11 Publication number:

0 298 321 A2

(2)

EUROPEAN PATENT APPLICATION

2 Application number: 88110100.0

(51) Int. Cl.4: G03C 7/32 , G03C 7/26

(22) Date of filing: 24.06.88

(30) Priority: 25.06.87 JP 158342/87

Date of publication of application: 11.01.89 Bulletin 89/02

Designated Contracting States:
 DE FR GB IT NL

Applicant: FUJI PHOTO FILM CO., LTD. 210 Nakanuma Minami Ashigara-shi Kanagawa 250-01(JP)

② Inventor: Morigaki, Masakazu Fuji Photo Film Co., Ltd.

No. 210 Nakanuma

Minami Ashigara-shi Kanagawa(JP)

Inventor: Seto, Nobuo Fuji Photo Film Co.,

Ltd.

No. 210 Nakanuma

Minami Ashigara-shi Kanagawa(JP)

Representative: Patentanwälte Grünecker, Kinkeldey, Stockmair & Partner Maximilianstrasse 58 D-8000 München 22(DE)

Silver halide color photographic material.

A silver halide color photographic material comprising a support having thereon at least one silver halide emulsion layer, wherein the silver halide color photographic material contains (1) at least one compound selected from the group consisting of compounds represented by the general formula (I), (II) or (III) and dimers or higher polymers containing at least one moiety derived from the compounds, and (2) at least one compound selected from the group consisting of organic color fading preventing agents represented by the general formula (IV) and dimers or higher polymers containing at least one moiety derived from the agents, organic metal complexes containing copper, cobalt, nickel, palladium or platinum as the central metal and having at least one organic ligand having at least one conformation and dimers or higher polymers containing at least one moiety derived from the complexes:

wherein R₁ and R₂ each represents an aliphatic group, an aromatic group or a heterocyclic group; X represents a group capable of being released upon a reaction with an aromatic amine developing agent; A represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond; n represents 0 or 1; B represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; Y represents a group capable of accelerating the addition of an aromatic amine developing agent to the compound represented by the general formula (II); wherein R₁ and X, or Y and R₂ or B may be connected to each other to form a cyclic structure; R represents an aliphatic group, an aromatic group or a heterocyclic group; and Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group,

R₃₀-W-R₃₁ (IV)

wherein R₃₀ represents an aliphatic group, an aromatic group or a heterocyclic group; R₃₁ represents a

hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or

 R_{32} , R_{33} and R_{34} , which may be the same or different, each represents an alkyl group, an alkenyl group or an aryloxy group; W represents -O-, -S- or

 R_{35} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group sulfonyl group, a sulfinyl group, an oxy-radical group or a hydroxy group; wherein R_{30} and R_{30} , or R_{35} and R_{30} or R_{30} may be connected to each other to form a 5-membered to 7-membered ring.

SILVER HALIDE COLOR PHOTOGRAPHIC MATERIAL

FIELD OF THE INVENTION

5

10

30

35

45

50

The present invention relates to a silver halide color photographic light-sensitive material, and more particularly relates to a silver halide color photographic material which exhibits excellent fastness to light, heat and humidity and exhibits less formation of stain.

BACKGROUND OF THE INVENTION

When a silver halide color photographic material is imagewise exposed and developed with an aromatic amine color developing agent, dye images are formed by a reaction of dye image forming coupler(s) (hereinafter simply referred to as coupler(s)) and an oxidation product of the color developing agent formed as the result of development. For a multicolor photographic material, a combination of a yellow coupler, a cyan coupler, and a magenta coupler is usually used.

In general, the quality of photographic images obtained from silver halide color photographic materials is not permanent and degrades during preservation with the lapse of time. Particularly, with respect to color photographs, when they are exposed to light for a long period of time or preserved under conditions of high temperature and high humidity, color fading or discoloration of dye images and discoloration of the white background ordinarily occur and the color images degrade. This degradation of the color image is a fatal defect for recording materials.

In order to eliminate such a defect, various proposals have hitherto been made. Among these proposals, methods of using color fading preventing agents are extremely effective. As such color fading preventing agents, there are known, for example, hydroquinones, hindered phenols, tocopherols, chromans, coumarans, and the compounds formed by etherifying the phenolic hydroxy groups of these compounds as described in U.S. Patents 3,935,016, 3,930,866, 3,700,455, 3,764,337, 3,432,300, 3,573,050 and 4,254,216, British Patents 2,066,975 and 1,326,889, Japanese Patent Publication No. 30462/76, etc.

These compounds may have the effect of preventing color fading and discoloration of dye images, but since the effect is yet insufficient for meeting the customers' requirement for high image quality and the use of these compounds changes the hue, forms fogs, causes poor dispersibility, and causes fine crystals after coating silver halide emulsions, overall excellent effects for color photography have not yet been obtained by the use of these compounds.

Further, it has recently been found that color stain occurs during preservation after development processing owing to the fact that components of the processing solutions remain in the processed photographic materials. Of the components of processing solutions, the use of a color developing agent is particularly of concern because it causes the occurrence of color stain. For the purpose of preventing the occurrence of color stain, the effectiveness of certain amine compounds have been proposed in U.S. Patents 4,463,085 and 4,483,918, Japanese Patent Application (OPI) Nos. 218445/84 and 229557/84, etc. (the term "OPI" as used herein means a "published unexamined patent application").

However, these compounds are still insufficient in achieving an overall preservability of color photographs, although some degree of improvement in preventing the occurrence of color stain has been observed.

As described above, in the case of using color photographs as recording materials to be preserved for a long period of time, their preservability is not sufficient and thus, further improvement in preservability has been desired.

SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to provide a color photographic light-sensitive material with which fastness of color images formed is extraordinarily improved.

Another object of the present invention is to provide a color photographic light sensitive material with

which the occurrence of yellow stain of the white background in uncolor-formed portions due to light, heat and humidity is exceptionally prevented.

A further object of the present invention is to provide a color photographic light-sensitive material with which the occurrence of color stain caused by the components of processing solutions carried into the color photographic material after development processing, particularly due to a color developing agent remaining therein, is extremely prevented.

A still further object of the present invention is to provide a color photographic light-sensitive material which exhibits remarkable improvement in preservability even when the composition of the processing solution is changed due to processing with a processing solution which provides a large amount of its components to the color photographic material, such as a processing solution of a running state, a processing solution of reduced amount of washing water or without employing a water washing step, a color developing solution containing substantially no benzyl alcohol, etc., or other processing solutions which impose a burden on color development.

A still further object of the present invention is to provide a color photographic light-sensitive material with which a three color balance of a yellow dye, magenta dye and cyan dye is maintained and the coloration of the white background is markedly prevented under the preservation for a long period of time.

Other objects of the present invention will become apparent from the following detailed description and examples.

As a result of various investigations, it has been unexpectedly found that the above described objects of the present invention can be accomplished with a silver halide color photographic material comprising a support having thereon at least one silver halide emulsion layer, wherein the silver halide color photographic material contains (1) at least one compound selected from the group consisting of compounds represented by the general formula (I), (II) or (III) and dimers or higher polymers containing at least one moiety derived from the compounds, and (2) at least one compound selected from the group consisting of organic color fading preventing agents represented by the general formula (IV) and dimers or higher polymers containing at least one moiety derived from the agents, organic metal complexes containing copper, cobalt, nickel, palladium or platinum as the central metal and having at least one organic ligand having a bidentate or more conformation and dimers or higher polymers containing at least one moiety derived from the complexes:

30 R₁
$$\xrightarrow{\text{C}}$$
 A $\xrightarrow{\text{D}}$ X (I)

$$R - Z$$
 (III)

wherein R₁ and R₂ each represents an aliphatic group, an aromatic group or a heterocyclic group; X represents a group capable of being released upon a reaction with an aromatic amine developing agent; A represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond; n represents 0 or 1; B represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; Y represents a group capable of accelerating the addition of an aromatic amine developing agent to the compound represented by the general formula (II); wherein R₁ and X, or Y and R₂ or B may be connected to each other to form a cyclic structure; R represents an aliphatic group, an aromatic group or a heterocyclic group; and Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group,

50

wherein R₃₀ represents an aliphatic group, an aromatic group or a heterocyclic group; R₃₁ represents a hydrogen atom, an aliphatic group, an aromatic group, a hetero cyclic group or

R₃₂, R₃₃ and R₃₄, which may be the same or different, each represents an alkyl group, an alkenyl group, an aryl group, an alkeyl group, an alkenyl group or an aryloxy group; W represents -O-, -S- or

 R_{35} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, a sulfonyl group, a sulfonyl group, an oxy-radical group or a hydroxy group; wherein R_{30} and R_{31} , or R_{35} and R_{30} or R_{31} may be connected to each other to form a 5-membered to 7-membered ring.

The above described objects of the present invention can also be accomplished by imagewise exposing a silver halide color photographic material containing at least one dye image forming coupler and subjecting the photographic material exposed to a color photographic processing under the presence of the compounds of (1) and (2).

DETAILED DESCRIPTION OF THE INVENTION

10

15

The compounds of (1) and (2) may be incoporated in at least one hydrophilic colloidal layer in the photographic material. It is preferred that the compounds are incorporated in a silver halide emulsion layer, and it is more preferred that the compounds are incorporated in a silver halide emulsion layer ocntaining a magenta coupler.

Of the compounds represented by the general formula (I) or (II), those having a second-order reaction rate constant K_2 (80 °C) in a reaction with p-anisidine measured by a method as described in EP 0,258,662A2 in a range from 1.0 ℓ /mol*sec to 1×10^{-5} ℓ /mol*sec are preferred in order to better achieve the effect of the present invention. Further, of the compounds represented by the general formula (III), it is preferred that Z is a nucleophilic functional group or group derived therefrom each having a Pearson's nucleophilic ${}^{n}CH_{3}I$ value of at least 5 (R.G. Pearson et al., J. Am. Chem. Soc., Vol. 90, page 319 (1968). Examples of such a group include an amino group, a mercapto group, and a sulfinic acid group.

In accordance with the present invention where there is used a combination of the compounds the occurrence of color stain caused by the components of processing solutions remaining in the photographic material after development processing can be markedly prevented, and prevention from degradation of color image and occurrence of yellow stain of the white background during preservation for a long period of time can be achieved. In particular, the degree of prevention from degradation of color image and occurrence of yellow stain of the white background is extremely high and such effects can not be expected from combinations of hitherto known color fading preventing agents with each other.

It is more preferred that at least one compound selected from compounds represented by the general formula (I) or (II) and at least one compound represented by the general formula (III) are employed together.

Now, the compounds represented by the general formula (I), (II) or (III) are described in more detail below.

The term "aliphatic group" as used in the present invention represents a straight chain, branched chain or cyclic alkyl, alkenyl or alkynyl and these groups may be substituted with a substituent. The term "aromatic group" as used in the present invention may be a carbocyclic series aromatic group (examples for R₁, R₂, B or R include a phenyl group, a naphthyl group, etc.) or a heterocyclic series aromatic group (examples for R₁, R₂, B or R include a furyl group, a thienyl group, a pyrazolyl group, a pyridyl group, an indolyl group, etc.) and the group may be a monocyclic series or condensed ring series (e.g., a benzofuryl group, a phenanthridinyl group, etc.). Furthermore, these aromatic rings may have a substituent.

The term "heterocyclic group" used in the present invention represents a group having a 3-membered to 10-membered ring having carbon atom(s), oxygen atom(s), nitrogen atom(s), or sulfur atom(s) as nucleus-forming atoms, the heterocyclic ring itself may be a saturated ring or an unsaturated ring (examples for R_1 , R_2 , R_3 , R_4 , R_4) or R_4 include a chromanyl group, a pyrrolidyl group, a pyrrolinyl group, a morpholinyl group, etc.), and further the ring may be substituted with a substituent.

X in the general formula (I) represents a group capable of being released upon a reaction with an aromatic amine developing agent and preferably represents a group connected to A through an oxygen atom, a sulfur atom or a nitrogen atom (e.g., a 3-pyrazolyloxy group, a 3H-1,2,4-oxadiazolin-5-oxy group, an aryloxy group, an alkoxy group, an alkylthio group, an arylthio group, a substituted N-oxy group, etc.) or a

halogen atom.

5

10

15

20

35

45

50

55

A in the general formula (I) represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond. Such groups includes a group containing an atom of low electron density, for example,

When X is a halogen atom, n represents 0. In the above described formulae, L represents a single bond, an alkylene group,

(e.g., a carbonyl group, a sulfonyl group, a sulfinyl group, an oxycarbonyl group, a phosphonyl group, a thiocarbonyl group, an aminocarbonyl group, a silyloxy group, etc.).

Y has the same meaning as Y defined in the general formula (II), and Y' has the same meaning as defined for Y. Y and Y' may be the same or different.

R and R, which may be the same or different, each represents -L"-R₀. R₀ has the same meaning as defined for R₁.

R‴ represents a hydrogen atom, an aliphatic group (e.g., a methyl group, an isobutyl group, a tert-butyl group, a vinyl group, a benzyl group, an octadecyl group, a cyclohexyl group, etc.), an aromatic group (e.g., a phenyl group, a pyridyl group, a naphthyl group, etc.), a heterocyclic group (e.g., a piperidinyl group, a pyranyl group, a furyl group, a chromanyl group, etc.), an acyl group (e.g., an acetyl group, a benzoyl group, etc.), or an aliphatic or aromatic sulfonyl group (e.g., a methanesulfonyl group, a benzenesulfonyl group, etc.).

Among these groups, A is preferably a divalent group represented by

Of the compounds represented by the general formula (I), those represented by the general formula (I-a), (I-b), (I-c) or (I-d) described below, and have a second-order reaction rate constant K_2 (80 °C) in a reaction with p-anisidine in the range from 1×10^{-1} £ mol*sec. are particularly preferred

$$\begin{array}{c|c} O & R_a R_b \\ \parallel & \mid \cdot \mid \\ R_1-\text{Link-C-O-C=C} \\ & \mid \\ & R_c \end{array} \tag{I-b}$$

$$\begin{array}{c} O \\ C \\ \parallel \\ R_1-Link-C-O-N \end{array}$$

$$\begin{array}{c} Z_2 \end{array}$$

$$(I-d)$$

10

15

20

25

40

55

wherein R_1 has the same meaning as R_1 defined in the general formula (I); Link represents a single bond or -O-; Ar represents an aromatic group provided that it does not become a group useful as a photographic reducing group such as a hydroquinone derivative, a catechol derivative, etc., as a result of reaction with an aromatic amine developing agent; R_a , R_b and R_c , which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, a carboxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, an amino group, an alkylamino group, an acylamino group, a sulfonamido group, an acyl group, an aliphatic or aromatic sulfonyl group, an alkoxycarbonyl group, a sulfo group, a hydroxy group, an acyloxy group, a ureido group, a urethane group, a carbamoyl group or a sulfamoyl group, wherein R_a and R_b or R_b and R_c may be connected to each other to form a 5-membered to 7-membered heterocyclic ring, which heterocyclic ring may further be substituted with a substituent, form a spiro ring or a bicyclo ring, or condensed with an aromatic ring; and Z_1 and Z_2 each represents a non-metallic atomic group necessary to form a 5-membered to 7-membered heterocyclic ring, which heterocyclic ring may further be substituted with a substituent, form a spiro ring or a bicyclo ring, or condensed with an aromatic ring.

The groups or rings in the formula (I) to (IV) and (I-a) to (I-b) may be substituted with a substituent such as groups recited for R_a , R_b and R_c , and/or a halogen atom.

In order to adjust the second-order reaction constant K_2 (80 °C) in a reaction with p-anisidine in the range from 1×10^{-1} t/mol*sec to 1×10^{-5} t/mol*sec in the compound represented by the general formula (l-a), (l-b), (l-c) or (l-d), especially in a case wherein Ar represents a carbocyclic series aromatic group in the general formula (l-a), one or more substituents may be appropriately selected. In this case, it is noted that the sum of the Hammet's σ value of the individual substituents is preferably not less than 0.2, more preferably not less than 0.4, and further more preferably not less than 0.6, although it depends on the type of group represented by R_1 .

In the case of adding the compound represented by the general formula (I) to the photographic light-sensitive material during the production thereof, the total number of carbon atoms included in the compound per se is preferably at least 13, and the more the carbon atoms present, the more preferred. On the other hand, in the case of adding the compound to a processing solution the total number of carbon atoms is usually not more than 13 in order to render the compounds water soluble.

It is preferred that the compound according to the present invention does not decompose during development processing in order to attain the objects of the present invention.

In the general formula (II), Y preferably represents an oxygen atom, a sulfur atom, = N-R4 or

15

20

25

30

45

wherein R_4 , R_5 and R_6 each represents a hydrogen atom, an aliphatic group (e.g., a methyl group, an isopropyl group, a tert-butyl group, a vinyl group, a benzyl group, an octadecyl group, a cyclohexyl group, etc.), an aromatic group (e.g., a phenyl group, a pyridyl group, a naphthyl group, etc.), a heterocyclic (non-aromatic) group (e.g., a piperidyl group, a pyranyl group, a furyl group, a chromanyl group, etc.), an acyl group (e.g., an acetyl group, a benzoyl group, etc.), or an aliphatic or aromatic sulfonyl group (e.g., a methanesulfonyl group, a benzenesulfonyl group, etc.), wherein R_5 and R_6 may be connected to each other to form a cyclic structure.

In the general formula (III) Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group. Preferred examples of the nucleophilic group include a nucleophilic group in which the atom which directly chemically connects to the oxidation product of the aromatic amine developing agent is an oxygen atom, a sulfur atom, or a nitrogen atom (e.g., a benzenesulfinyl group, a primary amino group, etc.).

Of the compounds represented by the general formula (III) described above, a compound represented by the following general formula (III-a) is more preferred;

$$\begin{array}{c}
SO_2M \\
R_{14} \\
R_{13} \\
R_{11} \\
R_{12}
\end{array}$$
(III-a)

wherein, M represents an atom or an atomic group forming an inorganic salt (e.g., a salt of Li, Na, K, Ca, Mg, ammonium, etc.) or an organic salt (e.g., a salt of triethylamine, methylamine, etc.),

wherein R_{15} and R_{16} , which may be the same or different, each represents a hydrogen atom. an aliphatic group, an aromatic group, or a heterocyclic group, wherein R_{15} and R_{16} may be connected each other to form a 5-membered to 7-membered ring; R_{17} , R_{18} , R_{20} , and R_{21} , which may be the same or different, to each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aliphatic or aromatic sulfonyl group, a ureido group, or a urethane group, provided that at least one of R_{17} and R_{18} and at least one of R_{20} and R_{21} each represents a hydrogen atom; R_{19} and R_{22} each represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; R_{19} may further represent an alkylamino group, an arylamino group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, or an aryloxycarbonyl group; wherein at least two of R_{17} , R_{18} and R_{19} may be connected to each other to form a 5-membered to 7-membered ring; R_{20} represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group; R_{24} represents a hydrogen atom, an aliphatic group, an aromatic group atom, an acyloxy group or an

EP 0 298 321 A2

aliphatic or aromatic sulfonyl group; R_{25} represents a hydrogen atom or an alkali-hydrolizable group; and R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} , which may be the same or different, each represents a hydrogen atom, an aliphatic group (e.g., a methyl group, an isopropyl group, a tert-butyl group, a vinyl group, a benzyl group, an octadecyl group, a cyclohexyl group, etc.), an aromatic group (e.g., a phenyl group, a pyridyl group, a naphthyl, group, etc.), a heterocyclic group (e.g., a piperidyl group, a pyranyl group, a furyl group, a chromanyl group, etc.), a halogen atom (e.g., a chlorine atom, a bromine atom, etc.), $-SR_{26}$, $-OR_{26}$,

(wherein, R_{26} and R_{27} , which may be the same or different in the case of $-NR_{26}R_{27}$, each represents a hydrogen atom, an aliphatic group, an alkoxy group, or an aromatic group), an acyl group (e.g., an acetyl group, a benzoyl group, etc.), an alkoxycarbonyl group (e.g., a methoxycarbonyl group, a butoxycarbonyl group, a cyclohexyloxycarbonyl group, an octyloxycarbonyl group, etc.), an aryloxycarbonyl group (e.g., a phenyloxycarbonyl group, a naphthyloxycarbonyl group, etc.), an aliphatic or aromatic sulfonyl group (e.g., a methanesulfonamido group, a benzenesulfonamido group, etc.), an aliphatic or aromatic sulfonamido group, a ureido group, a urethane group, a carbamoyl group, a sulfo group, a carboxy group, a nitro group, a cyano group, an alkoxyoxalyl group (e.g., a methoxyoxalyl group, an octyloxyoxalyl group, a benzenesulfonyloxyoxalyl group, an anaphthoxyoxalyl group, at carboxy group, a naphthoxyoxalyl group, etc.), an aliphatic or aromatic sulfonyloxy group (e.g., a methanesulfonyloxy group, a benzenesulfonyloxy group, etc.), -P(R_{26})₃,

-P(OR₂₆)₃, (wherein R₂₆ has the same meaning asdefined above), or a formyl group.

In these groups, the group in which the sum of Hammet's σ values with respect to the -SO₂M group is at least 0.5 is preferred to better achieve the effect of the present invention.

in the case of adding the compound represented by the general formula (II) or (III) to the photographic material during the production thereof, the total number of carbon atoms of the compound is that which provides the compound non-diffusible. On the other hand, in the case of adding the compound (having no water-solubilizing group) to a processing solution the total number of carbon atoms is that which renders the compound water soluble.

Among the compounds represented by the general formulae (I), (II) and (III), those represented by the general formula (I) or (III) are preferred, although preferred compounds in the individual general formula are those as described above.

Representative examples of the compounds represented by the general formula (I), (II) or (III) used in the present invention are illustrated below, but the present invention should not be construed as being limited thereto. (In the present invetion, the alkyl group, in a formula, which does not have (t) or (i) means nalkyl group.)

