
J >

Europaisches Patentamt

European Patent Office

Office europeen des brevets

0 2 9 6 4 3 0

A 2
Publication number:

E U R O P E A N PATENT A P P L I C A T I O N

© Int. Ci.4: G06F 12 /08 © Application number: 88109289.4

@ Date of filing: 10.06.88

® Priority: 22.06.87 US 65238

© Date of publication of application:
28.12.88 Bulletin 88/52

© Designated Contracting States:
DE FR GB

© Applicant: International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504(US)

@ Inventor: Liu, Lishing
196 Deerfield Lane North
Pleasantville N.Y. 10570(US)

© Representative: Grant, lain Murray et al
IBM United Kingdom Limited Intellectual
Property Department Hursley Park
Winchester Hampshire SO21 2JN(GB)

Sequential prefetching with deconfirmation.

© A computer memory management method for
cache memory (10) uses a deconfirmation technique
to provide a simple sequential prefetching algorithm.
Access sequentiality is predicted based on simple
histories. Each memory line in cache memory is
associated with a bit in an S-vector (20), which is
called the S-bit for the line. When the S-bit is on,
sequentiality is predicted meaning that the sequen-
tially next line is regarded as a good candidate for
prefetching, if that line is not already in the cache
memory. The key to the operation of the memory
management method is the manipulation (turning on
and off) the S-bits. i — -12

I/E-Units

0
-10

i 1K Cache i
j Directory Cache Arrays >

i S- Vector f-20 j

CO
<j>
CM

LU
F I G . 2

-14 Second. Level Memory/Cache

Xerox Copy Centre

EP 0 296 430 A2

SEQUENTIAL PREFETCHING WITH DECONRRMATION

Used), while the line that was accessed the longest
time ago is called the LRU (Least-Recently-Used).
Normally, when a replacement is needed in a con-
gruence class, as for example the insertion of a

s new line, the LRU entry will be selected to be
replaced. Each time a line is accessed in the
cache, it will be reflected properly as the MRU in
its congruence class.

High speed processor performance relies heav-
w ily on a high hit ratio to cache. One way to en-

hance the cache hit ratio is to anticipate the access
of certain lines beforehand and fetch them into the
cache even before they are requested by the I/E-
units. In this way, the delay cycles associated with

is a main memory fetch upon a cache miss will be
saved or reduced. However, predicting accesses
beforehand is not easy, especially when it is also
desired to have higher accuracy in the prediction
mechanisms.

20 Prefetch algorithms are generally based on ob-
served behavior of computer programs. For exam-
ple, locality is a strong property that is observed in
almost all programs. It means that memory ac-
cesses tend to concentrate on relatively few data

25 blocks during any short time interval.
The subject invention is concerned with se-

quential prefetching of cache lines using a predic-
tion scheme based on a special type of locality
behavior, which is referred to herein as sequen-

30 tiality. Sequentiality means that, when a line is
accessed by a processor, the sequentially next line
tends to be, but is not always, accessed soon
thereafter. Consider, for example, the set of lines in
the memory ordered according to addresses into a

35 set {LJ. Upon an access to Lif a decision may be
made to prefetch L^i into the cache if it is not
resident there. However, it is known to be important
to recognize whether a prefetched line has poten-
tial to be referenced in order to reduce penalties on

40 traffic and cache replacements. Hence, if the phys-
ically sequential next line is prefetched into the
cache upon a current access, the miss penalties
associated with a main memory access may be
saved if indeed the prefetched line is accessed by

45 the l/E-units shortly afterwards. The subject inven-
tion is specifically directed to ways of improving
the prediction accuracy and realizing the improved
accuracy in practice.

Field of the Invention

The present invention is generally related to
computer memory management techniques and,
more particularly, to a deconfirmation technique to
provide a simple sequential prefetching algorithm
implementation in cache memory.

Description of the Prior Art

Modern high-performance stored program digi-
tal computers conventionally fetch instructions from
main memory and store the fetched instructions in
a cache memory. A cache memory is a relatively
small high speed hardware buffer that interfaces
with the central processing unit (CPU) of the com-
puter. Because an instruction in cache can be
immediately accessed by the CPU, caches have
been used to speed up computer performance.
The basic idea is to prefetch instructions from main
memory based on a prediction algorithm and store
the prefetched instructions in the cache memory.
When the next instruction in a sequence of instruc-
tions is required by the CPU, a determination is
first mad.e as to whether the instruction is already
in cache memory (a cache hit) or not (a cache
miss), and if it is, to read the instruction from cache
to the CPU, otherwise to read the instruction from
main memory, a process which can take several
CPU cycles and significantly degrades computer
performance. The goal is to make the prefetch
algorithm as accurate as possible and thereby
minimize cache misses without excessive prefetch
traffic.

