycarbonyl oder ein Rest B¹ oder B² für Cyano und der andere für C₁-C₄-Alkylsulfonyl, gegebenenfalls substituiertes Phenyl, Benzoyl, Phenylsulfonyl oder Carbamoyl und B³ für Hydroxy, C₁-C₄-Alkoxy, Phenoxy oder Phenylamino stehen,

R¹ den Rest A-COOB⁴, wobei A für C₁-C₄-Alkylen und B⁴ für C₁-C₆-Alkyl, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen und/oder durch Phenyl substituiert ist, C₅-C₇-Cycloalkyl oder Phenyl stehen,

R² den Rest R¹, Wasserstoff, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkyl, C_5 - C_7 -Cycloalkyl oder C_2 - C_4 -Alkyl, das durch Hydroxy, C_1 - C_4 -Alkanoyloxy gegebenenfalls substituiertes Benzoyloxy, C_1 - C_4 -Alkoxycarbonyloxy, C_1 - C_4 -Mono-oder Dialkylaminocarbonyloxy oder gegebenenfalls substituiertes Phenylaminocarbonyloxy substituiert ist,

 R^3 Wasserstoff, Methyl, Methoxy, Chlor, gegebenenfalls substituiertes C_1 - C_6 -Alkanoylamino oder Benzoylamino und

Rt Wasserstoff, Methyl, Methoxy oder Ethoxy bedeuten.

- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man das Textilmaterial mit Thiophenazofarbstoffen der Formel I behandelt, in der
- X Cyano oder C₁-C₄-Alkoxycarbonyl
- Y Chlor, Brom, C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylthio, Phenylthio oder Phenylsulfonyl,

5	Formyl, Cyano, Nitro oder eine Gruppe der Formel -CH = CB¹B², wobei B¹ und B² gleich oder verschieden sind und jeweils unabhängig voneinander für Cyano oder C₁-C₄-Alkoxycarbonyl stehen, R¹ C₁-C₄-Alkoxycarbonylethyl und R² C₂-C₄-Hydroxyalkyl, C₁-C₄-Alkanoyloxy-C₂-C₄-alkyl oder C₁-C₄-Alkoxycarbonylethyl bedeuten und R³ und R⁴ jeweils die in Anspruch 1 genannte Bedeutung besitzen. 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man das Textilmaterial mit Thiophenazofarbstoffen der Formel I behandelt, in der X Cyano oder C₁-C₂-Alkoxycarbonyl Y Chlor, Brom, Ethoxy, Phenylthio oder Phenylsulfonyl,
10	Z Formyl oder Cyano R¹ C ₁ -C ₄ -Alkoxycarbonylethyl, R² C ₂ -C ₄ -Hydroxyalkyl, C ₁ -C ₄ -Alkanoyloxy-C ₂ -C ₄ -alkyl oder C ₁ -C ₄ -Alkoxycarbonylethyl, R³ Wasserstoff, Methyl, Methoxy, Chlor, Acetylamino oder Benzoylamino und
15	R ⁴ Wasserstoff, Methoxy oder Ethoxy bedeuten.
20	
25	
30	
35	
40	
45	
50	
55	

BASF Aktiengesellschaft · D-6700 Ludwigshafen

wigshafen E P C ... A C USO reception A C USO reception

;3G

Europäisches Patentamt Erhardtstraße 27

0-8000 München 2

880

25.07.1988

Patentabteilung-C6
ZSP/D - ak5148

Dr. Karg
Tel. 0621/60 43895
Telex 17 62 157 170

Ttx 62 157 170=BASF Tfx 0621/60 43123

EP-Anmeldung Nr. 88 108 362.0 - 0.Z. 0050/39225

Wie wir leider erst jetzt feststellen, befindet sich auf Seite 2, Zeile 11, der obengenannten Anmeldung ein Fehler. Anstelle von "Benzoyl" sollte hier "Benzoyloxy" stehen. Dieser Fehler ist offensichtlich, da in Anspruch 1 die Definition von R² korrekt wiedergegeben ist. Als Anlage fügen wir die korrigierte Seite 2 bei.

Wir bitten, dieses Versehen zu entschuldigen.

BASF Aktiengesellschaft

i.A. Karg

Anlage 3fach

korr. S. 2

Zum Zwecke der Veröffentlichung,

Berichtigung(en)

stattgegeben

stattgegeben mit Ausnahme

der gestrichenen Punkte

Inicht stattgegeben

Unterschrift:

Datum:

18.08.88

Eingangsstelle

1071

Telefon (0621) 60-0 (Vermittlung)
Telefax (0621) 60-42525 (Zentrale)
Telex 46499-0 bas d (Vermittlung)
Teletex 62157 = BASF (Vermittlung)
Telegramme: BASF Ludwigshafenrhein

Bankverbindung: Landeszentralbank 6700 Ludwigshafen, Girokonto 54507300 (BLZ 54500000) Sitz der Gesellschaft: D-6700 Ludwigshafen Aufsichtsratsvorsitzender: Matthias Seefelder Vorstand: Hans Albers, Vorsitzender; Hans Detzer, stellv. Vorsitzender; Detlef Dibbern; Helmut Dörfel; Wolfgang Jentzsch; Ingo Paetzke; Ronaldo Schmitz; Jürgen Strube; Dietmar Werner; Karl-August Wetjen; Herbert Willersinn; Hans Joachim Witt Registergericht: Amtsgericht Ludwigshafen, Eintragungsnummer: HRB 2000