55

50

10

20

25

40

(1 - /)

([- 2)

 $(t)_{C_{5}H_{11}} \leftarrow C_{5H_{11}(t)} \qquad \qquad U \qquad U \qquad U$

.

$$([-3]$$

$$(t)_{C_{5}H_{11}} - (-C_{H_{2}CH_{2}CH_{2}C} - (-C_{N_{2}CH_{2}C} - (-$$

(1 - 4)

(t)
$$_{C_{5}H_{11}}$$
 $-C_{5}H_{11}(t)$ $C_{5}H_{11}(t)$

(I-6)

C₂H₅

$$(t)$$
C₅H₁1

 (t) C₅H₁1

 (t) C₅H₁1

 (t) C₇H₁1

 (t) C₈H₁1

 (t) C₉H₁1

 (t) C₉H₁1

50

35

F

$$(I - 7)$$

(n)<sub>C₄H₉CH_CCS C_{1 2}H_{2 5}(n)
C₂H₅</sub>

(1-8)

25 (I - 9)

CONHCH₂CH₂CH₂CH₂CH₂CH₁₁(t)
$$C_{5}H_{11}^{(t)}$$

(1-/0)

55

$$(I - / /)$$

O UCC₁₃H₂₇(n)

5

25

35

45

•

(n) C₁₈ H₃₇ I

(1 - / 4)

(I - / 5) OCOC_{1 6} H_{3 3}(n)

(] - / 7

(I - / 8)

$$(t)_{C_5H_{11}} \leftarrow C_5H_{11}^{(t)} \leftarrow C_5H_{11}^$$

(I - / 9)

CH₃ C₆H₁ 3⁽ⁿ⁾

OCUC₃ H₇

(I - 2 0)

15

30

45

4

(1 - 2 /)

O C_2H_5

50

(I - 22)

(1-23)

$$C_{2}H_{5}UCU \qquad CH_{3} \qquad C_{2}H_{5}$$

$$V \qquad CH_{3} \qquad C_{2}H_{5} \qquad CCUCH_{2}CHC_{4}H_{9}^{(n)}$$

$$U \qquad U \qquad U \qquad CH_{3} \qquad CC_{4}H_{5} \qquad CCUCH_{2}CHC_{4}H_{9}^{(n)}$$

35 (**I - 2** # ')

(I - 25)

S O C₂H₅
OCOCH₂CHC₄H₉(t)

(I - 26)

OCOCH₂CHC₄H₉(n)

(1-27)

O C₂H₅
UCUCH₂CHC₄H₉(n)

(I - 28)

(1 - 30)

(I - 3 /)

$$^{(n)}$$
C $_{7}$ H $_{1}$ $_{5}$ $_{0}$ $_{$

(I - 32)

(1 - 33)

(1 - 34)

$$(n)C_{16}H_{33}OCO \longrightarrow SO_{2} \longrightarrow COC_{16}H_{33}(n)$$

$$(1-36)$$

$$(I - 37)$$

(1 - 38)

5

10

15

30

45

 $(n)C_{15}H_{31}CO \longrightarrow SO_{2} \longrightarrow CCC_{15}H_{31}(n)$

(1 - 39)

O C₂H₅
OCOCH₂CHC₄H₉(n)

(I - 4 0)

O C_2H_5 OCOCH₂CHC₄H₉(n)

OCOCH₂ CHC₄ H₉⁽ⁿ⁾

50

5

OCOCH₂CHO

C₅H₁₁(t)

CO₂C₂H₅

(I - 42)

15

30

45

(I - 4 3)

O
$$C_2H_5$$
OCOCH₂ CHC₄ $H_9^{(n)}$
 α
 α

50

CL

(I - 4 4)

O C₂H₅
OCOCH₂CHC₄H₉

CCH₃

OCOCH₃
OCOCH₂CHC₄H₉

(I - 4 s)

Ī

15

30

45

50

NO2

(I - 4 6)

O C_2H_5 OCOCH₂CHC₄H₉(n)

OCOCH₂CHC₄H₉(n)

-

EP 0 298 321 A2

(I - 47)

O OCOC₁₆H₃₃(n) CO₂C₂H₅

(1-48)

5

10

15

30

50

 ${ \begin{smallmatrix} O \\ il \\ OCOC_{18}H_{37}(n) \end{smallmatrix} }$ 20 25 CO2C2H5

(1-49)

 $\begin{smallmatrix} O \\ \parallel \\ O & C & C_{15} & H_{31} \end{smallmatrix} ^{(n)}$ 35 40

CO2C2H5 45

5 10 CO₂CH₂CHC₄H₉(n)

15 (1-5/)

20 CZ 25

CO₂ CH₂ CHC₄ H₉(n) C₂ H₅ 30 (1 - s 2)

35

OCOC₁₆H₃₃(n) 40

SO2CH3 45

50

SO2NH2

(I - 53)

OCOC_{1 6}H_{3 3}(n)

15

O $COC_{16}H_{33}^{(n)}$ $\alpha \qquad \qquad \alpha \qquad \qquad \alpha$

 $_{30}$ $\dot{SO}_3H \cdot N(C_2H_5)_3$

(1-55)

OCOCH₂CH₂O $C_5H_{11}^{(t)}$ $C_5H_{11}^{(t)}$

CO₂C₂H₅

26

50

(I - 5 6)

(1-57)

ĊO2C2H5

(1-58)

$$(I - 59)$$

CH₃ CH₃ $\begin{array}{c}
 & \text{CH}_3 \\
 & \text{OSO}_2 \\
 & \text{C-OCH}_2 \text{CHC}_4 \text{H}_9^{(n)} \\
 & \text{C}_2 \text{H}_5
\end{array}$

$$(I-60)$$

$$(I - 6 /)$$

(I - 62)

(n)C₁₃H₂₇CO-SOC₄H₉(n)

15 (] - 6 3)

$$(n)$$
C₁₅H₃₁CO \longrightarrow SO₂ \longrightarrow OS i CH₃
CH₃

30 (1-64)

H₁₅C₇O
$$_{0}$$
N $_{N}$

(1-65)

$$\begin{array}{c|c} CH_3 \\ (n)_{H_{15}C_7} \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array}$$

(I - 67)

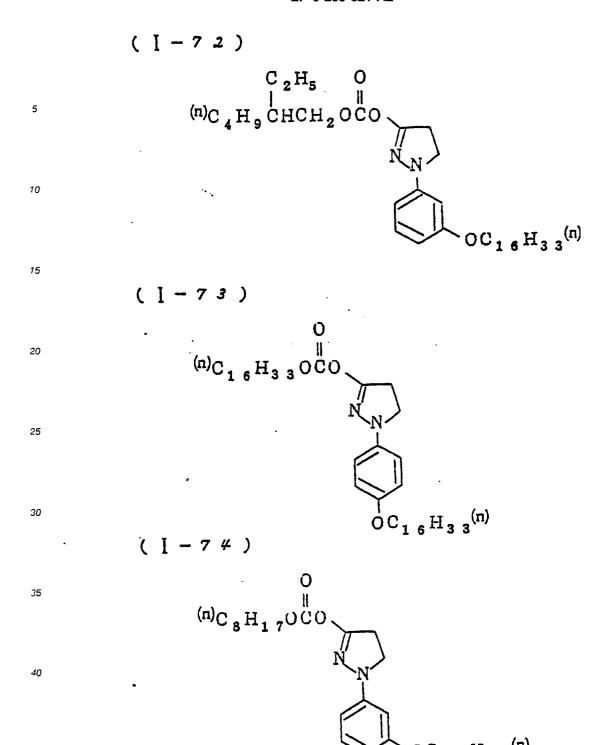
(I - 68)

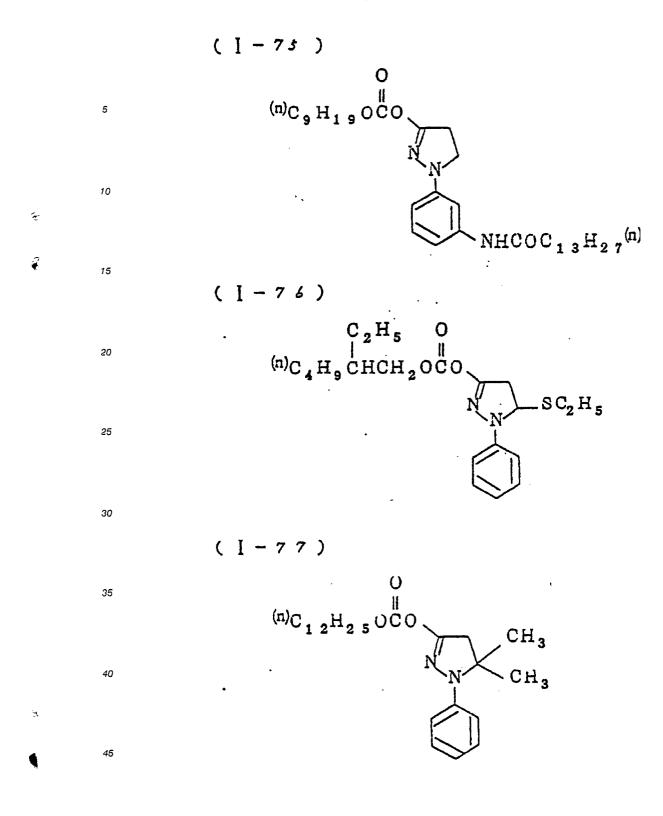
$$H_{15}C_{7}OO_{NN}OC_{12}H_{25}(n)$$

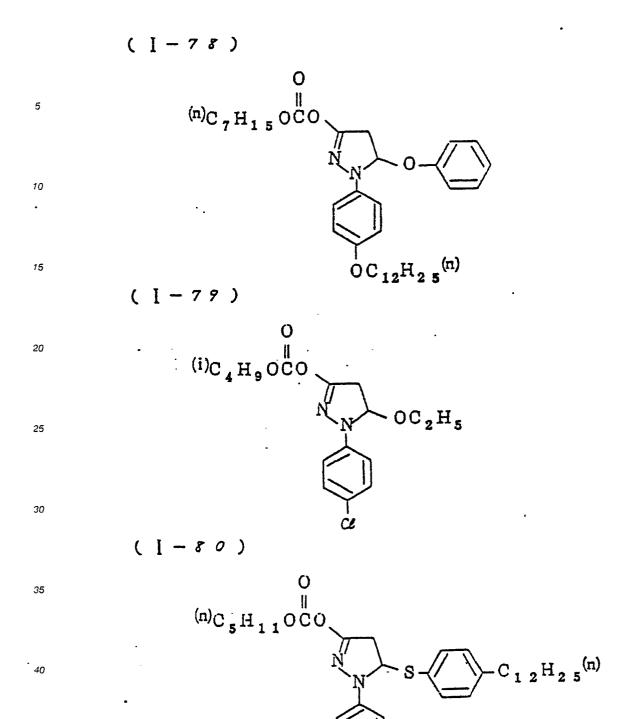
$$C_{5}H_{11} \xrightarrow{C_{4}H_{5}} CH_{2} \xrightarrow{C_{5}H_{11}} OC_{12}H_{25}^{(n)}$$

(1 - 70)

$$H_{11}C_{5} \longrightarrow CH_{2}O$$


$$CH_{2}O$$


$$CH_{2}O$$


$$C_{2}H_{5}$$

$$C_{5}H_{11}$$

(1-7/)

(I - 8 /)

C₂H₅ O (n)C₄H₉CHCH₂OCO N
C₁1H₂

15

5

10

30

45

(1 - 82)

20 (n)C 8 H₁ 7 OCO CH₃ OC_{1 6} H_{3 3} (n)

(I - 8 3)

(t)C 4 H 9 CO

50

(I - 8 #)

(I - 85)
$$C_{2}H_{5} O$$

$$(n)C_{4}H_{9}CHCH_{2}OCO$$

$$N$$

$$C_{2}H_{5} O$$

O
$$CH_3$$
 $CH_2 OCC_{15} H_{31}^{(n)}$
O CH_3 $CH_2 OCC_{15} H_{31}^{(n)}$
O

(1-87)

SC₁₆H₃₃(n)

$$(n)_{C_8}H_{17}OCO CH_2OCC_{13}H_{27}(n)$$

$$CH_2OCC_{13}H_{27}(n)$$

$$CH_2OCC_{13}H_{27}(n)$$

$$(i-89)$$

 $\begin{array}{c|c}
C_2H_5 & O \\
C_1H_9CHCH_2OCO
\end{array}$ $\begin{array}{c|c}
CH_3 \\
CH_2O
\end{array}$ $\begin{array}{c|c}
CH_3 \\
CH_2O
\end{array}$

(1-2)

$$\begin{array}{c}
CO_2C_{12}H_{25(n)} \\
N \\
O \\
C
\end{array}$$

(1-3)

$$CH_2 = CH - SO_2 - C_{18}H_{37}^{(n)}$$

(1 - 4)

(] - 5)

$$CH_2 = CH - C - SO_2C_{16}H_{33}^{(n)}$$

10

15

CONFICEL CH2 CH2 O

-OCH₂ CH₂ CH₂ NHC

20

25

SOZNA

30

35

⁴⁰. ~

45

50

55

\$0₂N₃ 000F₃

OCF3

EP 0 298 321 A2

(II - #)

SO₂HN(C₂H₅)₃

 $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$

15 (W - 3)

(n)C₁₅H₃₁C NU₂

25 **O**

(II - 6)

40

SO₂ · 1/2 C a

 $O=P(OC_5H_{17}^{(n)})_2$

45

50

(11 - 7)

5 SO₂N a

SO₂C₁₈H₃₇⁽ⁿ⁾

15 (**Ⅲ − 8**)

SO₂Na

25 SO₂C₁₈H₃₇(")

(<u>M</u> - 9)

SO₂Na $(^{(n)}C_6H_{13})_2P \qquad P(C_6H_{13}^{(n)})_2$

45

50 .

5 SO₂Na

.

15

50

$$\begin{array}{c} 30_2 \text{Na} \\ \hline \\ C_{15} \text{H}_{31} \text{(n)} \end{array}$$

(M - / 2)

SO₂Na $CO_2 \longrightarrow OC_8H_{17}^{(1)}$

EP 0 298 321 A2

(11 - / 3)

 $^{(n)}C_{1} _{5}H_{3} _{1} - SO_{2}N_{a}$

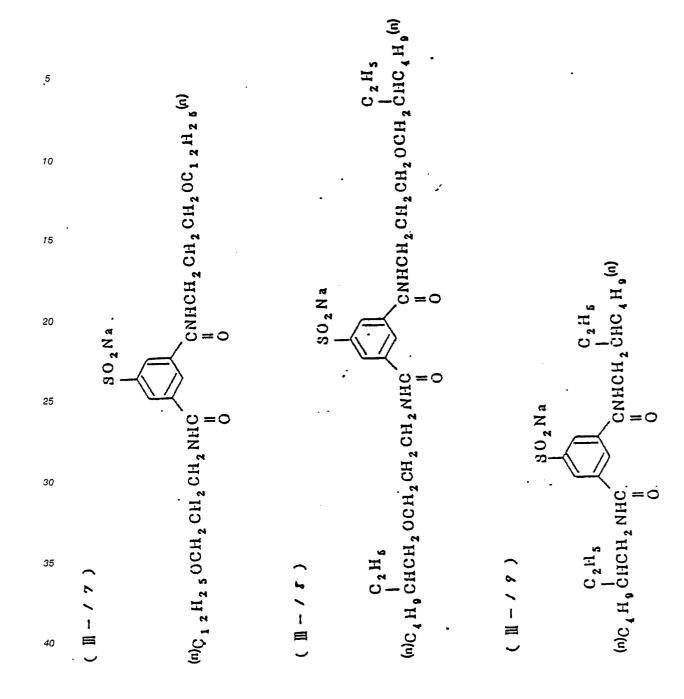
(11 - / 4)

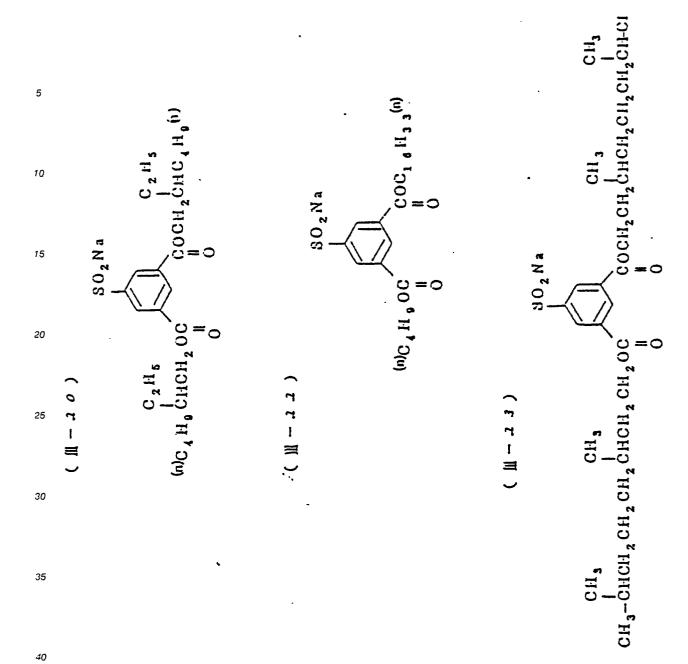
10

15

55

(n)_{C 8} H_{1 7} OC — SO₂ K


(II-15)


30 (n)_{C 1 6} H_{3 3} O

(11 - 16)

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ \text{SO}_2 \text{ Na} \\ & & \\ \text{45} \end{array}$

50

(11 - 2 4)

5 (n)C_{1 6} H_{3 3} OC COC_{1 6} H_{3 3} (n)

(11 - 2 3)

20 (n)C₁₆H₃₃OC COC₁₆H₃₃(n)

(<u>II</u> - 2 &)

30 2 N a (n)C H OC C H (n)

40 '

45

50

$$(11 - 27)$$

5 SO₂Na

(n)C₁₄H₂₉OC COC₁₄H₂₉(n)

15 (<u>|| - 2 7</u>)

CH₃ CH₂

CH₃ CH₂

CH₃ CH₂

CH₃ CH₂

CH₃ CH₂

CH₃ CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

50

45

$$H_{1,1} \longrightarrow C_{5} H_{1,1}(t)$$

$$H_{1,1} \longrightarrow C_{5$$

CH₃OC COCH₃

SO₂L!

SO₂L!

$$C_5H_{11}^{(t)}$$

CNHCH₂CH₂CH₂O

 $C_5H_{11}^{(t)}$

$$\begin{array}{c} \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} & \text{GE} \\ \text{GE} & \text{GE} \\ \text{GE} & \text{GE} & \text{GE} \\ \text{GE} \\ \text{GE} & \text{GE} \\ \text{GE} & \text{GE} \\ \text{GE} \\ \text{GE} & \text{GE} \\ \text{GE} \\$$

EP 0 298 321 A2

(11 - 4 2)

20 (<u>III - 4 3</u>)

SO₂NHN=
$$H$$

(n)C₁₈H₃₇OC
COC₈H₁₇(n)

Ö . Ö .

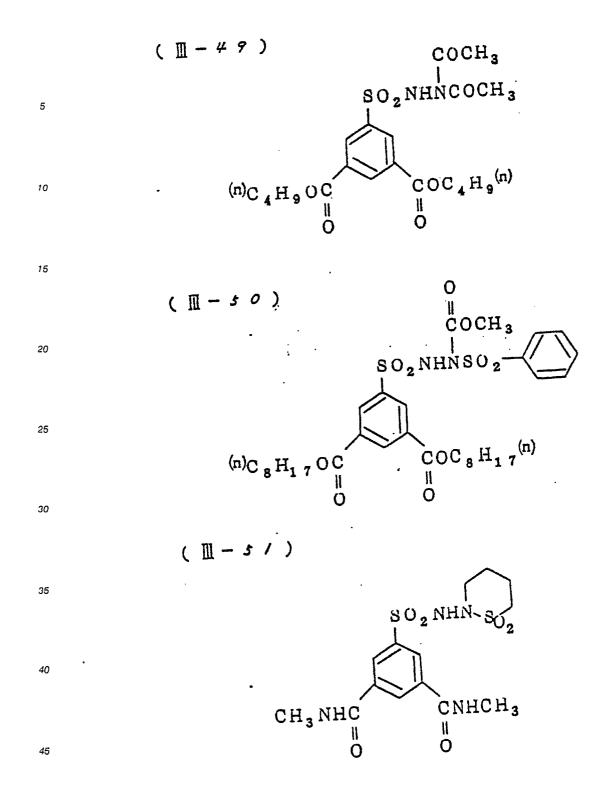
.

EP 0 298 321 A2

(M - # 7)

CH₃

$$SO_{2}NHNSO_{2}$$


$$CH_{3}$$

$$SO_{2}NHNSO_{2}$$

$$CNHCH_{2}CH_{2}O$$

$$C_{15}H_{31}^{(n)}$$

$$C_{15}H_{31}^{(n)}$$

EP 0 298 321 A2

 $(\Pi - 52)$

5
 $C_{16}H_{33}O-SO_{2}Na$

10 (<u>M</u> - 5 3.)

$$C_{12}H_{25}$$
 — SO_2Na

20 (1 - 5 4)

$$OC_{1,2}H_{2,5}$$

(∭ − 5 5)

25

35

$$C_{12}H_{25}$$
 \longrightarrow $SO_{2}H$

i-C₈H₁₇

(Ⅲ − 5 6)

$$\begin{array}{c} \text{OC}_8\text{H}_{1.7} \\ \text{SO}_2\text{Na} \end{array}$$

(11-59)

(11 - 60)

(11 - 6 /)

$$\begin{array}{c|c}
 & O \\
 & O \\$$

(11 - 62)

$$(\parallel - 63)$$

$$(\Pi - 64)$$

The compounds represented by the general formula (I), (II) or (III) can be synthesized according to the methods as described in EP 0,230,048A2, 0,258,662A2, and 0,255,722A2 and Japanese Patent Application (OPI) No. 229145/87 or methods analogous thereto.

Now, the compounds represented by the general formula (IV) are described in more detail below.

The aliphatic group, aromatic group and heterocyclic group represented by R_{30} , R_{31} or R_{35} each has the same meaning as defined for the aliphatic group, aromatic group and heterocyclic in the general formula (I), (II) or (III).

R₃₂, R₃₃ and R₃₄, which may be the same or different, each represents a straight chain, branched chain or cyclic alkyl group (e.g., a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a benzyl group, an octyl group, a cyclohexyl group, a hexadecyl group, etc.), an alkenyl group (e.g., a vinyl group, an allyl group, etc.), an aryl group (e.g., a phenyl group, a p-methylphenyl group, a 2-chlorophenyl group, a 3-methoxyphenyl group, a 2,4-dimethoxyphenyl group, a 4-hexadecyloxyphenyl group, a 3-

pentadecylphenyl group, a 4-bromophenyl group, a naphthyl group, etc.), an alkoxy group (e.g., a methoxy group, an ethoxy group, an isopropoxy group, a cyclohexyloxy group, a benzyloxy group, a hexadecyloxy group, a methoxyethoxy group, etc.), an alkenoxy group (e.g., an allyloxy group, etc.), or an aryloxy group (e.g., a phenoxy group, a 4-methoxyphenoxy group, a 3-chlorophenoxy group, a 2-methylphenoxy group, a 2-tert-butyl-4-methylphenoxy group, a 4-hexadecyloxyphenoxy group, a naphthyloxy group, etc.).