Caches are normally organized as a two-di-
mensional table as illustrated in Figure 1. Each
memory access from the instruction or execution
(I/E) units of the CPU is indexed to a particular
column, called a congruence class, of the cache 6.
Such indexing is via some fixed bits in the memory
access address 8. Within each congruence class,
there are a fixed number of lines in cache- The
number of lines in each congruence class is called
the set-associativity of the cache. Such a cache
access results in a cache miss if the line is not
found in the congruence class. The cache directory
control manages a certain priority for each con-
gruence class, which indicates relatively how re-
cently each line in the congruence class was ac-
cessed. Within a congruence class, a line that was
last accessed is called the MRU (Most-Recently-

50
SUMMARY OF THE INVENTION

It is therefore an object of this invention to
provide a technique for prefetching of instructions

EP 0 296 430 A2

in a stored program digital computer with substan-
tial cache miss reduction and high prefetch accu-
racy thereby improving the performance of the
computer.

It is another object of the present invention to
provide an inexpensive and easily implemented
instruction prefetch technique which accurately pre-
dicts access sequentiality based on simple his-
tories.

According to the invention, a simple prefetch-
ing algorithm is implemented using deconfirmation
techniques. The basic concept of the invention is
illustrated for sequential prefetching of instruction
lines (l-lines). First, consider a bit (R-bit) per cache
line entry, which indicates whether the current line
at the entry has actually been accessed. For each
memory line L,-, an S-bit (Sj) indicates whether
prefetching of L,t1 should be considered when L, is
accessed. Initially, all S-bits and R-bits are turned
on. When a line is actually accessed, which may
cause a miss itself, the R-bit of the entry will be
turned on. The R-bit is turned off when a prefetch-
ed line is just brought into the entry. Upon an
access, e.g., from the l/E-units, to a non-MRU line,
say, Lh a decision is made to prefetch Lj+, into the
cache when Si is one, if U-m is not resident there.
When a line Li+1 is moved out of the cache, e.g.,
due to replacement or other reasons, a check is
made to determine whether the R-bit for the re-
placed line is off. If so, Si is turned off to deconfirm
the sequentiality. The basic concept may be modi-
fied in varous ways, including the elimination of the
R-bits.

Figure 5 is a flow diagram showing the de-
cision logic of prefetching used in the cache ac-
cess logic of Figure 4;

Figure 6 is a flow diagram showing logic for
5 resetting the S-bits of the S-vector according to the

invention;
Figure 7 is a flow diagram showing an alter-

native logic for resetting the S-bits of the S-vector
according to the invention;

w Figure 8 is a flow diagram showing another
alternative logic for resetting the S-bits of the S-
vector according to the invention;

Figure 9 is a flow diagram showing a modi-
fication to the basic cache access logic shown in

75 Figure 4;
Figure 10 is a flow diagram showing an

alternative decision logic of prefetching for use with
the modified basic cache access shown in the flow
diagram of Figure 9;

20 Figure 1 1 is a flow diagram showing another
modification to the basic cache access logic of
Figure 4 which uses no R-bits; and

Figure 12 is a flow diagram of the decision
logic of prefetching for use with the modified basic

25 cache access logic shown in Figure 1 1 using no R-
bits.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT OF THE INVENTION 30

In the cache management scheme according
to the invention, the memory, as illustrated in Fig-

35 ure 1A, is viewed as consecutive blocks or lines . .
. U-1, U, U*! . . . The goal is to prefetch the
sequential next line into cache. The approach taken
by the invention is to provide one bit per line,
referred to as the S-bit, as a sequentiality flag and

40 to manage the sequentiality flags by deconfirma-
tion.