Of the compounds represented by the general formula (IV), preferred compounds are these represented by the following general formula (IV-a), (IV-b), (IV-c), (IV-d), (IV-e) or (IV-f):

$$\begin{array}{c}
 & \text{OR}_{41} \\
 & \text{R}_{42} \\
 & \text{R}_{45}
\end{array}$$

$$\begin{array}{c}
 & \text{R}_{42} \\
 & \text{R}_{43}
\end{array}$$

$$\begin{array}{c}
 & \text{R}_{44}
\end{array}$$

10

15

40

45

50

55

$$\begin{array}{c}
 & \text{SR}_{41} \\
 & \text{R}_{45} \\
 & \text{R}_{43} \\
 & \text{R}_{44}
\end{array}$$
(IV-b)

$$R'_{41}$$
 R_{46}
 R_{42}
 R_{45}
 R_{43}
 R_{44}
 R_{44}
 R_{43}

$$R_{50}-O-R_{51}$$
 (IV-d)

$$R_{50}-S-R_{51}$$
 (IV-e)

$$R_{50}-N-R_{51}$$
 (IV-f)

wherein R4+ represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, or

(wherein R_{32} , R_{33} , and R_{34} each has the same meaning as defined in the general formula (IV); R_{42} , R_{43} , R_{44} , R_{45} and R_{46} , which may be the same or different, each represents a hydrogen atom, -W- R_{31} , an aliphatic group, an aromatic group, a heterocyclic group, a diacylamino group, a halogen atom, an aliphatic

EP 0 298 321 A2

or aromatic sulfonyl group, an aliphatic or aromatic sulfinyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a ureido group, a urethane group, a sulfamoyl group, a carbamoyl group, a cyano group, a nitro group, an aliphatic or aromatic carbonyloxy group, an aliphatic or aromatic sulfonyloxy group, a silyloxy group, or an imido group, -W-R $_{31}$ has the same meaning as defined in the general formula (IV), wherein R $_{41}$ and R $_{42}$ may be connected to each other to form a 5-membered to 7-membered ring, or two substituents of R $_{42}$ to R $_{46}$ which are present at the o-position to each other may be connected to each other to form a 5-membered to 7-membered ring, and wherein R $_{31}$ or R $_{35}$ when W represents

may be connected to a group present at the ortho position thereto to form a 5-membered to 7-membered ring.

The 5-membered to 7-membered ring described above may be a monocyclic ring, a condensed ring, a spiro ring, or a bicyclo ring, and the resulting condensed ring may be an alicyclic ring, an aromatic ring, a heterocyclic ring, or a heteroaromatic ring, and these rings may be substituted with one or more substituents.

 $R_{41}^{'}$ has the same meaning as R_{35} defined in the general formula (IV), and $R_{41}^{'}$ may be connected with R_{41} or R_{42} to form a 5-membered to 7-membered ring same as defined for R_{41} .

 R_{50} represents an aliphatic group, a heteroaromatic group, a heterocyclic group; R_{51} represents a hydrogen atom, an aliphatic group, a heteroaromatic group or a heterocyclic group; and R_{35} has the same meaning as defined in the general formula (IV), and R_{50} and R_{51} or R_{50} and R_{35} may be connected to each other to form a 5-membered to 7-membered ring which is the same as defined above for R_{41} .

Of the compounds represented by the general formulae (IV-a) to (IV-f), those represented by the general formula (IV-a) or (IV-f) are more preferred, and compounds represented by the general formula (IV-a1) to (IV-a8) and (IV-f1) described below are further more preferred.

30

10

15

20

35

40

45

50

$$\begin{array}{c}
 & \text{OR41} \\
 & \text{R45} & \text{R42} \\
 & \text{R43} & \text{OR'41}
\end{array}$$

$$R_{41}O$$
 R_{45}
 R_{65}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}

OR41
$$R_{46} \longrightarrow R_{42}$$

$$R_{45} \longrightarrow R_{43}$$

$$CO_2R_{47}$$
(IV-a7)

wherein R_{41} to R_{46} each has the same meaning as defined in the general formula (IV-a), $R_{4}^{'}$ and $R_{42}^{'}$ to $R_{46}^{'}$ each has the same meaning as defined for R_{41} and R_{42} to R_{46} respectively, and each group may be connected to each other to form a 5-membered to 7-membered ring which is the same as defined in the general formula (IV-a); R_{47} represents an aliphatic group, an aromatic group or a heterocyclic group; R_{61} to R_{64} , which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group; R_{65} and R_{66} , which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkylamino group, an acyl amino group, or

50

30

wherein E_1 represents a non-metallic atomic group necessary to form a 5-membered to 7-membered ring; R_{35} has the same meaning as defined in the general formula (IV-f); E represents a non-metallic atomic group necessary to form a 5-membered to 7-membered ring; and R_{71} to R_{74} , which may be the same or different, each represents a hydrogen atom or an alkyl group.

In the case of adding the compound represented by the general formula (IV) to the photographic material during the production thereof, the total number of carbon atoms of the compound is that which provides the compound non-diffusible. On the other hand, in the case of adding the compound (having no

water-solubilizing group) to a processing solution the total number of carbon atoms is that which renders the compound water soluble.

Now, the organic metal complexes used in the present invention are described in more detail below.

The organic metal complex which can be used in the present invention is characterized by containing copper, cobalt, nickel, palladium or platinum, as the central metal, and have at least one organic ligand having a bidentate or more conformation. As the central metal, nickel is particularly preferred. As the atom coordinated to the central metal, a nitrogen atom, a sulfur atom, an oxygen atom or a phosphorous atom is preferred.

Of the organic metal complexes used in the present invention, particularly preferred complexes are represented by the following general formula (V-a), (V-b), (V-c) or (V-d):

15

55

 $\begin{array}{c}
R84 \\
R85 - P = O \\
O - M - O \\
O = P - R'85
\end{array}$ 30 $\begin{array}{c}
R84 \\
O - M - O \\
R'84 \\
O = R'85
\end{array}$

wherein M represents copper, cobalt, nickel, palladium or platinum; R_{80} and $R^{'}_{80}$, which may be the same or different, each represents a hydrogen atom, an alkyl group, an aryl group or a hydroxy group, wherein R_{80} and $R^{'}_{80}$ may be connected to each other; R_{81} , R_{82} , R_{83} , $R^{'}_{81}$, $R^{'}_{82}$ and $R^{'}_{83}$, which may be the same

EP 0 298 321 A2

or different, to each represents a hydrogen atom, an alkyl group or an aryl group, wherein R_{82} and R_{83} or R_{82} and R_{83} may be connected to each other to form an aromatic ring or a 5-membered to 8-membered ring; R_{84} , R_{85} , R_{84} and R_{85} , which may be the same or different, each represents an alkyl group, an aryl group, an alkylthio group, an arylthio group, an alkoxy group, an aryloxy group, an alkylamino group or an arylamino group; R_{86} , R_{87} , R_{88} , R_{89} , R_{90} , R_{86} , R_{87} , R_{88} , R_{89} , and R_{90} , which may be the same or different, each represents a hydrogen atom, an alkyl group or an aryl group, wherein at least one of R_{86} and R_{87} , R_{89} and R_{90} , R_{86} and R_{87} and R_{89} and R_{90} may be connected to each other to form an aromatic ring or a 5-membered to 8-membered ring; X_1 represents a compound capable of coordinating to M; A_1 , A_2 , A_1 and A_2 , which may be the same or different, each represents an oxygen atom, a sulfur atom, -NR₉₁-, a hydroxy group, an alkoxy group, an alkylthio group or

 $R_{9\,1}$ represents a hydrogen atom, an alkyl group, an aryl group, a hydroxy group or an alkoxy group; $R_{9\,2}$ and $R_{9\,3}$, which may be the same or different, each represents a hydrogen atom or an alkyl group; and A_3 and A_3 each represents an oxygen atom, a sulfur atom or -NH-.

In the general formulae (V-a), (V-b), (V-c) and (V-d), an alkyl group or an alkyl moiety preferably has from 1 to 25 carbon atoms, and an aryl group or an aryl moiety preferably has from 6 to 25 carbon atoms.

Specific examples of the organic color fading preventing agents and the organic metal complexes used in the present invention are set forth below, but the present invention should not be construed as being limited thereto.

A - /

15 A - 2

A - 4

$$\alpha \leftarrow \text{CH}_{2} \rightarrow \text{CH}_{3}$$

A

A-7

A - 8

A-9

$$\begin{array}{c} \text{OCH}_2\text{CH}_2\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5\\ \\ \text{C}_6\text{H}_1\text{ 3} \\ \\ \text{OCH}_2\text{CH}_2\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \end{array}$$

A - / 0

OCH₃ OCH₃

OC_{1 2}H_{2 5}(n)

15 A - / /

OC₈H₁₇⁽ⁿ⁾

OC₈H₁₇(n)

30

45

A - / 2

OC₁₂H₂₅⁽ⁿ⁾

OC₁₂H₂₅(n)

50

A = /3

$$A - I 4$$

A - I A

OCH₃
C₆H₁₃(t)

OCH₃

A - 1 7

15

25

OC₈H₁₇(n)
OC₈H₁₇(n)

30

A - / 8

OC₈H₁₇(n)
OC₈H₁₇(n)

 $C_{4}H_{9}^{(t)}$

50

$$A - 20$$

OH
$$C_{4}H_{9}^{(t)}$$
OCHCO₂C₂H₅

$$C_{12}H_{25}^{(n)}$$

A - 2 2

A - 2 3

15

30

45

OH
$$(t)_{C_6H_1}$$
OH
$$(t)_{OH}$$

A - 2 4

OH
$$C_8H_{17}^{(t)}$$
OH $C_8H_{17}^{(t)}$

A - 2 5

5 OH
$$CH_3$$
 $C \leftarrow CH_2 \rightarrow_3 CO_2 C_6 H_1 3^{(n)}$
 CH_3
 CH_3

A-26

15

30

45

50

OH OH
$$C_4H_9$$

CH₃

CH₃

CH₃

A - 2 7

$$C_{4}H_{9}^{(t)} \qquad C_{4}H_{9}^{(t)}$$

$$HO \longrightarrow C_{4}H_{9}^{(t)} \qquad C_{4}H_{9}^{(t)}$$

$$C_{4}H_{9}^{(t)} \qquad C_{4}H_{9}^{(t)}$$

A - 2 8

5 OH CH₂ OH C ₆ H_{1 3} (t)

15

30

A - 3 0

OH
$$C_{4}H_{9}$$

$$CU_{2}$$

$$CU_{5}H_{1}I^{(t)}$$

 C_5H_1

50

A - 3 /

A: - 3 2

A - 3 3

A - 3 4

OH OC_{1.8} H_{3.7}(n)

10 A - 3 5

5

15

20

25

30

OH OC12H25⁽ⁿ⁾

 $\begin{array}{c|c}
O & CH_2 O CH_2 \\
O & C_3 H_7 (n) & (n) C_3 H_7
\end{array}$

A - 37

OC₄H₉(n) N C₄H₉(n) C₄H₉(n)

45

40

50

A - 3 8

A - 3 9

A - 4 0

35 A - 4 A

$$\begin{array}{c} \text{HO} & \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{OC}_{16} \text{H}_{33} \end{array} \end{array}$$

A - 4 2

CH₃
CH₃
CH₂
CH₂
CH₂
CH₂
CH₃
CH₃ CH_3

A - 4 3

15

30

45

50

55

HO CH_3 CH_3 CH_3 CH_3 CH_3

A - 4 4

(n)C $_{4}$ H $_{9}$ O $_{0}$ CH $_{3}$ CH $_{3}$

A - 4 5

(n)C 8 H 1 7 O CH 3

A - 4 6

15

30

45

50

 ${}^{25} \qquad {}^{(5)}C_8H_{1\cdot7} \qquad {}^{(5)}C_2H_5$

A - 4 7

CH₃ CH₃ OH

HO

CH₃ CH₃

CH₃

ĊH3

ÚН

A - 4 8

A - 5 /

CH₃ CH₃ OC₈H₁₇(n)

HO

CH₃ CH₃ OC₈H₁₇(n)

CH₃ OC₈H₁₇(n)

A - 5 2

20 CH₃ CH₃ OH CH₃

CH₃ CO_{1 2} H_{2 5} (n)

A - 5 3

CH₃ CH₃ OC₁₂H₂₅(n)

HO

CH₃ OH

CH₃ OH

55

45

50

15

A - 5 4

CH₃ CH₃

HO

CH₃ CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

A - 5 5

CH₃ CH₃ $CH_3 CH_3$ $C_4 H_9 C$ $C_4 H_9 C$ $C_4 H_9 C$ $C_4 H_9 C$ $C_4 H_9 C$

A - 5 6

CH₃ CH₃ $(n)C_{4}H_{9}O$ $(n)C_{4}H_{9}O$ $(n)C_{4}H_{9}O$ $CH_{3}CH_{3}$ $OC_{4}H_{9}^{(n)}$ $CH_{3}CH_{3}$

55

A - 5 7

CH₃ CH₃
(n)C₃H₇ O
(t)C₈H₁ 7
(t)C₈H₁ 7

A - 58

15

30

35

45

50

CH₃ CH₃

$$CH_3 CH_2 CH_2 O CH_2 CH_2 O CH_3$$

$$(t)_{C_4 H_9} CH_3 CH_3 CH_2 CH_2 O CH_3$$

A _ + 0

(n)C 8 H 1 7 O OH

(t)C H C C H 2 (t)

CH₃ CH₃

OC₈H₁ 7⁽ⁿ⁾

OC₈H₁ 7⁽ⁿ⁾

CH₃ CH₃

A - 6 /

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$$

A - 6 2

55

50

45

5

10

15

(n)C₃H₇O

(n)C₃H₇O

(n)C₃H₇O

(n)C₃H₇(n)

(n)C₃H₇(n)

A - 6 4

A - 6 5

55

A - 67

A - 68

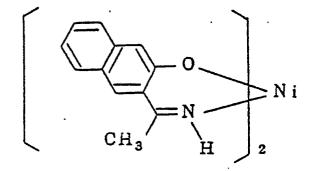
CH₃ CH₃

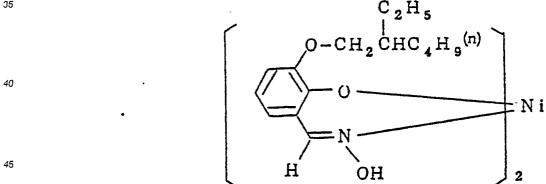
CH₃ OCH₃

CH₃ OCH₃

OCH₃

OCH₃


A - 7 0


A - 7 /

 $(t)C_{4}H_{9} \longrightarrow N i$ $(n)C_{11}H_{23} H_{2}$

A - 7 2

(n)C₈H₁₇O Ni C_6H_5

A - 7 5

A - 7 6

$$(n)C_4 H_9 CHCH_2 O \longrightarrow N i$$

$$C_2 H_5 \longrightarrow N OH$$

A - 7 7

$$\begin{array}{c} C_2H_5 \\ (n)C_4H_9CHCH_2O \\ C_2H_5 \\ \end{array}$$

$$\begin{array}{c} C_2H_5 \\ OCH_2CHC_4H_9^{(n)} \\ \end{array}$$

$$\begin{array}{c} C_2H_5 \\ OCH_2CHC_4H_9^{(n)} \\ \end{array}$$

$$\begin{array}{c} OCH_2CHC_4H_9^{(n)} \\ \end{array}$$

$$\begin{array}{c} OCH_2CHC_4H_9^{(n)} \\ \end{array}$$

A - 7 8

 $\begin{array}{c|c}
 & \text{Cin)}_{C_5H_{11}} & \text{Cin)}_{C_5H_{11}} \\
 & \text{Cin)}_{C_5H_{11}} & \text{Cin)}_{N_1} & \text{Cin)}_{N_2} \\
 & \text{Cin)}_{N_1} & \text{Cin)}_{N_2} & \text{Cin)}_{N_2} & \text{Cin)}_{N_2} \\
 & \text{Cin)}_{C_3H_{11}} & \text{Cin)}_{N_2} & \text{Cin)}_{N_2} & \text{Cin)}_{N_2} \\
 & \text{Cin)}_{C_3H_{11}} & \text{Cin)}_{N_2} & \text{Cin)}$

A - 79

15

30

(n)C₁₁H₂₃

$$\begin{array}{c}
 & C_{11}H_{23} \\
 & N \\
 & N
\end{array}$$

$$\begin{array}{c}
 & C_{11}H_{23} \\
 & N
\end{array}$$

$$\begin{array}{c}
 & C_{11}H_{23} \\
 & N
\end{array}$$

$$\begin{array}{c}
 & C_{11}H_{23} \\
 & N
\end{array}$$

A - 8 0

CH₃ CH_3 CH_3 CH_2CH_2 CH_3 CH_3 CH_3

A - 8 2

15

30

45

50

$$\begin{pmatrix}
(n)_{C_5 H_{11}} \\
(n)_{C_5 H_{11}}
\end{pmatrix}$$
P d
$$\begin{pmatrix}
(n)_{C_5 H_{11}} \\
(n)_{C_5 H_{11}}
\end{pmatrix}$$

A - 83

(n)
$$C_{15}H_{31}$$

Pt

OH

$$\begin{array}{c} (t)_{C_4} H_9 \\ HO \longrightarrow CH_2 - P = O \\ (t)_{C_4} H_9 \\ \hline (t)_{$$

.

A - 8 6

C₈H₁₇(t) C₈H₁₇(t)

C₈H₁₇(t) C₈H₁₇(t)

C₈H₁₇(t) C₈H₁₇(t)

A - 87

OCU-C₁₁H₂₃(n)

CH₃
CH₃
NH
CH₃
O
Ni
O
S
C₈H₁₇(t) C₈H₁₇(t)

A - 8 9

CH₃ $(n)_{C_7} H_{15} CO_2 \xrightarrow{\text{CH}_3} NH$ CH_3 CH_3

A - 90

15

35

45

A - 9 /

$$^{(n)}C_8H_{17}-N$$

 $\mathbf{A} - 9 2$

$$^{(n)}C_{12}H_{25} - N N - C_{12}H_{25}^{(n)}$$

A - 9 3

A - 9 4

CH₃ CH₃

HO

$$OH_3$$

CH₃ CH₃

OH

A - 9 5

CH₃ CH₃

$$CH_3 CH_3 OH$$

$$HO CH_3 CH_3$$

45

50

СH₃

A - 9 6

 $_{5}$ $CH_{2}=CH_{2}OC_{14}H_{29}(n)$

A - 9 7

35

50

CH₃ CH₃
HO

20

CH₃ CH₃ HO $(t)C_8H_17$ CH_3 CH_3

A - 9 9

HO CH₃ CH₃
OH

CH₃ CH₃

. 55

A - 100

CH₃ CH₃ $(n)C_3H_7O$ $CH_3 CH_3$ $CH_3 CH_3$

A - 101

15

30

50

55

20 (h)C₈H₁₇O CH₃ CH₃

A - 102

CH₃ CH₃

CH₃ OCH₃ OCH_3 OCH_3 OCH_3

$$(n)$$
C₁₆H₃₃-NO

$$^{(n)}C_{1}_{2}H_{2}_{5}-N$$
 $N-C_{1}_{2}H_{2}_{5}$ $^{(n)}$

$$A - IoB$$

A - 107

5

30

45

 $^{(n)}C_{12}H_{25}O_{CH_3}CH_3$ 10 OC₁₂H₂₅(n) CH₃ 15

A - ///

CH₃ CH₃ 20 25 CH₃ СНз

A - //2

ОН 35 40

50

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

A - / / #

A - //5

 $(n)_{C_{12}H_{25}O} CH_{3}$ CH_{3}

45

55

5 OCH₂ CH₂ O

10

A - /20

15

30

CH₃ CH₃

(n)C₈H₁ 7 O

CH₃ OCH₃

OCH₃

OCH₃

OC₈H₁ 7 (n)

A - /2/

C₈H₁₇(t)
OCH₃
OCH₃

45

50

55

C₈H₁₇(t)

A - /26

(n)
$$C_{12}H_{25}-N$$

$$CH_{3}$$

$$CH_{3}$$

 $\mathbf{A} - \mathbf{/27}$

5

10

45

50

55

A-./28

$$C_{2}H_{5}O$$
NHCO₂

$$OC_{1}_{2}H_{2}_{5}(n)$$

$$OC_{1}_{2}H_{2}_{5}(n)$$

A - /29

5 $C_{2}H_{5}O$ $NHSO_{2}$ $C_{3}H_{1}O$ $C_{3}H_{1}O$ $C_{3}H_{1}O$ $C_{4}H_{9}(n)$ $C_{5}H_{5}O$ $C_{8}H_{1}O$

A - /30

15

30

45

55

CH₃ CH₃

CH₃

CH₃

CH₃

A-/3/

OH CU $CO_2C_{12}H_{25}^{(n)}$

A - /32

5

10

15

30

45

50

OH

α

SO₂

OC_{1 6} H_{3 3} (n)

A - /33

25 (t)C₅H₁₁ C2 (C₅H₁₁(t)

A-/34

HO HO OC 8 H 1 7

OH

A - /35

5

10

A - /36

15

20 S-OC₈H₁₇(r

A - /37

A - /38

HO NHSU
$$_2$$
 —OC $_1$ $_2$ H $_2$ $_5$ $^{(n)}$

50

A - /39

SC₁₈H₃₇(n)
SC₁₈H₃₇(n)

A - /40

SC₂H₅

A - 141

20

50

OCH₃
OCH₃
OCH₃
OCH₃
OCH₃

35 A - / 4 2

OH SC₈H₁₇(n) SC₈H₁₇(n)

A - /43

A - /44

SC₄H₉(n)
$$(n)C_4H_9SSC_4H_9(n)$$

25 A - / 4 5

30

35

50

A - 146

A - / 48

$$(h)_{C_4}H_9S$$
 CH_3
 CH_3
 CH_3
 CH_3
 $CH_9(n)$

$$\begin{array}{c} \text{CH}_{3} \quad \text{CH}_{3} \\ \text{(n)} \\ \text{C}_{8} \\ \text{H}_{17} \\ \text{S} \\ \text{C}_{8} \\ \text{H}_{17} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

A - /53

$$^{(n)}C_6H_{13}OCH_2CH_2OC_6H_{13}^{(n)}$$

$$^{(n)}C_{12}H_{25}SCH_{2}CH_{2}OC_{2}H_{5}$$

$$^{\text{(n)}}\text{C}_{1\ 2}\text{H}_{2\ 5}\,\text{SCH}_{2}\,\text{CH}_{2}\,\text{SC}_{1\ 2}\,\text{H}_{2\ 5}^{\ (n)}$$

*

A - /55

 5 $^{(n)}C_{12}H_{25}OCH_{2}CH_{2}OC_{12}H_{25}^{(n)}$

A - 156

15

45

50

OH C 5 H 1 1 (t)

C H (t

20 .