Referring now to Figure 2 of the drawings,
there is shown a high level block diagram illustrat-
ing the architecture of the cache memory 10 ac-

45 cording to the subject invention. The cache mem-
ory 10 is interposed between the l/E-units 12 and a
second level memory or cache 14. The second
level memory may, in the simplest case, be the
main memory, but in more complex systems, it

so may be another level of cache memory. In any
case, the memory 14 is a relatively slower memory
than the cache memory 10. Cache memory 10
includes cache arrays 16, corresponding to the
cache 6 shown in Figure 1, and a cache directory

55 18 containing the access address bits 8 shown in
Figure 1. The present invention adds an S-vector
20 which is used in the deconfirmation algorithm
implemented by the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and
advantages of the invention will be better under-
stood from the following detailed description of the
invention with reference to the drawings, in which:

Figure 1 is a block diagram illustrating a
conventional two-dimensional organization of a
chche memory showing congruence class selec-
tion;

Figure 1A is a block diagram illustrating a
conceptual picture of memory as consecutive
blocks or lines;

Figure 2 is a block diagram showing the
modification to cache memory control to include an
S-vector;

Figure 3 is a bit map showing the cache
directory entry and the relationship of the S-vector
to lines of the cache memory;

Figure 4 is a flow diagram showing the basic
cache access logic according to the invention;

EP 0 296 430 A2

vector. The flow diagram illustrating the basic
scheme for resetting of the S-bits is shown in
Figure 6. The flow diagram is entered at function
block 300 when line LiT, from the cache is re-

5 placed. A test is made in decision block 310 to
determine if the R-bit for the line is on. If it is, then
there is no change to the Sj-bit or the Sj-bit is
turned on, depending on design choice. On the
other hand, if the R-bit is not on, the Sj-bit is turned

m off.
An alternative to the resetting of the S-bits is

shown in the flow diagram of Figure 7. This flow
diagram is entered at function block 400 when a
miss occurs on line Li+t accessed from the I/E-

15 units. A test is made in decision block 410 to
determine if line Lj is in the cache. If it is, the Srbit
is turned on in function block 420, but if it is not,
there is no change to the Sj-bit in function block
430.

20 A second alternative to the' resetting of the S-
bits is shown in Figure 8. In this case, a test is
made in decision block 450 to determine if the line
U has been accessed lately. If it has, the Sj-bit is
turned on in function block 460; otherewise, there

25 is no change to the Sj-bit in function block 470.
Returning briefly to Figure 4, the basic cache

access procedure may be modified by replacing
function block 150 with the flow diagram shown in
Figure 9. More specifically, upon accessing Li+1, a

30 negative test output from decision block 140 is
followed by a test in decision block 152 to deter-
mine if the R-bit is on. If it is, flow goes to function
block 160 as before; otherewise, the R-bit and the
Sj-bit are both turned on in function block 154 to

35 deconfirm the sequentiality momentarily. When
sequentiality of a prefetched line is detected again
by the test in decision block 152, the S-bit will be
again turned on.

Figure 10 shows a modification to the decision
40 of prefetching shown in Figure 5 for use with the

modification to the basic cache access logic shown
in Figure 9. This modification changes function
block 220 to 220a where the sequential next line is
prefetched into cache as before, but in addition to

45 turning the R-bit off at the new entry and keeping
the new line at the LRU position, the S-bit is also
turned off.

It is possible to operate the invention with no
R-bits, and the modifications needed for this case

so are shown in Figures 11 and 12. Figure 11 is a
modification of the basic cache access flow dia-
gram shown in Figure 4 and, like Figure 9, repre-
sents a replacement for the function block 150. In
this case, a test is made in decision block 156 to

55 determine if the line is at the LRU position in
cache. If not, control passes to function block 160
as before; otherwise, the Sj-bit is turned on in
function block 158 before control passes to func-

Figure 3 shows the cache directory entry as
comprising an address which identifies a particular
line in the cache array 16, a validity tag (V-tag),
and a reference tag(R-tag), as well as other bits
which are not pertinent to the subject invention.
The R-tag or R-bit as used in this invention is to be
distinguished from a memory reference bit which
may be architectually defined. According to the
present invention, the R-bits are used to help ma-
nipulate the S-bit histories, but as will be made
clear hereinafter, the prefetching mechanism ac-
cording to the invention may be implemented with-
out using R-bits in the cache directory. The S-
vector is composed of a plurality of bits equal in
number to the number of lines in the main mem-
ory, there being one bit, S,, per physical line, Lr, of
the main memory. As will become clear from the
following description, the S-vector provides a his-
tory of sequentiality of the lines in the cache array.