A - / 57

CH₂=CHCH₂OCH₂ \longrightarrow OC₄H₉(n)

A - / 38

OH OH

A - /60

A-761

20

A - / 62

(t)C₄H₉

HO
$$\longrightarrow$$
 CH₂CH₂CO₂CH₂CH₂C

(t)C₄H₉

50

45

$$\left(\text{(n)}_{\text{C}_{12}\text{H}_{25}} \text{SCH}_{2} \text{CH}_{2} \text{COCH}_{2} \right)_{4} \text{C}$$

A - 164

OH NHCCH OC
$$E_5H_1i^{(t)}$$

$$C_5H_1i^{(t)}$$

$$C_5H_1i^{(t)}$$

$$C_4H_9$$

$$C_4H_9$$

A - 165

 $(t)_{C_{4}H_{9}}$ $(HO \longrightarrow CH_{2}CH_{2}CO_{2} \longrightarrow (CH_{3})$ CH_{3} CH_{3} CH_{3} CH_{3}

A - 167

15

30

35

50

A-168

 CH_{3} CH_{3} $N - SO_{2}CH_{3}$ CH_{3} CH_{3}

5

10

15

20

25

OS i
$$CH_3$$
OS i C_6H_5
CH₃

(t)C₆H₁₃
(t)
C₆H₁₃
CH₃
OS i C_6H_5

Compounds represented by the general formula (IV) and the complexes can be synthesized according to the methods as described in U.S. Patents 3,336,135, 3,432,300, 3,573,050, 3,574,627, 3,700,455, 3,764,337, 3,935,016, 3,982,944, 4,254,216 and 4,279,990, British Patents 1,347,556, 2,062,888, 2,066,975 and 2,077,455, Japanese Patent Application (OPI) Nos. 97353/85, 152225/77, 17729/78, 20327/78, 145530/79, 6321/80, 21004/80, 24141/83, 10539/84 and 67536/87, Japanese Patent Publication Nos. 31625/73 and 12337/79, etc. or methods analogous thereto.

The compounds for use in the present invention which have low molecular weight or are easily soluble in water may be added to at least one processing solution such as a color developing solution, a bleaching solution, fixing solution, a blixing solution, water for washing and a stabilizing solution and carried over into the color photographic material during development processing of the color photographic material. However, it is preferred to incorporate the compounds into the color photographic material during the step of producing the color photographic material. In the latter case, the compounds are usually dissolved in a high-boiling point solvent (an oil) having a boiling point of at least 170° C at atmospheric pressure or a low-boiling point solvent, or a mixture of the above described oil and low-boiling solvent, and the solution is dispersed by emulsification in an aqueous solution of a hydrophilic colloid such as geiatin, etc. The compounds for use in the present invention described above are preferably soluble in the high-boiling organic solvent. There is no particular restriction on the particle size of the emulsified dispersion particles of the compounds, but the particle size is preferably from 0.05 μ m to 0.5 μ m, particularly preferably from 0.1 μ m to 0.3 μ m. Further, it is particularly preferred that the compounds for use in the present invention be co-emulsified with coupler(s) to achieve the effects of the present invention. In this case, the ratio of oil/coupler is preferably from 0.00 (containing no oil) to 2.0 by weight ratio.

Each amount of the above described compounds of (1) and (2) is from 1×10^{-2} mol to 10 mols, preferably from 3×10^{-2} mols to 5 mols per mol of the coupler in the same layer. The molar ratio of the amount of the compound(s) of (1) to that of the compound(s) of (2) is preferably from 0.1 to 10.

Specific examples of the above described oil which can be used in the case of incorporating the compound according to the present invention in the color photographic material include alkyl phthalates (e.g., dibutyl phthalate, dioctyl phthalate, diisodecyl phthalate, dimethoxyethyl phthalate), phosphoric acid esters (e.g., diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, dioctylbutyl phosphate, monophenyl-p-tert-butylphenyl phosphate), citric acid esters (e.g., tributyl acetylcitrate), benzoic acid esters (e.g., dibutoxyethyl succinate, diethyl azelate, dioctyl sebacate, trimesic acid esters (e.g., tributyl trimesate), compounds having an epoxy ring (e.g., those as described in U.S. Patent 4,540,657)

phenols (e.g.,
$$H\Theta \longrightarrow C_5H_{11}(t)$$
, $C_5H_{11}(t)$

5

15

25

45

50

55

$$C_{8}H_{17}(t)$$
 $C_{8}H_{17}(n)$ C_{8

phenoxyethanol, diethylene glyclol monophenyl ether), etc.

Also, the low-boiling solvent which can be used as an auxiliary solvent in the case of incorporating the above described compounds according to the present invention into the color photographic material preferably is an organic solvent having a boiling point of from about 30° C to about 150° C at atmospheric pressure and examples thereof include lower alkyl acetates (e.g., ethyl acetate, isopropyl acetate, butyl acetate, etc.), ethyl propionate, methanol, ethanol, secondary butyl alcohol, cyclohexanol, fluorinated alcohol, ethyl isobutyl ketone, β -ethoxyethyl acetate, methyl cellosolve acetate, acetone, methylacetone, acetonitrile, dioxane, dimethylformamide, dimethylsulfoxide, chloroform, cyclohexane, etc.

Furthermore, in place of the high-boiling organic solvent, an oily solvent for additives such as coupler-(s), etc. (including a solvent which is solid at room temperature, such as wax, etc.) as well as a latex polymer can be used. Additives themselves, such as a coupler, a color mixing preventing agent, an ultraviolet light absorbing agent, etc., may be used as an oily solvent for dissolving the compounds for use in the present invention.

As the latex polymer as described above, there are latex polymers produced by using such as monomers acrylic acid, methacrylic acid, esters of these acids (e.g., methyl acrylate, ethyl acrylate, butyl methacrylate, etc.), acrylamide, methacrylamide, vinyl esters (e.g., vinyl acetate, vinyl propionate, etc.),

acrylonitrile, styrene, divinylbenzene, vinyl aikyl ethers (e.g., vinyl ethyl ether, etc.), maleic acid esters (e.g., maleic acid methyl ester, etc.), N-vinyl-2-pyrrolidone, N-vinylpyridine, 2-vinylpyridine, and 4-vinylpyridine, singly or as a mixture of two or more.

In the case of dispersing the solution of the compound for use in the present invention alone or together with coupler(s) in an aqueous solution of a hydrophilic protective colloid, a surface active agent is usually used and examples of the surface active agent include saponin, sodium alkyisulfosuccinate, sodium alkyibenzenesulfonate, etc.

The compounds according to the present invention described above can be used in combination with a yellow coupler, a magenta coupler, or a cyan coupler. In these cases, it is particularly preferred, to achieve the effects of the present invention, to use the compounds in combination with a magenta coupler.

The coupler which is used in combination with the above described compounds may be 4-equivalent or 2-equivalent for silver ion, and also may be in the form of a polymer or an oligomer. Furthermore, the couplers which are used in combination with the above described compounds of the present invention may be used singly or as a mixture of two or more kinds thereof.

Couplers which can be preferably used in the present invention are those represented by the following general formula (C-I), (C-II), (M-I) or (Y);

15

50

$$\begin{array}{c}
 & \text{OH} \\
 & \text{R}_{6} \\
 & \text{NHCOR}_{4}
\end{array}$$

$$\begin{array}{c}
 & \text{C-II} \\
 & \text{R}_{5} \\
 & \text{NHCOR}_{4}
\end{array}$$

$$\begin{array}{c}
R_{10} \\
N \\
N \\
NH \\
Za = Zb
\end{array}$$
(M-II)

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{-C-COCHQ} \\ \text{I} \\ \text{I} \\ \text{CH}_{3} \\ \text{Y}_{5} \end{array} \tag{Y}$$

wherein, R₁, R₄, and R₅ each represents an aliphatic group, an aromatic group, a heterocyclic group, an

EP 0 298 321 A2

aromatic amino group or a heterocyclic amino group; R_2 represents an aliphatic group; R_3 and R_5 each represents a hydrogen atom, a halogen atom, an aliphatic group, an aliphatic oxy group, or an acylamino group; R_5 represents a hydrogen atom, or a group represented by R_5 defined above; R_7 and R_9 each represents a substituted or unsubstituted phenyl group; R_8 represents a hydrogen atom, an aliphatic acyl group, an aromatic acyl group, an aliphatic sulfonyl group, or an aromatic sulfonyl group; R_{10} represents a hydrogen atom or a substituent; Q represents a substituted or unsubstituted N-phenylcarbamoyl group; Za and Zb each represents a methine group, a substituted methine group, or = N-; and Y₁, Y₂, Y₃, Y₄, and Y₅ each represents a hydrogen atom, or a group capable of releasing upon a coupling reaction with the oxidation product of a color developing agent (hereinafter, the group is referred to as a releasing group).

In the general formulae (C-I) and (C-II) described above, R_2 and R_3 or R_5 and R_6 may be connected to each other to form a 5-membered, 6-membered, or 7-membered ring.

Furthermore, the coupler represented by the above described formula may form a dimer or a higher polymer through R_1 , R_2 , R_3 or Y_1 ; R_4 , R_5 , R_6 or Y_2 ; R_7 , R_8 , R_9 or Y_3 ; R_{10} , Z_4 , Z_5 or Z_4 ; or Z_5 or Z_5 .

The aliphatic group described above is a straight chain, branched chain or cyclic alkyl. alkenyl, or alkynyl group.

Detailed description for the above-described couplers can be seen in the following U.S. Patents:

Couplers represented by the general formula (C-1):

U.S. Patents 3,772,002, 4,564,590, 4,511,647 and 4,518,687

20 Couplers represented by the general formula (C-2):

U.S. Patents 2,895,826, 4,557,999, 4,565,777, 4,124,396, 4,613,564, 4,327,173, 4,564,586 and 4,430,423 Couplers represented by the general formula (M-I):

U.S. Patents 2,311,082, 2,343,703, 2,600,788, 2,908,573, 3,062,653, 3,152,896 and 3,936,015 Couplers represented by the general formula (M-II):

25 U.S. Patents 4,540,654 and 4,500,630

Couplers represented by the general formula (Y):

U.S. Patents 4,622,287 and 4,623,616

Preferred specific examples of the cyan couplers represented by the general formulae (C-I) and (C-II) are illustrated below, but the present invention should not be construed as being limited thereto.

35

10

40

45

50

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}C_{5}H_{1}$$

$$C_{2}H_{5}$$

$$C_{3}C_{5}H_{1}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{1}$$

OH
$$C_2H_5$$

OH NHCOCHO

 $(t)C_5H_{11}$
 C_2H_5
 C_2

$$C_{2}H_{5}$$

$$C_{$$

50

45

CH3CONHCH2

CL

(t)C₅ H_{1 1}

$$(C - \gamma)$$

$$CH_{3}CONH$$

$$C_{2}H_{5}$$

$$C_{2}H$$

50

(t)C 5 H 11

(C - / 3)

(C - / 4)

15

30

50

(C-/5)

OH NHCO—
$$(t)$$
C₄ H₉

OCHCONH

C

(C - / 7)

$$(t)C_{5}H_{11} \xrightarrow{C_{6}H_{13}} OH$$

$$OH$$

$$NHCU$$

$$NHSO_{2}C_{4}H_{9}$$

$$C$$

(C-/8)

$$(t)C_{5}H_{1} \xrightarrow{(t)C_{5}H_{1}} \xrightarrow{OH} \xrightarrow{F} \xrightarrow{F} F$$

(C-20)

(C-2/)

$$(C - 22)$$

(C - 23)

OH
$$C_2H_5$$

$$OH OCHO (t)C_5H_{11}$$

$$OH OCHO (t)C_5H_{11}$$

(C - 2 #)

$$(C - 25)$$

CH₃
OH
NHCO
NHCOCHO
$$C_2H_5$$
O(t)C₅H₁₁

$$(C - 2 6a)$$

CH₃
OH
NHCO
$$(t)C_5H_{11}$$
NHCOCHO
 $(t)C_5H_{11}$
 C_2H_5

(C-26b)

$$(C - 27)$$

$$O = \begin{pmatrix} OH & C_2H_5 \\ N & NHCOCHO \end{pmatrix} CN$$

$$O = \begin{pmatrix} N & C_2H_5 \\ N & C_2 \end{pmatrix} CN$$

$$O = \begin{pmatrix} C_1 & C_2 & C_3 \\ N & C_4 & C_4 \end{pmatrix} CN$$

$$O = \begin{pmatrix} C_1 & C_2 & C_4 \\ N & C_4 & C_4 \end{pmatrix} CN$$

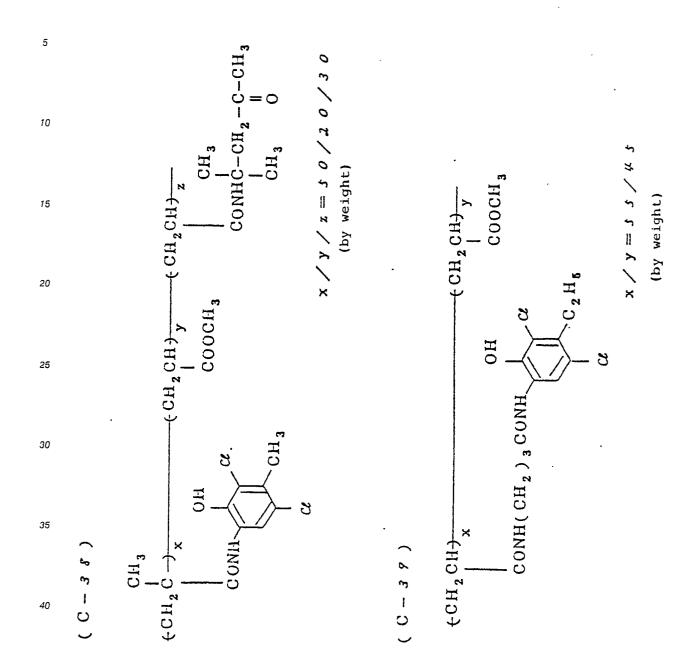
$$(C - 30)$$

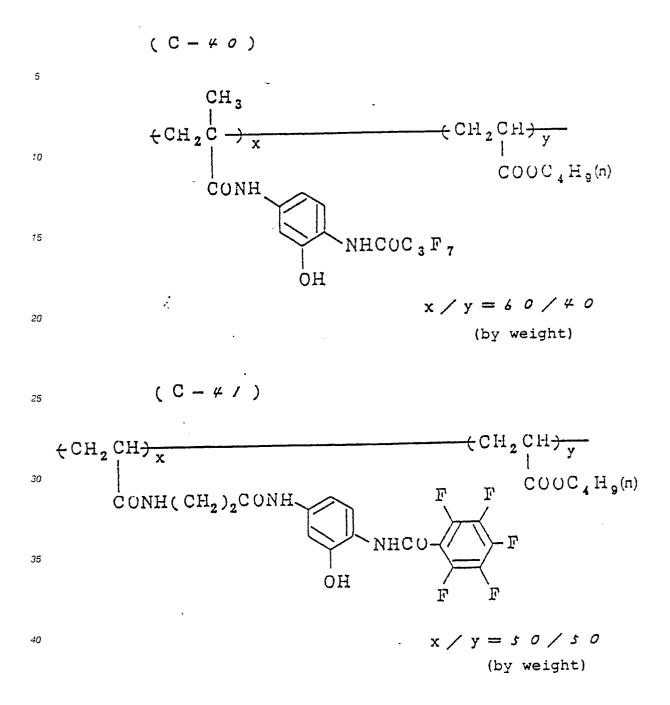
$$(C - 3 /)$$

$$\begin{array}{c} \text{OH} \\ \\ \text{C}_4 \text{H}_9 \\ \\ \text{OCHCONH} \\ \\ \text{C}_5 \text{H}_{11} \end{array}$$

(C-32)

(C-33)


$$(C - 3 4)$$


OH NHCO OC
$$_{8}$$
 H₁ 7

NHSO $_{2}$

C $_{8}$ H₁ $_{7}$

(C - 3 7)

$$(C - 42)$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$COUCH_{3}$$

$$COUCH_{3}$$

$$CUOH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$COUCH_{3}$$

$$CUOH$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{3}$$

$$CUOH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CUOH_{3}$$

$$CUOCH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CUOCH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CUOCH_{2}$$

$$CH_{3}$$

$$CUOCH_{2}$$

$$CH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CUOCH_{3}$$

$$CH_{3}$$

$$CUOCH_{3}$$

$$CH_{3}$$

$$CUOCH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{3}$$

$$CUOCH_{4}$$

$$CUOCH_{3}$$

$$CUOCH_{5}$$

$$CUOCH_{5}$$

$$CUOCH_{5}$$

$$CUOCH_{6}$$

$$CUOCH_{7}$$

$$CUOCH_{7$$

$$(C - \# \#)$$

$$(CH_{2}CH) \times (CH_{2}CH) Y$$

$$COUC_{4}H_{9}(n)$$

$$x/y = s o / s o$$

$$(by weight)$$

$$(CH_{2}CH) \times (CH_{2}CH) Y$$

$$COOCH_{2}CH_{3}$$

$$COOCH_{2}CH_{3}$$

$$COOCH_{2}CH_{3}$$

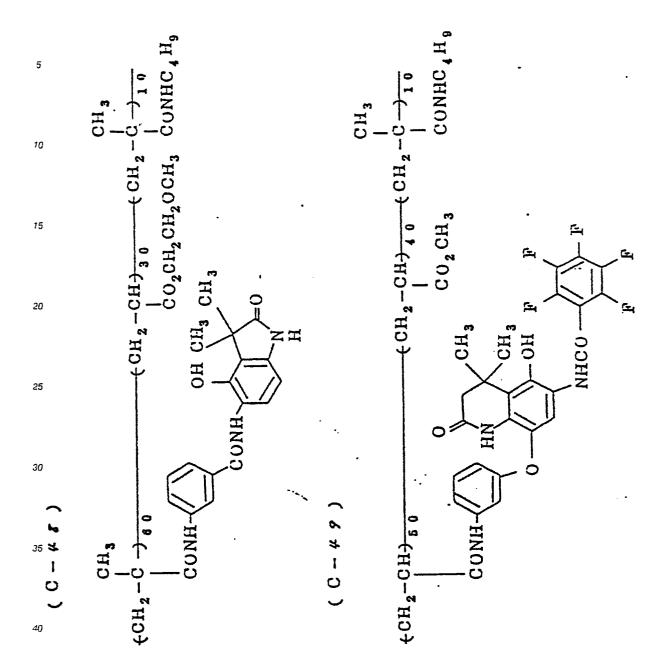
$$COOCH_{2}CH_{3}$$

$$X/Y = \# s / s s$$

$$x/Y = \# s / s s$$

$$(by weight)$$

$$(C-46)$$


$$\begin{array}{c|c}
 & + CH_2CH_{X} \\
\hline
 & COOC_4H_9(n)
\end{array}$$
To NHCU

OH

$$x/y = 50/50$$
 (by weight)

$$(C - 47)$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} - \text{C} \\ \text{CH}_{2} - \text{C} \\ \text{OH} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{3} \\ \text{OH} \end{array} \begin{array}{c} \text{CH}_{2} - \text{CH}_{3} \\ \text{CO}_{2} \text{C}_{4} \text{H}_{9} \\ \text{CO}_{2} \text{H} \end{array}$$

Preferred specific examples of the magenta couplers represented by the general formulae (M-I) and (M II) are illustrated below, but the present invention should not be construed as being limited thereto.

$$C_{13}H_{27}CONH$$

$$C_{13}CONH$$

$$C_{13}CONH$$

$$\begin{array}{c} (M-2) \\ C_{18}H_{35} \\ \end{array}$$

Œ

$$(M-3)$$

$$C_{4}H_{9}$$

$$NH$$

$$NNO$$

$$C_{5}H_{11}$$

$$C_{5}H_{11}(t)$$

$$C_{5}H_{11}(t)$$

$$C_{5}H_{11}(t)$$

$$C_{12}H_{25}O - SO_{2}NH$$

$$C_{12}C_{25}O - C_{25}C_{$$

$$(M-5)$$

$$C \longrightarrow NH$$

$$C_{12}H_{25}O$$

$$C$$

$$C$$

ocH3

$$(M-9)$$

(t)C₅H₁₁ \longrightarrow O-(CH₂)₃NHSO₂ \longrightarrow NH \bigcirc O \bigcirc C₅H₁₁(t)

(M - / 0)

$$C_{12}H_{25}-O-(CH_{2})_{3}-HN-C$$

$$0$$

$$0$$

$$0$$

(M - / /)

$$C_{12}H_{25}-N$$

$$C_{12}H_{25}-N$$

$$C_{12}H_{25}-N$$

CŁ

C 5 H 1 1(t)

(M-/5)

$$\begin{array}{c|c} C_4H_9 & NH & N & C \\ \hline \\ C_4H_9 & NH & NH & N \\ \hline \\ C_4H_9 & NH & NH & N \\ \hline \\ C_4H_9 & NH & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH & NH & NH \\ \hline \\ C_4H_9 & NH \\ \hline \\ C_4H_9$$

(M-/6)

HO-
$$O$$
-SO₂- O -CH C NH- O -(CH₂)₃

5

(M-/F) CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{3} C

45

35

40

z

50 .

(M-2/)

$$\begin{array}{c} \text{CH}_{3} \\ \text{OC}_{4}\text{H}_{9} \\ \text{OC}_{8}\text{H}_{17} \\ \text{OC}_{8}\text{H}_{17}(t) \\ \text{C}_{8}\text{H}_{17}(t) \end{array}$$

$$(M-23)$$

CH₃
CHCH₂NHSO₂
OC₈H₁₇
CH₃
CHCH₂NHSO₂
OC₈H₁₇
C₈H₁₇(t)

$$(M-24)$$

(M-25)OC4H, C₂H₅O C₈H₁₇(t) OC 8 H1 7 ŅН

5

10

35

40

OC 8 H1 7 NHSO2 ±5 C₈H₁₇(t)

(M-26)20 O(CH2)2802CH3 ĆH3 OCH3 25 C 8 H_{1 7}(t) 30 CHCH₂NHSO₂ | CH₃

45

NHSO2-

50

$$(M-27)$$

$$CH_{3}O-(CH_{2})_{2}O$$

$$N$$

$$C_{3}H_{17}(t)$$

$$CHCH_{2}NHSO_{2}$$

$$CH_{3}$$

$$OCH_{3}$$

$$\begin{array}{c} (M-25) \\ OC_4H_9 \\ CH_3NHCNH \\ NH \\ NH \\ (CH_2)_2NHSO_2 \\ C_8H_{17}(t) \\ C_8H_{17}(t) \end{array}$$

5
$$CH_{3}CH_{2}O$$

$$NNNNH$$

$$NHSO_{2}$$

$$C_{8}H_{17}(t)$$

$$NHSO_{2}$$

$$C_{8}H_{17}(t)$$

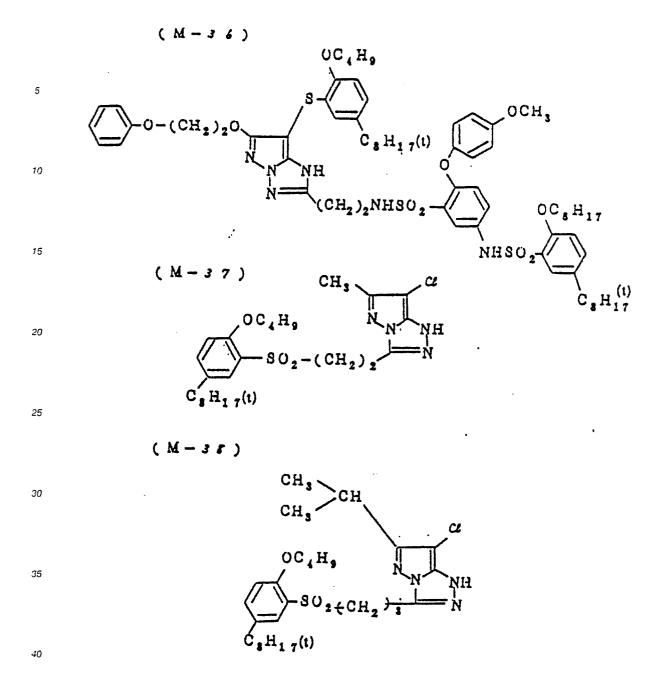
$$NHSO_{2}$$

$$C_{8}H_{1}(t)$$

$$C_{12}H_{25}$$

$$NHSO_{2}$$

$$C_{8}H_{1}(t)$$


$$C_{12}H_{25}$$

$$CH_{2}SO_{2}(CH_{2})_{2}$$

$$NHSO_{2}$$

$$C_{8}H_{1}(t)$$

$$C_{8}H_{1}(t)$$

(M-39)

20 (M - 4 0)

$$(CH_{2}CH)_{x} (CH_{2}CH)_{y}$$

$$COUC_{4}H_{9}(n)$$

$$\alpha$$

$$\alpha$$

$$\alpha$$

$$\alpha$$

$$x/y = so/so$$

(by weight)

(M-4/)

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} \\ \text{C} \\$$

(M-#2)

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} \\ \text{C} \\ \rightarrow \\ \text{CONH}(\text{CH}_{2})_{2} \text{CONH} \\ \rightarrow \\ \text{CONH}(\text{CH}_{2})_{2} \text{CONH} \\ \rightarrow \\ \text{NH} \\ \rightarrow \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{COOC}_{4} \\ \text{H}_{9} \\ \text{(n)} \\ \text{(by weight)} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{COOCH}_{2} \\ \text{COOCH}_{2} \\ \text{CH}_{5} \\$$

(M-44)

x/y = # s/s s(by weight)

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2}\text{C} \\ \rightarrow \\ \text{COOC}_{4}\text{H}_{9} \end{array} \begin{array}{c} \text{CH}_{2}\\ \rightarrow \\ \text{COOC}_{4}\text{H}_{9} \end{array} \begin{array}{c} \text{CH}_{2}\\ \rightarrow \\ \text{COOH} \end{array}$$

$$x/y/z = s o / 4 s / s$$
(by weight)

CH₃

$$CH_{2}C \rightarrow x \qquad (CH_{2}CH) \rightarrow y$$

$$COOC_{4}H_{9}(n)$$

$$CH_{2} \rightarrow x \qquad (CH_{2}CH) \rightarrow y$$

$$COOC_{4}H_{9}(n)$$

$$CH_{3} \rightarrow x \rightarrow y = s \text{ o / s o}$$

(by weight)

$$(M-47)$$

$$\begin{array}{c|c} \leftarrow \text{CH}_2 & \text{CH}$$

$$x/y/z = 4 s/s o/s$$
 (by weight)

$$\begin{array}{c|c} + \text{CH}_2 \text{CH}_{\frac{1}{2}} \\ \hline \\ + \text{CH}_2 \text{CH}_{\frac{1}{2}} \\ \hline \\ + \text{COOC}_4 \text{H}_{\frac{1}{2}} \text{(n)} \\ \hline \\ + \text{CH}_2 \\ \hline \\ + \text{CH}_2 \\ \hline \\ + \text{CH}_2 \\ \hline \end{array}$$

$$x/y=30/30$$
 (by weight)

5 _

$$(M-49)$$

Preferred specific examples of the yellow couplers represented by the general formula (Y) are illustrated below, but the present invention should not be construed as being limited thereto.

CH₃ CH_3 CH_3 CH_3 $COUC_{12}H_{25}$ O=C N-CH $OC_{2}H_{5}$

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₂

CH₂

CH₃

CH₂

CH₃

CH₂

CH₃

CH₃

CH₃

CH₂

CH₃

C

 $\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

(Y-7)

15

50

CH₃

$$CH_3 - C - COCHCONH$$

$$C_5 H_{11}(t)$$

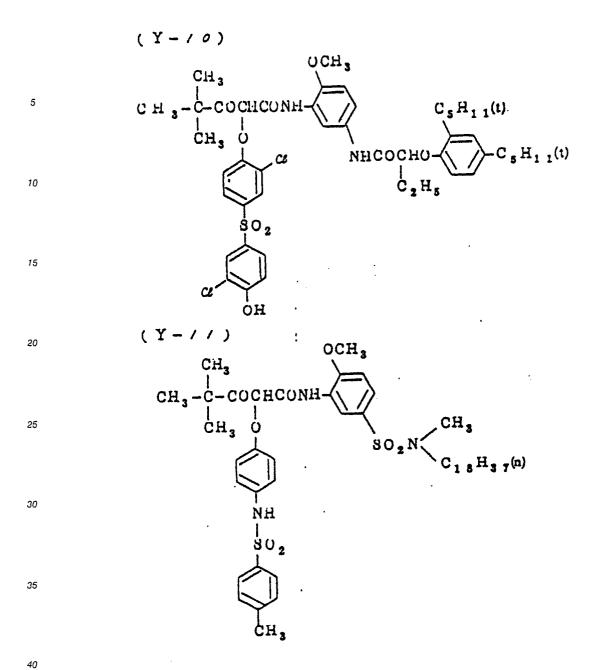
$$C_5 H_{21}(t)$$

$$C_5 H_{21}(t)$$

$$C_5 H_{21}(t)$$

$$C_7 H_{21}(t)$$

$$C_8 H_{21}(t)$$


35 OH

45

(Y-&)

(Y-9)

5

$$\begin{array}{c} CH_3 \\ CH_3 - C - CO CHC ONH \\ CH_3 O \\ CH_3 O \\ CN \\ CO CH_2 CH_2 - O \\ C_5 H_{11}(t) \\ C_5 H_{11}(t) \end{array}$$

(Y-/3/)

 $(Y-/\mu)$

$$\begin{array}{c} CH_3 \\ CH_3 - C - COCHCONH - \\ CH_3 \\ O \\ O \\ NHCOCH_3 \\ \end{array}$$

$$\begin{array}{c} C_5H_{1\ 1}(t) \\ C$$

30 COOH

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{COCHCUNH} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{O}_2 \text{NH} (\text{CH}_2)_3 \\ \text{O}_4 \\ \text{CH}_2 \\ \text{O}_5 \\ \text{H}_1 \\ \text{I} \\ \text{I}$$

снсоон i

C_{1 2}H_{2 5}

(Y-/9)

$$\begin{array}{c|c} CH_3 \\ CH_3 - C - COCHCUNH \\ CH_3 \\ CH_3 \\ \end{array}$$

$$\begin{array}{c|c} C_5H_{11}(t) \\ CONH(CH_2)_4 \\ U - C_5H_{11}(t) \\ \end{array}$$

$$\begin{array}{c|c} C_5H_{11}(t) \\ \end{array}$$

20
$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{8}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{4}$$

$$CH_{9}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

OC₂H₅

$$\begin{array}{c|c} CH_3 & C\\ CH_3 & C\\ CH_3 & \\ N & \\ N & \\ N & \\ CH_3 & \\ N & \\ N & \\ CG & \\ N & \\ N & \\ CG & \\ N & \\ N & \\ CG & \\ N & \\ N & \\ N & \\ CG & \\ N & \\ N$$

(Y-22)

CH₃

$$CH_3 - C - COCHCONH - C_5H_{11}(t)$$

$$CH_3 - C_5H_{11}(t)$$

$$SO_2NH(CH_2)_3O - C_5H_{11}(t)$$

$$O = C - C_5CH_{11}(t)$$

$$CH_2 - N - CH_2 - C_5CH_{11}(t)$$

(Y - 23)

$$\begin{array}{c} CH_3 \\ CH_3 - C - COCHCONH \\ CH_3 O \\ CH_$$

(Y - 2 #) '

$$\begin{array}{c|c} CH_3 \\ CH_3 - C - COCHCONH - \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_5 \\ CH_2 - C - NH \\ CH_2 - C - NH \\ CH_2 CH_2 OC_2 H_5 \\ \end{array}$$

-5

$$\begin{array}{c|c} CH_3 & C_2H_5 \\ CH_3 - C - COCHCONH & -NHCOCHO - C_5H_1 _1 \\ CH_3 & C_5H_1 _1 \\ \end{array}$$

$$\begin{array}{c|c} C_2H_5 \\ -C_5H_1 _1 \\ CH_3 - C - NH \\ \hline \\ CH_3 - C - NH \\ \hline \\ CH_3 \end{array}$$

(Y - 2 6)

$$\begin{array}{c|c} CH_3 \\ CH_3 - C - COCHCONH \\ CH_3 \\ CH_3 \\ \end{array}$$

$$\begin{array}{c|c} CH_2 \\ NHCOCHO - SO_2 - OH \\ CH_3 - C - NH \\ CH_3 - C - NH \\ \end{array}$$

(Y-27)

(Y-28)

COOH

$$(Y - 32)$$

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

NHCOCHO

CH₂

O

CC

CH₃

CH₃

CH₃

(Y - 33)

CH₃ $CH_3 - C - COCHCONH$ $CH_3 - C + COCHCONH$ $C \in H_{13}$ $C \in H_{13}$

CH₃-C-COCHCONH-C₁₀H₂(t)
CH₃ O
NHCOCH-O-OH
OH

(Y:=;3 \$)

$$\begin{array}{c|c} CH_3 & CC \\ CH_3 - C - COCHCONH - C_5H_{11}(t) \\ \hline CH_3 & NHCOCHO - C_5H_{11}(t) \\ \hline O=C & C=O & C_2H_5 \\ \hline C_2H_5 & CH_2 - C_5H_{11}(t) \\ \hline \end{array}$$

CH₃ $CH_3 - C - COCHCONH - C_5H_{1,1}(t)$ $CH_3 - C - COCHCONH - C_5H_{1,1}(t)$

(Y-37)

ÓН

CH₃ CH₃ CH₃ CH₃ NHSO₂C_{1 6}H_{3 3}

O=C C=O

C₂H₅O CH₂

(Y-39)

$$\begin{array}{c} CH_3 \\ CH_3 - C - COCHCONH \\ CH_3 O \\ CH_3 O \\ NHCO(CH_2)_3 - O - C_5H_{11}(t) \\ \\ SO_2 \end{array}$$

O CH₂

$$(Y-40)$$

 $\begin{array}{c|c} CH_3 \\ CH_3 - C - CO - CH - CUNH \\ \hline \\ CH_3 \\ \hline \\ O \\ \hline \\ CH_2 \\ \hline \end{array}$ $\begin{array}{c|c} C_5 H_{11}(t) \\ \hline \\ O \\ \hline \\ CH_2 \\ \hline \end{array}$ $\begin{array}{c|c} C_5 H_{11}(t) \\ \hline \\ O \\ \hline \\ CH_2 \\ \hline \end{array}$

(Y-#/)

 $0 \longrightarrow N \longrightarrow 0$ $C_2 H_5 U \longrightarrow CH_2 \longrightarrow x/y = s o / s o$

(Y-#2)

$$\begin{array}{c|c} & & & \text{CH}_2 \text{ CH}_{\frac{1}{2}} \\ & & & \text{CH}_2 \text{ CH}_{\frac{1}{2}} \\ & & & \text{COOC}_4 \text{ H}_9 \text{ (n)} \end{array}$$

20
$$(Y-43)$$
 $x/y/z = 50/43/5$ (by weight)

$$(CH_{2}C) \times (CH_{2}CH) \times (CH_$$

;

$$(Y-44)$$

45

Examplexs of the couplers represented by the general formulae (C-I) to (Y) described above and others and synthesizing methods for them are described in the literature shown below.

The cyan couplers represented by the general formula (C-I) or (C-II) can be synthesized by the following known methods. For example, the cyan couplers represented by the general formula (C-I) can be synthesized by the methods as described in U.S. Patents 2,423,730 and 3,772,002, etc., and the cyan couplers represented by the general formula (C-II) can be synthesized by the methods as described in U.S. Patents 2,895,826, 4,333,999 and 4,327,173, etc.

The magenta couplers represented by the general formula (M-I) can be synthesized by the methods as described in Japanese Patent Application (OPI) Nos. 74027/74 and 74028/74, Japanese Patent Publication Nos. 27930/73 and 33846/78, U.S. Patent 3,519,429, etc. Also the magenta couplers represented by the general formula (M-II) can be synthesized by the methods as described in U.S. Patent 3,725,067 and Japanese Patent Application (OPI) Nos. 162548/74, 171956/74 and 33552/85, etc.

The yellow couplers represented by the general formula (Y) can be synthesized by the methods as described in Japanese Patent Application (OPI) No. 48541/79, Japanese Patent Publication No. 10739/83, U.S. Patent 4,326,024, Research Disclosure, No. 18053, etc.

Each of these couplers is generally incorporated into a silver halide emulsion layer in an amount of from $2x10^{-3}$ mol to $5x10^{-1}$ mol, and preferably from $1x10^{-2}$ mol to $5x10^{-1}$ mol per mol of silver in the layer.

The compounds according to the present invention preferably are employed in combination with the coupler represented by the general formula (C-I), (C-II), (M-I) or (M-II), more particularly with the magenta coupler represented by the general formula (M-I) or (M-II) in order to achieve the effects of the present invention.

In the case of employing the magenta coupler represented by the general formula (M-II) wherein Z_a represents -N=, Z_b represents a substituted methine group and Y_4 represents a chlorine atom in combination with the compound represented by the general formula (I-c) wherein Z_1 represents an atomic group necessary to form a 2-pyrazoline ring, the effect of improving light-fastness of magenta dye is relatively small in comparison with cases using other compounds of the general formula (I-C).

When the color photographic material according to the present invention contains dye(s) and ultraviolet light absorbing agent(s) in the hydrophilic colloid layer(s) thereof, these additives may be mordanted by a cationic polymer, etc.

The color photographic material according to the present invention may further contain a hydroquinone derivative, an aminophenol derivative, a gallic acid derivative, an ascorbic acid derivative, etc., as a color fog preventing agent.

The color photographic material according to the present invention may contain ultraviolet light absorbing agent(s) in the hydrophilic colloid layer as described above. Examples of the ultraviolet light absorbing agents include aryl group-substituted benzotriazole compounds (e.g., those as described in U.S. Patents 3,533,794), 4-thiazolidone compounds (e.g., those as described in U.S. Patents 3,314,794 and 3,352,681), benzophenone compounds (e.g., those as described in Japanese Patent Application (OPI) No. 2784/71), cinnamic acid ester compounds (e.g., those as described in U.S. Patents 3,705,805 and 3,707,375), butadiene compounds (e.g., those as described in U.S. Patent 4,045,229), and bisphenol derivatives (e.g., those as described in U.S. Patent 3,700,455). Furthermore, ultraviolet light absorptive couplers (e.g., α -naphtholic cyan dye forming couplers) or ultraviolet light absorptive polymers may be used as ultraviolet light absorbing agents. These ultraviolet light absorbing agents may be mordanted in a specific layer.

The color photographic material according to the present invention may contain water-soluble dyes as filter dyes or for irradiation prevention or other various purposes in the hydrophilic colloid layers. Examples of such water-soluble dyes include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes, and azo dyes. In these dyes, oxonol dyes, hemioxonol dyes, and merocyanine dyes are useful.

As the binder or protective colloids which can be used for the emulsion layers of the color photographic material according to the present invention, gelatin is advantageously used but other hydrophilic colloids can be used alone or together with gelatin.

As gelatin, lime-treated gelatin or acid-treated gelatin can be used in the present invention. Details of the production of gelatin are described in Arther Weiss, The Macromolecular Chemistry of Gelatin, published by Academic Press, 1964.

For the silver halide emulsion layers of the color photographic material according to the present invention, any of silver bromide, silver iodobromide, silver iodochlorobromide, silver chlorobromide, and silver chloride is used as the silver halide.

There is no particular restriction on the average grain size (the grain size being defined as the diameter of the grains when the grain has a spherical or a nearly spherical form and as the length of the edge when the grain has a cubic form, and being averaged based on the projected area of the grains) of the silver halide grians in the photographic emulsions but it is preferred that the grain size be not more than $2 \, \mu m$.

The grain size distribution may be narrow or broad, but a monodispersed silver halide emulsion having a coefficient of variation of not more than 15% is preferred.

The silver halide grains in the photographic emulsion layers may have a regular crystal form such as cubic, octahedral, etc., or an irregular crystal form such as spherical, tabular, etc., or may have a composite form of these crystal forms. Also, a mixture of grains having various crystal forms may be used. Of these emulsions, the use of a photographic emulsion of regular crystal form is preferred.

Further, a silver halide emulsion wherein tabular silver halide grains having a diameter/thickness ratio of at least 5 accounts for at least 50% of the total projected area of the silver halide grains may be used in the present invention.

The silver halide grains used in the present invention may have a composition or structure inside the

grain which is different from that on the surface layer thereof. Also, the silver halide grains may be of the type that latent images are formed mainly on the surface thereof or of the type that latent images are formed mainly in the interior thereof.

During the formation or physical ripening of the silver halide grains, a cadmium salt, a zinc salt, a thallium salt, a lead salt, an iridium salt or a complex salt thereof, a rhodium salt or a complex salt thereof, an iron salt or a complex salt thereof, etc., may exist in the system.

Silver halide emulsions are usually chemically sensitized.

35

45

The silver halide emulsions used in the present invention can further contain various kinds of compounds for preventing the occurrence of fog or for stabilizing photographic performance during the production, storage and/or photographic processing of color photographic materials. Examples of such compounds include the compounds known as antifoggants or stabilizers such as azoles (e.g., benzothiazolium salts, nitroimidazoles, nitrobenzimidazoles, chlorobenzimidazoles, bromobenzimidazoles, mercaptothiazoles, mercaptothiazoles, mercaptothiazoles, mercaptothiazoles, mercaptotetrazoles, in particular, 1-phenyl-5-mercaptotetrazole, etc.), mercaptopyrimidines, mercaptotriazines, etc.; thioketo compounds such as oxazolinethione, etc.; azaindenes (e.g., triazaindenes, tetraazaindenes, in particular, 4-hydroxy-substituted (1,3,3a,7-tetraazaindene), pentaazaindenes, etc.; benzenethiosulfonic acid, benzenesulfinic acid, benzenesulfonic acid amide, etc.

The present invention can be applied to multilayer multicolor photographic materials having at least two photographic emulsion layers each having different spectral sensitivity on a support. A multilayer natural color photographic material usually has at least one red-sensitive emulsion layer, at least one green-sensitive emulsion layer and at least one blue-sensitive emulsion layer on a support. The disposition order of these photographic emulsion layers can be optionally selected according to the purpose for which the photographic material is used. Usually, a red-sensitive emulsion layer contains a cyan-forming coupler, a green-sensitive emulsion layer contains a magenta-forming coupler, and a blue-sensitive emulsion layer contains a yellow-forming coupler. Other combinations may be used, if desired.

As the support used in the present invention, there are those conventionally employed in photographic light-sensitive materials, for example, cellulose nitrate films, cellulose acetate films, cellulose acetate butyrate films, cellulose acetate propionate films, polystyrene films, polyethylene terephthalate films, polycarbonate films, laminates of these films, thin glass films, papers, etc. Paper coated with baryta or an α -olefin polymer, in particular, a polymer of an α -olefin having 2 to 10 carbon atoms, such as polyethylene, polypropylene, ethylenebutene copolymer, etc., and a support such as a plastic film, etc., having a roughened surface for improving the adhesion with other polymers as described in Japanese Patent Publication No. 19068/72 give good results. Also, a resin hardenable by the irradiation of ultraviolet rays can be used.

According to the purpose of the color photographic material, a transparent support or an opaque support may be used. Also, a colored transparent support containing dyes or pigments can also be used.

As an opaque support used in the present invention, there are papers which are opaque by themselves and transparent films which were opacified by the incorporation of dyes or pigments such as titanium oxide, etc. Also, a plastic film surface-treated by the method as described in Japanese Patent Publication No. 19068/72 and further papers or plastic films rendered completely light shielding by the addition of carbon black, dyes, etc., can be used.

A subbing layer is usually provided on the support. Furthermore, for improving the adhesive property, a pretreatment such as corona discharging treatment, ultraviolet irradiation treatment, flame treatment, etc., may be applied to the surface of the support.

As a color photographic light-sensitive material which can be used for making the color photograph according to the present invention, an ordinary color photographic light-sensitive material, in particular, a color photographic light-sensitive material for color print is preferred, and color photographic light-sensitive materials of color photographic systems (in particular, color diffusion transfer photographic systems) as described in U.S. Patents 3,227,550, 3,227,551 and 3,227,552, and U.S. Preliminary Published Patent B351,673, etc., may be used.

For obtaining dye images by a conventional photographic process, it is necessary to apply color photographic development processing after imagewise exposure. Color photographic development processing fundamentally includes the steps of color development, bleaching and fixing. In this case, two steps of bleaching and fixing may be performed by one step (bleach-fixing).

Furthermore, a combination of color development, first fixing, and bleach-fixing can be employed in the present invention. The color development processing step may include, if necessary, various steps of pre-hardening, neutralization, first development (black-and-white development), image stabilization, washing with water, etc. The processing temperature is generally 18 °C or more, and preferably in the range from 20 °C

to 60° C. In particular, recently the range of from 30° C to 60° C is used.

A color developing solution is an aqueous alkaline solution containing an aromatic primary amine color developing agent and having a pH of-at-least 8, preferably from 9 to 12.

After the fixing or bleach-fixing step, a water washing process is usually performed, but a simple socalled "stabilization process" may be substituted in place of the water washing process substantially without employing a water washing step.

Preferred examples of the aromatic primary amine color developing agent are p-phenylenediamine derivatives and specific examples thereof are described below, although the invention should not be construed as being limited to them.