The basic cache access flow diagram is shown
in Figure 4. Initially, the cache is empty, all V-bits
are off, and all S-bits are on. The flow diagram is
entered at block 100 when there is a cache access
from the l/E-units. In decision block 110, a test is
made to determine if there is a cache hit. Assum-
ing the initial condition that the cache is empty,
there will be a cache miss so the control branches
to function block 130 where the requested line is
fetched from main memory via the miss handler.
This line is made the MRU line in function block
160, and in decision block 200, a test is made for
prefetch. This test will be described in more detail
in connection with the description of Figure 5.

Assume on the other hand that the test in
decision block 110 is positive; i.e., there is a cache
hit. In that case, the line in cache is accessed in
function block 120 and data sent directly to the
requesting I/E - units. A test is also made in de-
cision block 140 to determine if the line accessed
is at the MRU position of the cache. If it is, the
cache access procedure is completed; otherwise,
the R-bit is turned on in function block 150, and the
line is made the MRU line in function block 160.

Figure 5 shows the flow diagram for the test for
prefetch. This flow diagram is entered at decision
block 205 by testing the S-bit associated with the
line to see if it is on. If not, there is no prefetch. If
the S-bit is on, then a test is made in decision
block 210 to determine if the sequential next line is
presently in the cache. If it is, there is no prefetch.
However, if the sequential next line is not presently
in cache, it is prefetched into cache in function
block 220 replacing the LRU entry in its associated
congruence class. At the same time, the R-bit is
turned off at the new entry, and the new line is kept
at the LRU position in the cache.

Key to the operation of the invention is the
management of the S-bits which comprise the S-

EP 0 296 430 A2

tion block 160.
Figure 12 shows the modification of the de-

cision of prefetching with no R-bits and represents
a modification of the flow diagram shown in Figure
5. In this case, function block 220 is replaced by
function block 220b where instead of turning the R-
bit off at the new entry, the S-bit is turned off.

Through experiments, it was found highly de-
sirable to prefetch instruction lines into LRU posi-
tions of a cache congruence class, instead of at the
MRU position. In this case, the turning on of R-bits
is practically not necessary when non-LRU lines
are accessed.

It is possible to turn the S-bits back on when
sequentiality is detected again. One way, referred
to as the Strong Sequentiality Test, is to turn Si on
when a cache miss of L,*, occurs when L, is found
to be still in cache. This is shown in Figure 7.
Another alternative is to turn S, on when a cache
miss of Li+1 occurs when the previous access was
found to be on Lh as shown in Figure 8.

An S-bit needs not to correspond to just one
line in the memory. The trade off is between Direc-
tory space and performance. The S-bits may be
implemented through a separate directory or table.
The requirement is that, for any given line address,
a fixed coordinate of a bit should be identified to
record and test sequentiaiity.

The R-bits need not be physically located at
the cache directory itself. When prefetches are to
LRU positions, it is not necessary to associate an
R-bit per cache line entry. In this case, only an R-
bit per congruence class is needed, corresponding
to the referenced status for the LRU positioned
line. The R-bit of a congruence class is turned off
only when a line is prefetched into the LRU posi-
tion of the congruence class. The R-bit of the
congruence class is turned on whenever the LRU
line in it is actually accessed. When a line is
moved out of the cache, the S-bit associated with
its sequential predecessor is turned off if it is
detected that the R-bit of the corresponding con-
gruence class is still off and the R-bit is turned on
after the detection. This is shown in the implemen-
tation of the base algorithm of the flow diagram in
Figure 6. The R-bit vector does not need to be
located physically at the cache directory and may
be associated at the prefetch control. Communica-
tions between the cache directory control and the
prefetching control can be implemented with rather
simple signals.

In order to simplify control and communication,
it may be beneficial, upon an access of U, to turn
Si off when U*\ is determined to be prefetched.
Such Si is turned on when the prefetched Li+1 is
actually accessed the first time with the associated
R-bit off. This R-bit should be turned on afterwards.
In this way, it is not necessary to send the address

of a replaced line to the prefetch control to find the
proper S-bit to turn on or off.

Sequential prefetch testing, and other asso-
ciated operations, may be done upon an access of

5 a cache line only when the R-bit for the sequential
next line is on. This will reduce many redundant re-
testing of prefetching conditions. It is also possible,
when the prefetching control tends to cause con-
tention, to perform prefetching only upon cache

w misses.
It is possible to combine other prefetching

schemes with the invention. For instance, it was
found to be useful to improve prefetch accuracy to
prefetch next line (when the S-bit is on) only when

75 the currently accessed word is within the last 3/4
portion of the line.