- D-I N,N-Diethyl-p-phenylenediamine
 - D-2 2-Amino-5-diethylaminotoluene
 - D-3 2-Amino-5-(N-ethyl-N-laurylamino)toluene
 - D-4 4-(N-ethyl-N-(\$-hydroxyethyl)amino)aniline
 - D-5 2-Methyl-4-[4-N-ethyl-N-(β-hydroxyethyl)amino]aniline
- 15 D-6 N-Ethyl-N-(β-methanesulfonamidoethyl)-3-methyl-4-aminoaniline
 - D-7 N-(2-Amino-5-diethylaminophenylethyl)methanesulfonamide
 - D-8 N,N-Dimethyl-p-phenylenediamine

35

50

- D-9 4-Amino-3-methyl-N-ethyl-N-methoxyethylaniline
- D-10 4-Amino-3-methyl-N-ethyl N-β-ethoxyethylaniline
- 20 D-11 4-Amino-3-methyl-N-ethyl-N-β-butoxyethylaniline

Also, these p-phenylenediamine derivatives may be in the form of salts thereof, such as sulfates, hydrochlorides, sulfites, p-toluenesulfonates, etc. The above described compounds are described, for example, in U.S. Patents 2,193,015, 2,552,241, 2,566,271, 2,592,364, 3,656,950 and 3,698,525, etc. The amount of the aromatic primary amine color developing agent is from about 0.1 g to about 20 g, and preferably from about 0.5 g to about 10 g per liter of color developing solution.

The color developing solution used in the present invention may contain hydroxylamines as conventionally known.

The processing temperature of the color developing solution is preferably from 30 °C to 50 °C, and more preferably from 33 °C to 42 °C. Also, the amount of a replenisher for the color developing solution is from 30 ml to 2,000 ml, and preferably from 30 ml to 1,500 ml per square meter of color photographic material. The amount of the replenisher is, however, preferably as low as possible from the viewpoint of reducing the amount of waste liquid.

Also, when benzyl alcohol exists in the color developing solution, the amount thereof is preferably not more than 2.0 ml/liter, and more preferably not more than 0.5 ml/liter. A color developing solution containing no benzyl alcohol is most preferred. The time for color development is preferably within 2 minutes and 30 seconds, more preferably from 10 seconds to 2 minutes and 30 seconds, and most preferably from 45 seconds to 2 minutes.

The compounds of (1) and (2) may be applied to a silver halide color photographic material after imagewise exposure. The application can be conducted by incorporating the compounds into at least one of color photographic processing solutions such as a developing solution, a bleaching solution, a fixing solution, a blixing solution, water for washing or water specifically provided for applying the compounds to the photographic material, or a stabilizing solution. It is also possible to incorporate these compounds separately into two or more solution.

The compounds are preferably contained in a developing solution. It is also possible to apply the compounds after developing process using an aqueous solution containing the compounds.

Each concentration of the compounds (1) and (2) in the processing solution is preferably from 1×10^{-5} to 1 mol/1, and the molar ratio of the concentration of the compound (1) to that of compound (2) is from 0.1 to 10.

In accordance with the present invention color photographs excellent in fastness of color images are obtained. In particular, by the use of the color photographic light-sensitive material according to the present invention, color photographs are obtained in which, the three color balance of a yellow dye, a magenta dye and a cyan dye is maintained and the coloration of white background is exceptionally low even when they are preserved for a long period of time.

The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto.

EXAMPLE 1

13.0 g of Cyan Coupler (C-1) was dissolved in a mixture of 10.4 ml of dibutyl phthalate and 30 ml of ethyl acetate and the resulting solution was added to 100 g of an aqueous solution containing 10 g of gelatin and 1 g of sodium dodecylbenzenesulfonate to prepare a finely emulsified dispersion. The total amount of the emulsified dispersion was added to 100 g of a silver chlorobromide emulsion (containing 50 mol% of silver bromide and 6.5 g of silver) and thereto 10 ml of a 2% aqueous solution of 2,4-dihydroxy-6-chloro-s-triazine sodium salt was added just before coating as a hardener. The resulting mixture was coated on a paper support, both surfaces of which were laminated with polyethylene at a silver coating amount of 250 mg/m². On the layer thus-coated was provided a gelatin layer to prepare a sample, which was designated as Sample A.

Further, in the same manner as described above, other samples were prepared using the combinations as shown in Table 1 below. The additives were dissolved into the solutions containing the coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

These samples were subjected to wedge exposure of 1,000 C.M.S., and then processed according to the processing steps described below.

20

Procesing Step	Temperature	Time
Color Development	33 °C	3 min. 30 sec.
Bleach-Fixing	33 °C	1 min. 30 sec.
Washing with Water	25 - 35 °C	3 min.

25

The processing solutions used in each step had the following compositions.

Color Developing Solution:

30

Benzyl Alcohol 15 ml

Diethylenetriamine pentaacetic acid 5 g

KBr 0.4 g

Na₂SO₃ 5 g

Na₂CO₃ 30 g

Hydroxylamine sulfate 2 g

4-Amino-3-methyl-N-β-(methanesulfonamido)ethylaniline °3/2 H₂SO₄ °H₂O 4.5 g

Water to make 1,000 ml

pH 10.1

40

Bleach-fixing Solution:

45 Ammonium thiosulfate (70 wt%) 150 ml

Na₂SO₃ 5 g

Na[Fe(EDTA)] 40 g

EDTA 4 g

Water to make 1,000 ml

6.8 pt

The photographic characteristic (dye image density) of each sample having a dye image thus-formed was measured. Then, each sample was subjected to a fading test for 7 days by means of a xenon tester (200,000 lux) using an ultraviolet ray absorption filter to cut out light of wavelengths shorter than 400 nm (made by Fuji Photo Film Co., Ltd.). The measurement of density was conducted using a Fuji self-recording

type densitometer, and fading was determined by means of a change in density at the area having an initial density (D_0) of 1.5 before the fading test.

Further, each sample was stored under a high temperature condition of 100 °C for 7 days to measure fading of color image due to heat. The results thus-obtained are shown in Table 1 below.

	50	45	40	35	30	- 25	20	15	10	5
					TABLE 1					
mple	Coupler	Additive	Amc Adc (mol*)	mount of idditive to Coupler)	Light-Fastness Xenon, 7 Day Do=1.5 (%)	ness Test* 7 Days 5		Heat-Fastness Test* 100°C, 7 Days Do=1.5 (%)	Test*	Remark
4	[ı		1	7	78		61		Comparison
¢ [, ,	1-28			7			62		£
A - 2	z	1-36			L	6		61		•
A-3		1-49		2	7	79		62		.
A-4	2	11-11		=	ω			62		2
A-5	2	111-26		=	7	78		63		t
A-6	=	111-45		E	,-	6/		61		2
A-7	=	A-1		2	~	81		63		2
A-8	=	A-30	•	=	-	82		65		8
A-9	£	A-48		\$	_	82		99 .		*
A-10	=	A-63		1	-	79		63		r
A-11	=	A-90		2	-	83		67		£
A-12	=	A-100		2	·.	78		62		5
A-13		I-28/A-1		20/20		88		82		Invention
A-14	8	I-36/A-3(0	=		06		87		g -
A-15	2	I-49/A-9(0	#		91		88		t.
A-16	z	III-26/A-30	-30			· 68		87		8

	50	45	40		35	30	25	20	15	10	5
					TAB	TABLE 1 (co	(cont'd)			-	
and a	Coupler	Coupler Additive		Amount o Additive	of Ve	Light-Fastness Xenon, 7 Day Do=1.5	tness Test* 7 Days =1.5	1	leat-Fastn 100°C, 7 Do=1	Heat-Fastness Test* 100°C, 7 Days Do=1.5	Remark
			(mo18	to	Coupler)		~		E		
-17	C-1	III-45/A-100		20/20		_	89		87		Invention
1-18	C-2	1		1		•	77		16	٠	Comparison
1-19	2	A-22/A-41		20/20		•	. 82		80		.
1-20		A-36/A-56		=			7.7		79		.
1-21		1-4/1-49							77		•
1-22	2	1-36/11-1					79		16	•	
A-23		1-45/111-1		* -			78		77		2
A-24	2	I-41/A-22		*			91		6		Invention
A-25		I-47/A-40					91		46		
A-26	2	I-49/A-30		=			93		96		=
A-27		I-38/A-90		=			94		95	-	
A-28	*	II-1/A-61		=			92		91		=
A-29		III-1/A-56	ø			÷.	93		93		8
		* The percenat the amount.	erci he t.		tage of the rea having hereinafter.)	remaining d an initial	remaining dye after an initial density)	the Do=_	the fading DD=1.5 to	test the	

EXAMPLE 2

5

10

15

In the same manner as described in Example 1, except using 100 g of a pure silver chloride emulsion (containing 6.5 g of silver)in place of the silver chlorobromide emulsion used in Example 1, samples having the combinations as shown in Table 2 below were prepared.

These samples were subjected to wedge exposure of 3,000 C.M.S., and then processed according to the processing steps described below.

> **Processing Step** Temperature Time 35 °C 45 sec. Color Development 35 ° C 45 sec. Bleach-Fixing 35 ° C Washing with Water 60 sec.

The processing solutions used in each step had the following compositions. 20

Color Developing Solution:

800 ml Water

> 3.0 g Diethylenetriaminepentaacetic acid

0.3 gPotassium bromide

Potassium carbonate 30 g

N-Ethyl-N-(β -methanesulfonamidoethyl)-3-methyl-4-aminoaniline sulfate 5.5 g

Sodium sulfite 1.7 g

> 3.0 g Hydroxylamine sulfate

Fluorescent whitening agent (4,4'-diaminostilbene type)

1000 ml Water to make

pH adjusted to 10.20 with potassium hydroxide

35

Bleach-Fixing Solution:

Same as in Example 1 40

After the measurement of photographic characteristic of the color image thus-obtained, the same light fastness test and heat fastness test as described in Example 1 were performed. The results thus-obtained are shown in Table 2 below.

45

50

TABLE 2

Remark	Comparison	Comparison	Comparison	Comparison	Comparison	<u>o</u>	ion	ion	on Oi	. <u>o</u>	arison	arison	arison	arison	arison	ion	ion
Rei	Comp	Comp	Comp	Comp	Comp	Invention	Invention	Invention	Invention	Invention	Comparison	Comparison	Comparison	Comparison	Comparison	Invention	Invention
Heat-Fastness Test 100° C, 7 Days $D_0 = 1.5$ (%)	99	. 29	69	89	70	84	83	86	87	82	89	06	89	91	92	26	98
Light-Fastness Test Xenon, 7 Days D _o = 1.5 (%)	62	08	82	83	85	91	92	93	95	91	61	62	61	63	99	68	93
Amount of Additive (mol% to Coupler)	•	20	40	20	40	20/20	20/20	20/20	20/20	20/20	•	20	20	20/20	20/20	20/20	20/20
Additive	•	1-49	1-49	· A-30	A-30	I-16/A-20	I-41/A-36	I-49/A-30	III-34/A-90	III-58/A-52	,	1-20	1-140	1-20/1-42	A-140/A-90	I-20/A-140	I-38/A-30
Coupler	C-34	C-34	C-34	C-34	C-34	C-34	C-34	C-34	C-34	C-34	C-14	C-14	C-14	C-14	C-14	C-14	C-14
Sample	В	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10	B-11	B-12	B-13	B-14	B-15	B-16

TABLE 2 (cont'd)

Coupler	Additive	Amount of Additive (mol% to Coupler)	Light-Fastness Test Xenon, 7 Days $D_0 = 1.5$ (%)	Heat-Fastness Test 100 °C, 7 Days D ₀ = 1.5 (%)	Remark
4	I-42/A-36	20/20	91	26	Invention
4	III-25/A-90	20/20	94	86	Invention
4	III-46/A-11	20/20	92	97	Invention
8		•	09	89	Comparison
8	1.3	20	61	06	Comparison
8	1-38	20	61	89	Comparison
8	1-47	20	62	06	Comparison
8	I-49	20	61	89	Comparison
	A-61	20	09	06	Comparison
8	A-94	20	26	89	Comparison
81	I-38/A-30	20/20	06	97	Invention
8	I-47/A-90	- 20/20	93	98	Invention
8	I-49/A-162	20/20	88	96	Invention
81	III-1/A-30	20/20	06	96	Invention
52	•	•	83	92	Comparison
C-25	I-49/A-90	20/50	97	66	Invention

TABLE 2 (cont'd)

	nvention
Heat-Fastness Test Remark 100 °C, 7 Days D ₀ = 1.5 (%)	98 98
Amount of Additive Light-Fastness Test Xenon, (mol% to Coupler) 7 Days D ₀ = 1.5 (%)	96 96
Amount of Additive (mol% to Coupler)	20/20 20/20
Additive	III-1/A-48 III-34/A-62
Coupler	C-25 C-25
Sample	B-33 B-34

EXAMPLE 3

5

15

4.6 g of Magenta Coupler (M-1) was dissolved in a mixture of 4.6 ml of tricresyl phosphate and 15 ml of ethyl acetate and the resulting solution was added to 100 ml of an aqueous solution containing 10 g of gelatin and 1 g of sodium dodecylbenzenesulfonate to prepare mechanically a finely emulsified dispersion. The total amount of the emulsified dispersion was added to 100 g of a silver chlorobromide emulsion (containing 50 mol% of silver bromide and 6.5 g of silver) and thereto 10 ml of a 2% aqueous solution of 2,4 dihydroxy-6-chloro-s-triazine sodium salt was added just before coating as a hardener. The resulting mixture was coated on a paper support, both surfaces of which were laminated with polyethylene at a silver coating amount of 380 mg/m². On the layer thus-coated was provided a gelatin layer as a protective layer to prepare a sample, which was designated as Sample C.

Further, in the same manner as described above, other samples were prepared using the combinations as shown in Table 3 below. The additives were dissolved into the solutions containing the coupler and then

as shown in Table 3 below. The additives were dissolved into the solutions containing the coupler and them the solutions thus obtained were incorporated into the silver halide emulsion.

These complete thus propagate were subjected to exposure and development processing in the same

These samples thus-prepared were subjected to exposure and development processing in the same manner as described in Example 1.

The photographic characteristic of each sample having a dye image thus-formed was measured. Then, each sample was subjected to a light-fastness test for three months by means of a fluorescent lamp fading tester (15,000 lux) using an ultraviolet ray absorption filter to cut off light of wavelengths shorter than 400 nm (made by Fuji Photo Film Co., Ltd.). The results thus-obtained are shown in Table 3 below.

25

30

35

40

45

50

5	_	Remark	Comparison	*	-	8	£	=	=	z	I	Invention	E ~	E	Comparison	.	*	r	Invention
15	-	ess Test Lamp Do=1.5	(7		1)	(3)	(1)	(9)	(2)	(8)	(61	(01	12)	10)	22)	20)	21)	21)	16)
20		Light-Fastness Test Fluorescent Lamp 3 Months, Do=1.5 (%)	42 (0.27)	43 (0,21)	45 (0.21)	44 (0.23)	46 (0.21)	78 (0.26	79 (0.23)	81 (0.18)	43 (0.19)	94 (0.10)	93 (0.12)	90 (0:10)	41 (0.22)	45 (0.20)	46 (0.21)	77 (0.21)	92 (0.16)
25					-	•													
30	TABLE 3	Amount of Additive	i	20	=		=	=	=	z	I	20/20	:	:	. 1	20/20	:	ı	•
35		An Ac (mol &																	
40		Additive	1	I-3	I-16	I-20	1-28	A-1	A-22	A-25	A-26	I-3/A-1	I-16/A-22	I-28/A-26	t	1-49/111-1	111-1/111-58	A-6/A-49	I-49/A-6
45		ı.t																	
50		Coupler	M-1	:	z	=	=	=		=	r	=	2	E	M-2	=	=	2	=
55		Sample	ບ	-1-1	C-2	C-3	C-4	2-5	G-6	C-7	8-0	6-0	C-10	C-11	C-12	C-13	C-14	C-15	C-16

5		Remark	Invention	Comparison	= , :	: :	= =	:	Invention	=	Comparison	Invention		:	:	ght at the
10		Light-Fastness Test Fluorescent Lamp 3 Months, D0=1.5 (%)	94 (0.15)	42 (0.27)	45 (0.25)	44 (0.24)	77 (0.19)	(89 (0.20)	94 (0.13)	95 (0.12)	55 (0.22)	91 (0.11)	92 (0.12)	94 (0.10)	93 (0.13)	(D _B) measured by blue light represents stain.
25 30	TABLE 3 (cont'd)	Amount of Additive (molt to Coupler)	20/20	ı	20	=	=	=	20/20	=	t	20/20	=	E	20/10	in () is density formed portion and
35 40	`	Additive	III-1/A-94	1	1-36	1-42	A-36	A-61	I-36/A-36	I-42/A-61		I-1/A-22	I-49/A-52	III-26/A-25	III-34/A-85	Note: The value non-color
45 50		Coupler	M-2	M-34	=	=	=	=	=	=	K-13) :	z	=	=	
55		Sample	2-17	C-18	C-19	C-20	C-21	C-22	C-23	r-24		76.0	0 2 2			

EXAMPLE 4

13.8 g of Magenta Coupler (M-33) was dissolved in a mixture of 13.8 ml of tricresyl phosphate and 15 ml of ethyl acetate and the resulting solution was added to 100 ml of an aqueous solution containing 10 g of gelatin and 1 g of sodium dodecylbenzenesulfonate to prepare mechanically a fine emulsified dispersion. The total amount of the emulsified dispersion was added to 100 g of a pure silver chloride emulsion (containing 6.5 g of silver), and then the same procedure was followed as described in Example 3 to prepare Sample D.

Further, in the same manner as described above, other samples were prepared using the combinations as shown in Table 4 below. The additives were dissolved into the solutions containing the coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

These samples were subjected to the same fading test using a fluorescent lamp as described in Example 3. The results thus obtained are shown in Table 4 below.

5		Remark	Comparison	=		=	:	Invention	=	Comparison	=	=	Invention	Comparison	=	:	Invention	Comparison	
15		ess Test Lamp Do=1.5	1)	1)	(0)	(0)	(6)	(0)	(6)	13)	12)	13)	10)	14)	12)	14)	10)	12)	11)
20		Light-Fastness Fluorescent Lar 3 Months, DO= (%)	48 (0.11)	51 (0.11)	58 (0:10)	87 (0.10)	88 (0.09)	98 (0.10)	97 (0.09)	31 (0.13)	35 (0.12)	79 (0.13)	94 (0.10)	38 (0.14)	39 (0.12)	75 (0.14)	94 (0.10)	45 (0.12)	48 (0.11)
25																			
30 35	TABLE 4	Amount of Additive (mol% to Coupler)	ı	20	40	20	40	20/20	=	ı	20/20	20/10	20/20	î	20/20	20/10	20/20	1	20/20
40 45		Additive	l	I-49	I-49	A-62	A-62	I-49/A-62	III-1/A-61	ı	1-16/11-5	A-40/A-74	I-16/A-40	1	1-42/111-1	A-6/A-84	I-42/A-6	ı	111-26/111-65
45		Coupler	₩	=		· =	=	=	=	M-16	=	=	2	M-17		£	=	M-23	=
55		Sample	c	d	D-2	D-3	D-4	D-5	D-6	D-7	8-0) o	י ב	מי ב	1 -0	1 -Q	D-14	0-15	D-16

5		Remark	Comparison	Invention	Comparison	<u>-</u>		Invention	Comparison	:	=	Invention	Comparison	E	=	Invention	
10		ا ب															the
15		Light-Fastness Test Fluorescent Lamp 3 Months, Do=1.5 (%)	(0.14)	(60.0)	(0.11)	(0.11)	(0.11)	(60.0)	(0.13)	(0.12)	(0.13)	(0.0)	(0.14)	(0.14)	36 (0.14)	(0.11)	lue light at n.
20		Light-Fastne Fluorescent 3 Months,	59	16	44	46	83	96	38	41	81	95	35	51	36	93	red by b. ints stai
25	cont'd)	f pler)	- ·.														represe
30	TABLE 4 (cont'd)	Amount of Additive [mol% to Coupler)	20/20	z	ŧ	20	=	20/20	•	20	E	20/20	ı	20	2	20/20	() is density (D_B) measured by blue light formed portion and represents stain.
35		15	-													-	is o
40		Additive	A-1/A-37	III-26/A-1	ı	111-34	A-56	III-34/A-56	 !	I-38	A-6	I-38/A-6		1-41	A-140	14	Note: The value in () non-color for
45		ul					_				÷						.
50		Coupler	M-23	=	M-31	=	=	=	M-35	£	2	=	M-38	=	2	=	Mot
55		Sample	D-17	D-18	D-19	D-20	D-21	D-22	D-23	n-24	י ה י ה		D-27	7 - C	62-0) C	

EXAMPLE 5

5

10.7 g of Yellow Coupler (Y-35) was dissolved by heating in a mixture of 8.6 ml of dibutyl phthalate and 25 ml of ethyl acetate and the resulting solution was added to 100 g of an aqueous solution containing 10 g of gelatin and 1 g of sodium dodecylbenzenesulfonate to prepare a finely emulsified dispersion by means of mechanical stirring. The total amount of the emulsified dispersion was added to 100 g of a silver chlorobromide emulsion (containing 80 mol% of silver bromide and 6.5 g of silver) and thereto 10 ml of a 2% aqueous solution of 2,4-dihydroxy-6-chloro-S-triazine sodium salt was added just before coating as a hardener. The resulting mixture was coated on a paper support, both surfaces of which were laminated with polyethylene at a silver coating amount of 350 mg/m². On the layer thus-coated was provided a gelatin layer to prepare a sample, which was designated as Sample E.

Further, in the same manner as described above, other samples were prepared using the combinations as shown in Table 5 below. The additives were dissolved into the solutions containing the coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

These samples thus-prepared were subjected to exposure and development processing in the same manner as described in Example 1 to prepare color images.

The photographic characteristic of each sample having a color image thus-formed was measured. Then, each sample was subjected to a light-fastness test for four months by means of a fluorescent lamp fading tester (15,000 lux) using an ultraviolet ray absorption filter same as used in Example 1 above.

Further, in order to evaluate humidity and heat fastness, each sample was storedat 60°C and 70% RH for three months, and the change in density of the color image at the area having an initial density (D₀) of 1.5 was measured. The results thus-obtained are shown in Table 5 below.