In the above, what has been considered is pure
LRU replacements in which an LRU line stays LRU
until it is referenced or replaced. For PLRU

20 (Partitioned LRU) replacements, it is possible to
use an extra bit per congruence class for the R-
vector to record the exact coordinate of the
prefetched lines.

The central idea of the invention is to predict
25 access sequentiality based on simple histories. In-

tuitively, the history will show the benefit of
sequentiality for a line L,- if the sequential next line
Li+1 was found to be active when U was accessed
the previous time. The S-vector is for the recording

30 of such histories. Each memory line is associated
with a bit in the S-vector, which is called the S-bit
of the line. When the S-bit is on, sequentiaiity is
predicted meaning that the sequentially next line is
regarded as a good candidate for prefetching, if it

35 is not already in the cache. The key to the opera-
tion of the invention is the manipulation (turning on
and off) of the S-bits. The base algorithm shown in
Figure 6 shows how this manipulation is accom-
plished. Figures 7 and 8 show alternatives to the

40 base algorithm.
Performance studies have shown that the in-

vention can save 39-52% of l-cache misses with an
accuracy from 79% to over 94%

The invention has been described for the se-
45 quential prefetching of l-lines. The teachings of the

invention may be applied to various cache or-
ganizations and for sequential prefetching of dif-
ferent line types.

50
Claims

1. A method for prefetching lines from main
memory (14) into a cache memory (10) of a com-

55 puter comprising the steps of:
" assigning an S-bit to each cache line, said S-

bit being indicative of whether said cache line
should be prefetched when a preceeding cache

EP 0 296 430 A2 10

performing the following additional steps of testing
the R-bit for the new line to determine if it is on,
and if it is not, turning said S-bit and said R-bit on.

8. The method of prefetching lines into a cache
memory as recited in claim 7 wherein when said
next sequential line is prefetched into the cache
memory, further comprising the step of turning the
S-bit and the R-bit off at the new entry of the cache
memory.

9. The method of prefetching lines into a cache
memory as recited in claim 1 wherein when said
new line is prefetched into the cache memory,
performing the following additional steps of testing
to determine if the line is in the Least-Recently-
Used position, and if it is, turning the S-bit for the
line on.

10. The method of prefetching lines into a
cache memory as recited in claim 9 wherein when
said next sequential line is prefetched into the
cache memory, preforming the additional step of
turning the S-bit off for that line.

line is accessed said S-bit initially being set on;
testing an access to the cache memory to

determine if an accessed line is in the cache
memory, and if it is, accessing the line;

otherwise, fetching the accessed line from
main memory;

testing the accessed line in the cache memory
to determine if it is in a Most-Recently-Used posi-
tion, and if it is not, making the line the Most-
Recently-Used;

testing said S-bit for the accessed line to
determine if it is on, and if it is, testing to deter-
mine if a sequential next line is in the cache
memory; and

if said sequential next line is not in the cache
memory, prefetching the sequential next line into
the cache memory as a new line and keeping the
new line at a Least-Recently-Used position in the
cache memory

2. The method of prefetching lines into a cache
memory as recited in claim 1 further comprising
the steps of:

assigning an R-bif to each cache line entry,
said R-bit being indicative of whether the current
line at entry has actually been accessed, said R-bit
initially being set on; and

when said sequential next line is prefetched
into the cache memory as a new line, turning said
R-bit off at said new line.

3. The method of prefetching lines into a cache
memory as recited in claim 2 further comprising
the step of turning said R-bit on when making an
accessed line in the cache memory the Most-
Recently-Used..

4. The method, of prefetching lines into a cache
memory as recited; in claim 3 wherein when a next
sequential line is replaced from the cache memory,
further comprising the steps of testing the R-bit to
determine if it is on, and if it is not, turning the S-
bit for the preceding line in the cache memory off.

5. The method of prefetching lines into a cache
memory as recited in claim 3 wherein when there
is a miss on a next sequential line on an access to
the cache memory, further comprising the steps of
testing to determine if the preceding line is in the
cache memory, and if it is, turning the S-bit for the
preceding line on.

6. The method of prefetching lines into a cache
memory as recited in claim 3 wherein when there
is a miss on a next sequential line on an access to
the cache memory, further comprising the steps of
testing a preceeding line in the cache memory to
determine if it has been accessed lately, and if it
has, turning the S-bit on.