30

20

25

35

40

45

50

5		Remark	Comparison	=	=	t	=	=	Ξ.	=	Ľ	:	=	Invention	=	=	:	Comparison
10		and sest RH D0=1.5																
15		Humidity ar Heat-Fastness 60°C/70% RH 3 Months, DO (%)	98	98	88	98	87	86	88	06	16	85	86	26	96	97	95	87
20		Hea 6		-														
25		istness Test scent Lamp ihs, Do=1.5	71	72	71	73	71	73	72	75	78	69	71	88	98	06	87	73
30	TABLE 5	Light-Fastness Fluorescent 4 Months, Do						٠.										
35		Amount of Additive (mol & to Coupler)	•	20	=	=	=	=	=	•	•	 E	=	20/20	=	:	=	ı
40		[Om)													00	σ.	00	
45	- 1.	Additive	i	I-5	1-7	I-10	1-22	1-24	1-26	A-31	A-89	A-92	A-100	I-5/A-31	I-22/A-100	I-49/A-89	I-51/A-100	l
50		Sample Coupler	Y-35	=	=	I	=	=	=	=	2	=	=	=	=	=	=	¥-36
55		Sample	 (£	a	E-2	E-3	E-4	ន ១	9 - 9	E-7	E-8	E-9	E-10	E-11	E-12	E-13	E-14	E-15

5		Remark	Comparison	:	ε	.	Invention	Comparison	1	:	=	= ~ .	Invention	=	=	=
10		y and ess Test* t RH Do=1.5														
15	•	Humidity ar Heat-Fastness 60°C/70% RE 3 Months, Do	87	16	88	06	36	87	87	88	88	88	94	95	94	94
20		t														
	٠	t Lamp	•						-							
25	(cont'd)	ght-Fastness Fluorescent 4 Months, Do (%)	74	77	7.5	92	93	69	70	69	69	71	92	94	95	93
30	2	Light-Fastness Test Fluorescent Lamp 4 Months, Do=1.5 (%)									***					
35	TABLE	Amount of Additive (mol% to Coupler)	(20	40	20	40	20/20		20/20	=	10/20	20/20	20/10	20/20	=	=
40		101					7		7		7	N		.,	S	4
45	44 ¹	Sample Coupler Additive (I-56	1-56	111-29	111-29	I-56/A-31	1	1-33/111-60	I-52/III-40	A-87/A-148	A-145/A-164	I-33/A-87	I-52/A-148	III-40/A-145	III-60/A-164
50		Coupler	¥-36		=	=	=	Y-39	=	:	=	=	:	=	=	2
55		Sample	E-16	E-17	E-18	E-19	E-20	E-21	E-22	E-23	E-24	E-25	E-26	E-27	E-28	E-29

The percentage of the remaining dye after the fading test at the area having an initial density D_0 =1.5 to the amount.

From the results shown in Examples 1 to 5, it can be seen that the samples in which the compound represented by the general formula (I), (II) or (III) and the compound represented by the general formula (IV) or the organic metal complex are used in combination according to the present invention exhibit a greatly improved effect on the fastness to light, heat or heat and humidity in comparison with the cases wherein these compounds are individually used, the cases wherein these compounds are used individually in an increased amount, and the cases wherein the mixture of the compounds represented by the general formulae (I), (II) and (III) is employed, the cases wherein a mixture of the compound represented by the general formula (IV) or the cases wherein a mixture of organic metal complex is employed.

10

15

EXAMPLE 6

On a paper support, both surfaces of which were laminated with polyethylene, a first layer (the undermost layer) to a seventh layer (the uppermost layer) as shown in Table A below were coated in this order to prepare a color photographic light-sensitive material.

TABLE A

20

25

30

35

40

Amount Used Main Composition Layer 1.33 g/m² Seventh Layer Gelatin Acryl-modified Polyvinyl Alcohol 0.17 g/m^2 (Protective Copolymer (degree of modification: layer) 17%) 0.54 g/m² Sixth Laver Gelatin 5.10x10⁻⁴ mol/m² Ultraviolet Light Absorbing Agent (d) (Ultraviolet $0.08 \, g/m^2$ Solvent (a) light absorbing layer) 0.22 g/m² (as silver) Silver Chlorobromide Emulsion (silver Fifth bromide: 70 mol%) 0.90 a/m² Gelatin Layer 7.05x10⁻⁴ mol/m² (Red-sensitive Cyan Coupler 5.20x10⁻⁴ mol/m² Color image Stabilizer (f) layer) 0.6 g/m^2 Solvent (e) 1.60 g/m² Fourth Layer Gelatin 1.70x10⁻⁴ mol/m² Ultraviolet Light Absorbing Agent (d) (Ultraviolet 1.60x10⁻⁴ mol/m² light absorbing Color Mixing Preventing Agent (A-24) 0.24 g/m² Solvent (a)

45

layer)

50

TABLE A (cont'd)

	Layer	Main Composition	Amount Used			
5	Third Layer (Green-sensitive layer)	Silver Chlorobromide Emulsion (silver bromide: 75 mol%) Gelatin Magenta Coupler Solvent (c)	0.15 g/m ² (as silver) 1.56 g/m ² 3.38x10 ⁻⁴ mol/m ² 0.59 g/m ²			
10	Second Layer (Color mixing preventing layer)	Gelatin Color Mixing Preventing Agent (b)	0.90 g/m ² 2.33x10 ⁻⁴ mol/m ²			
15	First Layer (Blue-sensitive layer)	Silver Chlorobromide Emulsion (silver bromide: 80 mol%) Gelatin Yellow Coupler Solvent (a)	0.35 g/m ² (as silver) 1.35 g/m ² 6.91x10 ⁻⁴ mol/m ² 0.02 g/m ²			
20	Support	Polyethylene laminated paper (the polyethylene coating copigment (TiO ₂) and a bluish dye (ultramarine) on the first la	ntaining a white yer side).			

In addition, the following spectral sensitizing dyes were used for the above described silver halide emulsion layers.

For the Blue-Sensitive Emulsion Layer:

 $(2\times10^{-4} \text{ mol per mol of silver halide})$

For the Green-Sensitive Emulsion Layer:

 $(2.5 \times 10^{-4} \text{ mol per mol of silver halide})$

For the Red-Sensitive Emulsion Layer:

 $(2.5 \times 10^{-4} \text{ mol per mol of silver halide})$

The compounds used for preparing the above described color photographic light-sensitive material were as follows.

204

55

45

5

10

15

20

25

30

Solvent (a):

5

10

15

20

25

30

35

40

45

50

(iso-C₉H₁₉O+₃P=O

Color Mixing Preventing Agent (b):

$$(sec)C_8H_{17}$$
OH
OH
OH
OH

Solvent (c):

$$(C_8H_{17}O)_3P=0$$
 and $O_3P=0$ in a 2:1 mixture

(weight ratio).

Ultraviolet Light Absorbing Agent (d):

Ce
$$C_{4H_9(t)}$$

$$C_{4H_9(t)}$$

$$C_{4H_9(t)}$$

$$C_{4H_9(t)}$$

$$C_{4H_9(t)}$$

and $C\ell$ N N $CH_2CH_2COOC_8H_{17}$

in a 1:5:3 mixture (molar ratio).

Solvent (e):

Color Image Stabilizer (f):

10

15

5

Ce
$$N$$
 OH $C_4H_9(t)$ OH N And $C_4H_9(t)$ $C_4H_9(t)$

20

25

$$\begin{array}{c|c}
 & \text{OH} & C_4 \text{Hg}(\text{sec}) \\
 & \text{in} \\
 & \text{N} \\
 & \text{C_4 Hg}(\text{t})
\end{array}$$

HOOC

in a 1:3:3 mixture (molar ratio).

COOK

Furthermore, the following dyes were used for the emulsion layers as irradiation preventing dyes.

30

For the Green-Sensitive Emulsion Layer:

35

CH-CH=CH

40

For the Red-Sensitive Emulsion Layer:

50

45

55

Using the combinations of couplers and the compounds according to the present invention as shown in Table 6 below samples were prepared. The additives were dissolved into the solutions containing the

coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

These samples were exposed through an optical wedge and then subjected to development processing according to the following steps.

	Processing Step	Temperature	Time
B W	olor Development leach-Fixing /ashing with Water rying	33 °C 33 °C 33 °C 50-80 °C	3 min. 30 sec. 1 min. 30 sec. 3 min. 2 min.

The compositions of the processing solutions used were as follows.

Color Developing Solution

Benzyl alcohol ... 12 mi

Diethylene glycol 5 ml

Potassium carbonate 25 g

0.1 g Sodium chloride

Sodium bromide **0.5** g

Anhydrous sodium sulfite 2 g

Hydroxylamine sulfate 2 g ----

25 Fluorescent whitening agent 1 g

 $N-Ethyl-N-\beta-methan esulfon a mid oethyl-3-methyl-4-a min oaniline sulfate$ 4 g

Water to make 1 liter

10.2 pH (adjusted with sodium hydroxide).

30

5

10

15

20

Bleach-Fixing Solution

Ammonium thiosulfate 124.5 g

13.3 g Sodium methabisulfite

Anhydrous sodium sulfite 2.7 g

65 g Ammonium ferric ethylenediamine-tetraacetate

100 ml Color developing solution

рΗ 6.7 to 6.8

1 liter Water to make

> The compositions of the processing solutions used were almost in an equilibrium state since the development processing was conducted while performing normal replenishing using an ordinary roller transport type developing solution processer.

> With each sample thus-processed, a cyan, yellow and magenta reflection density was measured using a Fuji self-recording type densitometer (made by Fuji Photo Film Co., Ltd.). Then, each sample was subjected to a fading test using a fluorescent lamp tester (15,000 lux) for 30 days.

The results thus-obtained are shown in Table 6 below.

50

45

5			Remark				•	Investion	•		Comparison	•	400		•	Comperison	•	Invention	•		•
		ָ	- 1	e	2	79	2		:_ :	2	2	2	;	2	2	=	2	-	=		2
10		Light-Pastness Test	with Pluorescens	(2)	e n	36	9		, :	6	25	11	: ;	5	2	95	36	36	35		2
		Light-P	1411		2	12	=	; ;		8	2	9	}		2	2	2	2	2		5
15			Amount of *	Additive	•	1	,		•	ı	, !	•	ı	1	•	70	20	20/20	10/10/20		10/10/50
20		rifth Ceres		Additive	•	•		1 -	•	•		:	•	1	1	1-47	A-90	1-47/A-90	1-47/111-34/ 10/10/20	N-90	I-49/III-1/ 10/10/50 A-90
25				Couples	C-34	•	ı	•	•	•	•	1	•	•	•		•		•		•
30	O STORE	ų.	Pagint of	Additive	•		•	1		•	e	:	20	20/20	10/10/20	•	•	•	•	ı	10/10/30
35		Texal Laver	27 A 4 4 6 11 4	Additive	•		1	•	•	1	;	a)-I	A-62	I-49/A-62	1-49/111-1/		•		1	•	1-49/111-1/ A-63
				Couplet	, T				•	•		•			•	•	•	•	•	•	•
40				Amount of Additive		•	20	20	20/20	10/10/20		•	1	ı	,		•	1	ı	•	10/10/90
45			Pirst Layer	additive	l	1	I-30	I-89	1-31/4-19	1-38/111-26/	V-10	•	•	•	•			1	ı	ı	1-49/111-1/ A-90
50						1-35	•	•				•	•	•			•	•	•	•	•
5 5			•		TTOMES		1-1	F- 2	-	I		Z-1	4-6		1 1		7-5	1-1 0	F-11	F-12	F-13

5			Remark	Compacison	•		Invention	Compartson	Invention	
		. يد	Cyan (s)	3 5	92	5	2	=	z	
10		Light-Fastness Test	vith Pluorescent Lamb [ellow Magenta Cyan [8] (8)	:	5	19	S.	57	6	
		Light-F	rellov (8)	=		=	=	=	9	
15		11	Amount of * Additive	•	•	i	20/20	1	20/20	,
20		Fifth Large	Additive	•	•	·	I-41/A-30	ı	III-1/A-30	
25	nt 'd)		Couplet	.	C-2	C-18	•	C-25	•	
30	Table 6 (cont'd)		Amount of *	•	20	20	20/20	•	20/20	
35		Third Laver	¥	•	1-36	A-52	I-36/A-52	•	111-26/A-56	ler
* .			Couplet	H-13	•	•	•	H-27	•	Molt to coupler
40 =			Amount of Additive	ı	•	•	•	•	20/20	* Molt
45	-	•	Pirst Layer Additive		. •		1		1-20/A-48	
50			ple Coupler	1-36	•		•		•	
					51	; ;		: =	13	

From the results shown in Table 6, it can be seen that the greatly improved effect on light fastness is also observed by the combination of the compounds according to the present invention in multilayer

5

EXAMPLE 7

A color photographic light-sensitive material (Sample G) was prepared as follows. 10

A multilayer color photographic light-sensitive material in which Layer 1 to Layer 11 have the following layer structure on a paper support, both surfaces of the paper support having been laminated with polyethylene, was prepared. In this case, the polyethylene coating on the Layer 1 side of the support contained titanium dioxide as a white pigment and a small amount of ultramarine as a bluish dye.

15

Construction of Layers

The composition of each layer is shown below. The coating amounts of the components are described in the unit of g/m². With respect to silver halide, the coating amount is indicated in terms of a silver coating amount.

Layer 1: Antihalation Layer:

25

0.01 Black Colloidal Silver Gelatin 0.2

30

Layer 2: Low-Speed Red-Sensitive Layer:

Silver lodobromide Emulsion (silver iodide: 3.5 mol%, mean grain size 0.7 µm) spectrally sensitized by red-0.15 as silver sensitizing dyes (*5 and *4)

Gelatin 1.0

> Cvan Coupler (*3) 0.30

Color Fading Preventing Agent (*2) 0.15

Coupler Solvent (*12 and *1) 0.06

40

Layer 3: High-Speed Red-Sensitive Layer:

Silver lodobromide Emulsion (silver iodide: 8.0 mol%, mean grain size 0.7 µm) spectrally sensitized by red-0.10 as silver

45 sensitizing dyes (*5 and *4)

Gelatin 0.50

Cyan Coupler (*3) 0.10

0.05 Color Fading Preventing Agent (*2)

Coupler Solvent (*12 and *1) 0.02

50

```
Layer 4: Interlayer:
    Yellow Colloidal Silver
                              0.02
    Gelatin
               1.00
    Color Mixing Preventing Agent (*11)
    Color Mixing Preventing Agent Solvent (*10)
    Polymer Latex (*6) 0.40 (solid content)
10
    Layer 5: Low-Speed Green-Sensitive Layer:
    Silver lodobromide Emulsion (silver iodide: 2.5 mol%, mean grain size 0.4 µm) spectrally sensitized by
                                  0.20 as silver
    green-sensitizing dyes (*9)
    Gelatin
               0.70
    Magenta Coupler (*8)
                             0.40
    Coupler Solvent (*15)
                             0.60
20
    Layer 6: High-Speed Green-Sensitive Layer:
    Silver lodobromide Emulsion (silver iodide: 3.5 mol%, mean grain size 0.9 µm) spectrally sensitized by
    green-sensitizing dyes (*9)
                                  0.20 as silver
                0.70 -
    Gelatin
    Magenta Coupler (*8)
                             0.40
                             0.60
    Coupler Solvent (*15)
30
    Layer 7: Yellow Filter Layer:
    Yellow Colloidal Silver
    Gelatin
                1.00
    Color Mixing Preventing Agent (*11)
                                                    0.24
     Color Mixing Preventing Agent Solvent (*10)
    Layer 8: Low-Speed Blue-Sensitive layer:
     Silver lodobromide Emulsion (silver iodide: 2.5 mol%, mean grain size 0.5 µm) spectrally sensitized by
     blue-sensitizing dyes (*13)
                                  0.15 as silver
     Gelatin
                0.50
    Yellow Coupler (*12)
                             0.20
     Coupler Solvent (*15)
                              0.05
50 Layer 9: High-Speed Blue-Sensitive Layer:
     Silver lodobromide Emulsion (silver iodide: 2.5 mol%, mean grain size 1.4 µm) spectrally sensitized by
```

211

0.20 as silver

0.27

0.07

blue-sensitizing dyes (*13)

0.67 Yellow Coupler (*12)

Coupler Solvent (*15)

Gelatin

Layer 10: Ultraviolet Light Absorbing Layer:

Gelatin 1.50

Ultraviolet Light Absorbing Agent (*16) 1.0

Ultraviolet Light Absorbing Agent Solvent (*15) 0.30

Color Fading Preventing Agent (*14) 0.08

10 Layer 11: Protective Layer:

Gelatin 1.0

15

20

25

30

40

45

50

The compounds used for the color photographic light-sensitive material were as follows.

(*1): Dioctyl phthalate

(*2): 2-(2-Hydroxy-3-sec-butyl-5-tert-butylphenyl)benzotriazole

(*3): 2-[α -(2,4-Di-tert-amylphenoxy)butanamido]-4,6-dichloro-5-ethylphenol

(*4): 5,5 -Dichloro-3,3 -di-(3-sulfobutyl)-9-ethylthiacarbocyanine Sodium Salt

(*5): Triethylammonium-3-[2-{2-[3-(3-sulfopropyl)naphtho(1,2-d)thiazolin-2-ylidene methyl]-1-butyl}-3-naphtho(1,2-d)-thiazolino]propane Sulfonate

(*6): Polyethyl Acrylate

(*7): Phosphoric Acid Trioctyl Ester

(*8): M-33

(*9): 5,5'-Diphenyl-9-ethyl-3,3'-disulfopropyloxacarbocyanine Sodium Salt

(*10): Phosphoric Acid o-Cresyl Ester

(*11): 2,4-Di-tert-octylhydroquinone

(*12): α -Pivaloyl- α -[(2,4-dioxo-1-benzyl-5-ethoxyhydantoin-3-yl)-2-chloro-5-(α -2,4-dioxo-tert-amyl-phenoxy)butanamido]acetanilide

(*13): Triethylammonium 3-[2-(3-benzylrhodanine-5-ylidene)-3-benzoxazolinyl]propanesulfonate

(*14): 2,4-Di-sec-octylhydroquinone

(*15): Phosphoric Acid Trinonyl Ester

(*16): 5-Chloro-2-(2-hydroxy-3-tert-butyl-5-tert-octyl)phenylbenzotriazole

Further, in the same manner as described for Sample G above, except adding the compounds according to the present invention to each Layer 5 and Layer 6 of Sample G as shown in Table 7, other samples were prepared. The additives were dissolved into the solution containing the coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

The samples thus-prepared were exposed through an optical wedge and subjected to development processing according to the following processing steps.

Processing Step	Temperature	Time
First Development (Black and White Development) Washing with Water Reversal Exposure Color Development Washing with Water Bleach-Fixing Washing with Water	38°C 38°C >100 lux 38°C 38°C 38°C	1 min. 15 sec. 1 min. 30 sec. >1 min. 2 min. 15 sec. 45 sec. 2 min. 00 sec. 2 min. 15 sec.

The compositions for the processing solutions used were as follows.

First Developing Solution

55

Pentasodium Nitrilo-N,N,N-trimethylenephosphonate 0.6 g Pentasodium Diethylenetriaminepentaacetate 4.0 g Potassium Sulfite 30.0 g

1.2 g Potassium Thiocyanate 35.0 g Potassium Carbonate Potassium Hydroquinone Monosulfonate 25.0 g Diethylene glycol 15.0 ml 1-Phenyl-4-hydroxymethyl-4 methyl-3-pyrazolidone 2.0 g Potassium Bromide 0.5 g Potassium lodide 5.0 mg ___ Water to make 1 liter 9.70 pΗ

10

Color Developing Solution

15.0 ml Benzyl Alcohol Diethylene Glycol 12.0 ml 3,6-Dithia-1,8-octandiol 0.2 a Pentasodium Nitrilo-N,N,N-trimethylenephosphonate Pentasodium Diethylenetriaminepentaacetate Sodium sulfate Potassium Carbonate 25.0 g Hydroxylamine sulfite 2.0 g N-Ethyl-N-(β-methanesulfonamidoethyl)-3-methyl-4-aminoaniline Sulfate 5.0 g Potassium Bromide 0.5 g Potassium lodide 1.0 mg Water to make 1 liter

30

На

Bleach-Fixing Solution

10.40

2-Mercapto-1,3,4-triazole 1.0 g
Disodium Ethylenediaminetetraacetate 5.0 g
Ammonium Iron (III) Ethylenediaminetetraacetate Monohydrate 80.0 g
Sodium Sulfite 15.0 g
Sodium thiosulfate (700 g/t) 160.0 ml
Glacial Acetic Acid 5.0 ml
Water to make 1 liter
90 pH 6.50

The magenta reflection density (stain) at the non-imaged portion of each sample thus processed was measured and then the magenta reflection density (stain) at the non-imaged portion thereof was measured again after allowing the sample to stand for 3 days at 80 °C and 70% RH and after allowing the sample to stand for 80 days at room tesmperature. The increase in stain from one hour after processing is shown in Table 7 below.

Further, in order to evaluate light fastness of each sample, a magenta reflection density was measured using a Fuji self-recording type densitometer. Then, each sample was subjected to a fading test using a fluorescent lamp tester (15,000 lux) for 30 days. The results thus-obtained are also shown in Table 7 below.

50

TABLE 7

•
80 C/70% RH 3 Davs
0.07
0.0
0.08
0
ö
Ö
Ö
ö
ö
Ö
0
<u>.</u>
0
0
0
0.03

TABLE 7 (cont'd)

Remark		Invention Invention Invention Invention
Light-Fastness Test Remaining Ratio of Magenta Dye (%)		91 90 92 87
Increase in Magenta Density	Room Temperature 80 Days	0.01 0.01 0.02 0.01
Increase in N	80 ° C/70% RH 3 Days	0.02 0.02 0.01
Amount of Additive (mol% to Coupler)		20/20 20/20 20/20 10/10/20
Additive		1-41/A-61 1-49/A-1 111-1/A-1 1-49/11-1/A-63
Sample		G-16 G-17 G-18 G-19

From the results shown in Table 7, it can be seen that the combination of the compounds according to the present invention is extremely effective not only for preventing color (magenta) stain due to the preservation after the development processing but also for improving light fastness of magenta dye.

5

EXAMPLE 8

The following First layer to Fourteenth layer were coated on a paper support, both surfaces of which were laminated with polyethylene to prepare a multilayer color photographic light-sensitive material. The polyethylene laminated on the First layer side of the support contained titanium dioxide as a white pigment and a small amount of ultramarine as a bluish dye.