7. The method of prefetching lines into a cache
memory as recited in claim 2 wherein when said
new line is prefetched into the cache memory,

10

75

20

25

30

35

40

45

50

55

EP 0 296 430 A2

A c c e s s A d d r e s s B i t s
8

C o n g r u e n c e

v C l a s s

\ S e l e c t i o n

• • • • • • C a c h e

F I G . 1

P R I O R A R T

I / E - U n i t s

C a c h e

L;_, L; L1+I

M e m o r y

F I G . 1 A

I B M - Y O 986 096

EP 0 296 430 A2

@12
I / E - U n l t s

0

•10

16-
\ l

C a c h e
D i r e c t o r y C a c h e A r r a y s

^__*_— h___t_
S - V e c t o r L 20

F I G . 2
•14

S e c o n d Leve l M e m o r y / C a c h e

C a c h e D i r e c t o r y E n t r y

I A d d r e s s | V | R • • •

A d d r e s s A d d r e s s I d e n t i f i c a t i o n of C a c h e L i n e
V - T a g V a l i d i t y T a g
R - T a g R e f e r e n c e T a g

S - V e c t o r (H i s t o r y o f S e q u e n t i a l i t y)

C o n c e p t u a l : O n e B i t (S ^ p e r P h y s i c a l L i n e (L j)

M e m o r y L i . L i + 1 i - 1

S - V e c t o r S i - l i + 1

F I G . 3

IBM-YO 986 096

EP 0 296 430 A2

C a c h e A c c e s s
F r o m

I / E - U n i t a

Yes / r . a n h e ^ N o
X t f i t ? /

120 i 30

A c c e s s D a t a F e t c h t h e L i n e
I v i a M i s s

1 H a n d l e r

Y e s

D o n e

F I G . 4

I B M - Y O 986 096

EP 0 296 430 A2

F I G . 5

2 0 5

Y e s

/ I s t h e \
S e q u e n t i a l
N e x t L i n e

A n C a c h e ? /

NO
P r e f e t c h N o Y e s

2 2 0

P r e f e t c h t h e
S e q u e n t i a l N e x t
L i n e i n t o C a c h e

T u r n R - B i t O F F
at New E n t r y -

K e e p New L i n e
at LRU P o s i t i o n

No P r e f e t c h

3 0 0
W h e n R e p l a c e
L i n e L j - n f r o m
t h e C a c h e

F I G . 6

Y e s

3 2 0 3 3 0
No C h a n g e

to Sj - B i t
Or , T u r n

S; - B i t ON

I B M - Y O 986 096

EP 0 296 430 A2

4 0 0
W h e n M i s s o n
L i n e L j + i f r o m
I / E - U n i t

Y e s N o
L i n e L[i n

V C a c h e ? /

4 2 0 4 3 0
T u r n

S i - B i t
O N

No C h a n g e
o n S| — B i t

F I G . 7

4 0 0

W h e n M i s s o n
L i n e L i + i f r o m
I / E - U n i t

4 5 0

Y e s N o
A c c e s s e d
^ L a t e l y ? ^

4 7 0
No C h a n g e

o n Sj— B i t

F I G . 8

I B M - Y O 986 096

EP 0 296 430 A2

152

N o

F I G . 9 154 T u r n O N

Sj - B i t
R - B i t

Y e s u

1 6 0

2 0 5

Y e s

> ^ \ 2 1 0
X l s t h e \
S e q u e n t i a l
N e x t L i n e

A n C a c h e ? /

NO
P r e f e t c h N o Y e s

2 2 0 a
P r e f e t c h t h e

S e q u e n t i a l N e x t
L i n e i n t o C a c h e

T u r n S - B i t O F F
T u r n R - B i t O F F

at New E n t r y
K e e p New- L i n e

at LRU P o s i t i o n

No P r e f e t c h

F I G . 1 0

I B M - Y O 986 096

EP 0 296 430 A2

Y e a

F I 6 . i l

T u r n ON

Sj - B i t
N o

158

1 6 0

2 0 5

Y e s

/ i s t h e \
S e q u e n t i a l
N e x t L i n e

An C a c h e ? /

P r e f e t c h N o Y e s

2 2 0 b
P r e f e t c h t h e

S e q u e n t i a l N e x t
L i n e i n t o C a c h e

T u r n S - B i t O F F
K e e p New L i n e

at LRU P o s i t i o n

No P r e f e t c h

F I G . 1 2

I B M - Y O 986 096

	bibliography
	description
	claims
	drawings