15 Construction of Layers

The composition of each layer is shown below. The coating amounts of the components are described in the unit of g/m². With respect to silver halide, the coating amount is indicated in terms of a silver coating amount

20

First Layer: Antihalation Layer

Black colloidal silver 0.10

25 Gelatin 1/30

Second Layer: Intermediate Layer

30

Gelatin 0.70

35 Third Layer: Low-Sensitive Red-sensitive Layer

Silver bromide emulsion spectrally sensitized with Red-sensitizing dyes (ExS-1, 2, 3) (average grain size: $0.3 \mu m$, size distribution: 8%, octahedral) 0.06

Silver bromide emulsion spectrally sensitized with Red-sensitizing dyes (ExS-1, 2, 3) (average grain size:

40 0.45 µm, size distribution: 10%, octahedral) 0.10

Gelatin 1.00

Cyan coupler (ExC-1) 0.14 Cyan coupler (ExC-2) 0.07

Color fading preventing agent (Cpd-2, 3, 4, 18, mixing ratio: 1/1/1/1) * 0.12

coupler dispersing medium (Cpd-5) 0.03

Coupler solvent (Solv-1, 2, 3, mixing ratio: 1/1/1) * 0.06

50 Fourth Layer: High-Sensitive Red-sensitive Layer

Silver bromide emulsion spectrally sensitized with Red-sensitizing dyes (ExS-1, 2, 3) (average grain size:

0.75 µm, size distribution: 10%, octahedral) 0.15

Gelatin 1.00

55 Cyan coupler (ExC-1) 0.20

(*: The mixing ratio of agents is represented by weight ratio and the mixing ratio of the solvents is represented by volume; the same hereinafter)

EP 0 298 321 A2

Cyan coupler (ExC-2) 0.10 Color fading preventing agent (Cpd-2, 3, 4, 18, mixing ratio: 1/1/1/1) 0.15 Coupler dispersing medium (Cpd-5) - 0.03 Coupler solvent (Solv-1, 2, 3, mixing ratio: 1/1/1) 5 Fifth Laver: Intermediate Layer 1.00 Gelatin 10 0.08 Color mixing preventing agent (Cpd-7) Color mixing preventing agent solvent (Solv-4, 5, mixing ratio: 1/1) -0.16 Polymer latex (Cpd-8) 0.10 (solid content) 15 Sixth layer: Low-Sensitive Green-sensitive Layer Silver bromide emulsion spectrally sensitized with Green-sensitizing dyes (ExS-3, 4) (average grain size: 0.04 0.28 µm, size distribution: 8%, octahedral) Silver bromide emulsion spectrally sensitized with Green-sensitizing dyes (ExS-3, 4) (average grain size: 0.45 µm, size distribution: 10%, octahedral) 0.06 Gelatin 0.80 Magenta coupler (ExM-1) 0.10 0.05 25 Coupler dispersing medium (Cpd-5) 0.15 Coupler solvent (Solv-4, 6, mixing ratio: 1/1) Seventh Layer: High-Sensitive Green sensitive Layer Silver bromide emulsion spectrally sensitized with Green-sensitizing dye (ExS-3) (average grain size: 0.9 um, size distribution: 8%, octahedral) 0.10 0.80 Gelatin Magenta coupler (ExM-1) Coupler dispersing medium (Cpd-5) Coupler solvent (Solv-4, 6, mixing ratio: 1/1) 0.15 Eighth Layer: Intermediate Layer Same as Fifth Layer 45 Ninth Layer: Yellow Filter Layer 0.20 Yellow colloidal silver Gelatin 1.00 0.06 Color mixing preventing agent (Cpd-7) Color mixing preventing agent solvent (Solv-4, 5, mixing ratio: 1/1) 0.15 Polymer latex (Cpd-8) 0.10 (solid content)

EP 0 298 321 A2

Tenth Layer: Intermediate Layer

Same as Fifth Layer

5

Eleventh Layer: Low-Sensitive Blue-sensitive Layer

Silver bromide emulsion spectrally sensitized with Blue-sensitizing dye (ExS-5) (average grain size: 0.35 10 µm, size distribution: 8%, tetradecahedral) 0.07

Silver bromide emulsion spectrally sensitized with Blue-sensitizing dye (ExS-5) (average grain size: 0.45

μm, size distribution: 10%, tetradecahedral) 0.10

Gelatin 0.50

Jeiatii 0.50

Yellow coupler (ExY-1) 0.20

Stain preventing agent (Cpd-7) 0.001

Color fading preventing agent (Cpd-6) 0.10

Coupler dispersing medium (Cpd-5) 0.05

Coupler solvent (Solv-2) 0.05

20

Twelfth Layer: High-Sensitive Blue-sensitive Layer

Silver bromide emulsion spectrally sensitized with Blue-sensitizing dyes (ExS-5, 6) (average grain size: 1.2

25 μm, size distribution: 10%, tetradecahedral) 0.25

Gelatin 1.00

Yellow coupler (ExY-1) 0

Stain preventing agent (Cpd-7) 0.002

Color fading preventing agent (Cpd-6) 0.10

Coupler dispersing medium (Cpd-5) 0.05

Coupler solvent (Solv-2) 0.10

35 Thirteenth Layer: Ultraviolet Light Absorbing Layer

Gelatin 1.50

Ultraviolet light absorbing agent (Cpd-1, 3, 9, mixing ratio: 1/1/1) 1.00

Color mixing preventing agent (Cpd-6, 10, mixing ratio: 1/1) 0.06

Dispersing medium (Cpd-5)

Ultraviolet light absorbing agent solvent (Solv-1, 2, mixing ratio: 1/1) 0.15

Irradiation preventing dye (Cpd-11, 12, mixing ratio: 1/1) 0.02 Irradiation preventing dye (Cpd-13, 14, mixing ratio: 1/1) 0.02

45

Fourteenth Layer: Protective Layer

Silver chlorobromide fine particles (silver chloride: 97 mol%, average grain size: 0.2 µm) 0.15

50 Modified polyvinylaclohol 0.02

Gelatin 1.50

Gelatin hardener (H-1) 0.17

Fourteenth layer, is illustrated below.

A specific example of the preparation of the silver halide emulsions used herein, except that used in

An aqueous solution of potassium bromide and an aqueous solution of silver nitrate were added simultaneously to a gelatin aqueous solution containing 0.3 g/molAg of 3,4-dimethyl-1,3-thiazoline-2-thion over about 20 minutes at 75 °C while vigorously stirring, to obtain a monodispersed octahedral silver

bromide emulsion having an average grain size of about 0.40 μ m. 6 mg/molAg of sodium thiosulfate and 7 mg/molAg of chloroauric acid tetrahydrate were added thereto and the emulsion was heated to 75 $^{\circ}$ C for 80 minutes to accomplish chemical sensitization. While the thus-obtained silver bromide particles were used as core particles, the particles were further grown under the same precipitation condition as above to obtain a monodispersed octahedral core/shell type silver bromide having an average grain size of about 0.7 μ m. The coefficient of variation of the grain size was about 10%.

1.5 mg/molAg of sodium thiosulfate and 1.5 mg/molAg of chloroauric acid tetrahydrate were added to the emulsion, and the emulsion was heated to 60 °C for 60 minutes to accomplish chemical sensitization, thus an internal latent image type silver halide emulsion was obtained.

To each light-sensitive layer, nucleating agent (N-I-9) and Nucleating accelerator (ExZS-1) were added in amounts of 1×10^{-3} wt% and 1×10^{-2} wt%, respectively, based on the amount of silver halide.

To each layer, emulsifying dispersing aids (Alkanol XC (Du Pont) and sodium alkylbenzenesulfonate, and coating aids (succinic acid ester and Magefac F-120 (Dai Nippon Ink and Chemical Co., Ltd.)) were added. Furthermore, to the layers containing silver halide or colloidal silver, stabilizers (Cdp-15, 16, 17) were added. The thus-obtained photographic light sensitive material was designated Sample H.

The compounds used in Example 8 are illustrated below.

(H-1) -

1,2-Bis(vinylsulfonylacetamido)ethane

(N-I-9)

25

30

20

10

Ç

N=N CONH

CH_C≡CH·αU_

35

40

45

50

(ExZS-/)

$$_{\text{HS}}$$
 $_{\text{S}}$ $_{\text{S-(CH}_2)_6-N}$ $_{\text{CH}_3}$

· HC

E x 8 - /

$$\begin{array}{c|c} S & C_2H_5 \\ + & C = C - CH = \\ N & \\ (CH_2)_3SO_3 - \\ (CH_2)_3SO_3H \end{array}$$

E x S - 2

E x S - 3

C

E x 8 - 4

E x S - 5

ExS-6

 $CL \xrightarrow{\uparrow} CH = \langle S \rangle C$

C p d - /

HO
$$C_4H_9$$
 (sec)
$$C_4H_9(t)$$

C p d - 2

$$C_{4}H_{9}(t)$$

C p d - 3

HO

$$C_4H_9(t)$$
 $C_4H_9(t)$

C p d - 4

$$C_{4}H_{9}(t)$$

$$HO \longrightarrow C_{4}H_{9}(t)$$

$$C_{4}H_{9}(t)$$

$$C_{4}H_{9}(t)$$

C p d - 3

$$CH_2-CH_{\frac{1}{n}}$$
CONHC₄H₉(t)

 $n = / 00 \sim / 000$

C p d - 6

$$\begin{array}{c|c}
C_4 H_9(t) & CH_3 \\
HO \longrightarrow CH_2 \longrightarrow C \longrightarrow COCH = CH_2 \\
C_4 H_9(t) & CH_3 \\
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
CH_3 \\
CH_3
\end{array}$$

Cpd-7

C n d - &

Polyethylacrylate

C p d - 9

5

10

25

30

35

C p d - / 0

OH C₈H₁₇ (sec)

OH OH OH

Cpd-//

Cpd-12

55

45

C p d - / 3

C p d - / 4

C:
$$_{2}H_{5}$$
 OCO $_{2}H_{5}$ CH+CH+ $_{3}$ CH COOC $_{2}H_{5}$

CH2

CH2

CH2

SO₃ K

SO₃ K

C p d - / 5

$$\begin{array}{c|c}
CH_3 & N \\
N & N
\end{array}$$
45

20

25

3

OH
$$C_4H_9$$

$$C_2H_5$$

$$C_2H_5$$

$$C_5H_{11}(t)$$

E x C - 2

$$C_6H_{13}$$

OH

NHCO-
NHCO-
 C_6H_{13}

OCHCONH

 C_6H_{13}

E x M - /

M-25

E x Y-/

(Solv-1)

Di(2-ethylhexyl)phthalate

(Solv-2)

Trinonylphosphate

(Solv-3)

Di(3-methylhexyl)phthalate

⁵⁵ (Solv-4)

Tricresylphosphate

(Solv-5)

Dibutylphthalate

EP 0 298 321 A2

(Solv-6) Trioctylphosphate (Solv-7) Dioctylsebacate

5

15

20

25

Further, in the same manner as described for Sample H above, except using the combination of the compounds according to the present invention in the Sixth Layer and Seventh Layer of Sample H as shown in Table 8 below, other samples were prepared. The additives were dissolved into the solutions containing the coupler and then the solutions thus obtained were incorporated into the silver halide emulsion.

The samples thus-obtained were exposed to light through an optical wedge, and then processed according to the following Processing A.

Processing A

Temperature Time Step (°C) (sec) 38 Color development 90 38 Bleach-Fixing 45 38 Washing with Water (1) 45 45 38 Washing with Water (2)

In the water washing steps, water was supplied to the water washing tank (2), and the overflow was introduced to the water washing tank (1) (the so-called countercurrent replenishing system).

The compositions of the processing solutions used were as follows.

30	Color Developing Solution	Mother Solution
	Diethylenetriaminepentaacetic aicd	0.5 g
35	1-Hydroxyethylidene-1,1-diphosphonic a	cid 0.5 g
35	Diethylene glycol	8.0 g
	Benzyl alcohol	12.0 g
40	Sodium bromide	0.7 g
	Sodium sulfite	2.0 g
45	N,N-Diethylhydroxylamine	3.5 g
45	Triethylenediamine(1,4-diazabicyclo-(2,2,2)octane)	3.5 g
50	3-Methyl-4-amino-N-ethyl-N-(β-methane-sulfonamidoethyl)aniline	- 6.0 g
	Potassium carbonate	30.0 g
55	Fluorescent whitening agent (stilbene type)	1.0 g

Pure water to make

1,000 ml

Hq

10.50

(pH was adjusted with potassium hydroxide or hydrochloric acid.)

10	Bleach-Fixing Solution	Mother Solution
	Ammonium thiosulfate	110 g
	Sodium hydrogensulfite	14.0 g
15	Ammonium iron (III) ethylenediamine- tetraacetate dihydride	40.0 g
20	Disodium ethylenediaminetetraacetate dihydride	4.0 g
	Pure water to make	1,000 ml
25	рĦ	7.0

(pH was adjusted with aqueous ammonia or hydrochloric acid.)

30

35

5

Washing Water.

Pure water was used.

The term "pure water" used herein means the water produced by processing city water with an ion exchange process whereby the cation concentration and the anion concentration (except hydrogen ion and hydroxide ion) were reduced to 1 ppm or less.

The magenta reflection density of each sample was measured using a Fuji self-recording type densitometer. Then, each sample was subjected to a fading test using a fluorescent lamp tester (15,000 lux) for 30 days. The results thus-obtained are shown in Table 8 below.

TABLE 8

5	Sample	Additive	Amount of Additive (mol% to Coupler)	Fluorescent Lamp Fading Test Remaining Ratio of Dye (D ₀ = 1.5) (%)	Remark
t	Н	-	•	60	Comparison
	H-1	1-20	20	63	Comparison
50	H-2	I-16	20	62	Comparison
1	H-3	III-58	20	62	Comparison
	H-4	A-94	50	72	Comparison
55	H-5	A-100	50	75	Comparison
	H-6	I-41/A-56	20/50	89	Invention
	H-7	III-58/A-1	20/50	87	Invention
	H-8	I-49/III-26/A-6	10/10/50	90	Invention

It can be seen from the results shown in Table 8 that almost equivalent results to those in Example 6 are obtained. Specifically, the extent of the effect on the improvement in light fastness based on the combination of the compounds according to the present invention is extremely large in spite of the difference in the layer compositions of photographic light-sensitive material.

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

10 Claims

5

50

1. A silver halide color photographic material comprising a support having thereon at least one silver halide emulsion layer, wherein the silver halide color photographic material contains (1) at least one compound selected from the group consisting of compounds represented by the general formula (I), (II) or (III) and dimers or higher polymers containing at least one moiety derived from the compounds, and (2) at least one compound selected from the group consisting of organic color fading preventing agents represented by the general formula (IV) and dimers or higher polymers containing at least one moiety derived from the agents, organic metal complexes containing copper, cobalt, nickel, palladium or platinum as the central metal and having at least one organic ligand having at least one conformation and dimers or higher polymers containing at least one moiety derived from the complexes:

$$R_{1} \xrightarrow{(} A \xrightarrow{)} X \qquad (I)$$

$$R_{2} - C = Y \qquad (II)$$

$$B$$

$$R - Z \qquad (III)$$

wherein R_1 and R_2 each represents an aliphatic group, an aromatic group or a heterocyclic group; X represents a group capable of being released upon a reaction with an aromatic amine developing agent; A represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond; n represents 0 or 1; B represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; Y represents a group capable of accelerating the addition of an aromatic amine developing agent to the compound represented by the general formula (II); wherein R_1 and X, or Y and R_2 or B may be connected to each other to form a cyclic structure; R represents an aliphatic group, an aromatic group or a heterocyclic group; and Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group,

³⁵ R₃₀ — W — R₃₁ (IV) wherein R₃₀ represents an aliphatic group, an aromatic group or a heterocyclic group; R₃₁ represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or

 R_{32} , R_{33} and R_{34} , which may be the same or different, each represents an alkyl group, an alkenyl group, an alkenyy group, an alkenyy group or an aryloxy group; W represents -O-, -S or

 R_{35} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, a sulfonyl group, a sulfonyl group, an oxy-radical group or a hydroxy group; wherein R_{30} and R_{31} , or R_{35} and R_{30} or R_{31} may be connected to each other to form a 5-membered to 7-membered ring.

2. A silver halide color photographic material as claimed in Claim 1, wherein the compound represented by the general formula (I) or (II) has a second-order reaction rate constant K_2 (80 °C) in a reaction with panisidine in a range from 1.0 1/mol sec to 1×10^{-5} 1/mol sec.

- 3. A silver halide color photographic material as claimed in Claim 1, wherein the compound represented by the general formula (III) has a nucleophilic functional group or a group derived therefrom each having a Pearson's nucleophilic ⁿCH₃I value=of-at least 5, as Z.
- 4. A silver halide color photographic material as claimed in Claim 1, wherein a combination of (i) at least one compound selected from the group consisting of compounds represented by the general formula (I) or (II) and (ii) at least one compound represented by the general formula (III) is used.
- 5. A silver halide color photographic material as claimed in Claim 1, wherein the group represented by X in the general formula (I) is a group connected to A through an oxygen atom, a sulfur atom, or a nitrogen atom, or a halogen atom.
- 6. A silver halide color photographic material as claimed in Claim 1, wherein the group represented by A in the general formula (I) is a group containing an atom

Y has the same meaning as defined in the general formula (II); Y' has the same meaning as defined for Y; R' and R'', which may be the same or different, each represents -L'''- R_0 ; R_0 has the same meaning as defined for R_1 ; R'' represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; and L', L'' and L''' each represents -O-, -S- or - N -.

- 7. A silver halide color photographic material
- as claimed in Claim 6, wherein A represents -O- C-
 - -S- C or -alkylene- C -
 - 8. A silver halide color photographic material as claimed in Claim 1, wherein the compound represented by the general formula (I) is selected from compounds represented by the general formula (I-a), (I b), (I-c) and (I-d) described below and has a second-order reaction rate constant K_2 (80 °C) in a reaction with panisidine in the range of from 1×10^{-1} 1/mol sec to 1×10^{-5} 1/mol sec.

50

10

15

20

25

30

3

$$\begin{array}{c|c}
O & R_a R_b \\
\parallel & \mid & \mid \\
R_1-\text{Link-C-O-C=C} \\
& \mid \\
R_c
\end{array} (I-b)$$

10

15

50

wherein R₁ has the same meaning as R₁ defined in the general formula (I); Link represents a single bond or -O-; Ar represents an aromatic group provided that it does not become a group useful as a photographic reducing group as a result of reaction with an aromatic amine series developing agent; R_a, R_b and R_c, which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an arylthio group, an arylthio group, an arylthio group, an arylthio group, a heterocyclic thio group, an amino group, an alkylamino group, an acylamino group, a sulfonamido group, an acyl group, an aliphatic or aromatic sulfonyl group, an alkoxycarbonyl group, a sulfo group, a hydroxyl group, an acyloxy group, a ureido group, a urethane group, a carbamoyl group or a sulfamoyl group, wherein R_a and R_b, or R_b and R_c, may be connected each other to form a 5-membered to 7-membered hetero ring, which hetero ring may be further substituted with a substituent, or form a spiro ring, a bicyclo ring, or may be fused with an aromatic ring; Z₁ and Z₂ each represents the non-metallic atomic group necessary for forming a 5-membered to 7-membered hetero ring, which hetero ring may be further substituted with a substituent, or form a spiro ring, a bicyclo ring, or may be fused with an aromatic ring.

- 9. A silver halide color photographic material as claimed in Claim 8, wherein the compound represented by the general formula (I-a), (I-b), (I-c) or (I-d) has the total number of at least 13 carbon atoms.
- 10. A silver halide color photographic material as claimed in Claim 1, wherein the group represented by Y in the general formula (II) is an oxygen atom, a sulfur atom,

$$= N-R_4 \text{ or } = C$$

$$R_6$$

wherein R_4 , R_5 and R_6 each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group, wherein R_5 and R_6 may be connected each other to form a cyclic structure.

11. A silver halide color photographic material as claimed in Claim 1, wherein the compound represented by the general formula (III) is a compound represented by the following general formula (III-a):

$$\begin{array}{c|c}
 & \text{SO}_{2}M \\
 & \text{R}_{14} \\
 & \text{R}_{10} \\
 & \text{R}_{11} \\
 & \text{R}_{12}
\end{array} (III-a)$$

wherein, M represents an atom or an atomic group forming an inorganic salt or an organic salt

5

20

40

45

55

75 -NHN=C, R_{15} -NHN=C, R_{16} R_{16} $-N-N-SO_{2}R_{19}, -N-N-C-R_{22}, \text{ or } -C-C-R_{23}, \text{ wherein } R_{1}$

wherein R₁₅ and R₁₆, which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group, wherein R15 and R16 may be connected to each other to form a 5-membered to 7-membered ring; R₁₇, R₁₈, R₂₀, and R₂₁, which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aliphatic or aromatic sulfonyl group, a ureido group, or a urethane group, provided that at least one of R_{17} and R_{18} and at least one of R_{20} and R_{21} each represents a hydrogen atom; R_{19} and R22 each represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; R19 may further represent an alkylamino group, an arylamino group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, or an aryloxycarbonyl group; wherein at least two of R17, R18 and R19 may be connected to each other to form a 5-membered to 7-membered ring, and at least two of R20, R21 and R22 may be connected tpo each other to form a 5 membered to 7-membered ring; R23 represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group; R24 represents a hydrogen atom, an aliphatic group, an aromatic group, a halogen atom, an acyloxy group or an aliphatic or aromatic sulfonyl group; R25 represents a hydrogen atom or an alkali- hydrolizable group; and R10, R11, R12, R13, and R14, which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a halogen atom, -SR26, -OR26,

(wherein R_{26} and R_{27} , which may be the same or different in the case of -NR₂₆R₂₇, each represents a hydrogen atom, an aliphatic group, an alkoxy group, or an aromatic group), an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an aliphatic or aromatic sulfonyl group, an aliphatic or aromatic sulfonyl group, a sulfamoyl group, a ureido group, a urethane group, a carbamoyl group, a sulfo group, a carboxy group, a nitro group, a cyano group, an alkoxyoxalyl group, an aryloxyoxalyl group, an aliphatic or aromatic sulfonyloxy group, -P(R_{26})₃,

$$\begin{array}{ccc}
0 & S \\
\parallel & & \parallel \\
-P(R_{26})_2, & -P(R_{26})_2,
\end{array}$$

-P(OR $_{26}$) $_3$, (wherein, R $_{26}$ has the same meaning as defined above), or a formyl group.

12. A silver halide color photographic material as claimed in Claim 1, wherein the compound represented by the general formula (IV) is a compound represented by the following general formula (IV-a). (IV-b), (IV-c), (IV-d), (IV-e) or (IV-f):

(IV-b)

R₅₀-O-R₅₁ (IV-d) R₅₀-S-R₅₁ (IV-e)

5

10

15

45

$$\begin{array}{c}
 & \text{OR}_{41} \\
 & \text{R}_{45} \\
 & \text{R}_{43} \\
 & \text{R}_{44}
\end{array}$$
(IV-a)

R46 R42 R43 R44

$$R^{1}_{41}$$
 R_{46}
 R_{42}
 R_{45}
 R_{43}
 R_{44}
 R_{44}
 R_{44}
 R_{45}

wherein R41 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, or

(wherein R_{32} , R_{33} , and R_{34} each has the same meaning as defined in the general formula (IV); R_{42} , R_{43} , R_{44} , R_{45} and R_{46} , which may be the same or different, each represents a hydrogen atom, -W- R_{31} , an aliphatic group, an aromatic group, a heterocyclic group, a diacylamino group, a halogen atom, an aliphatic or aromatic sulfonyl group, an aliphatic or aromatic sulfinyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a ureido group, a urethane group, a sulfamoyl group, a carbamoyl group, a cyano group, a nitro group, an aliphatic or aromatic carbonyloxy group, an aliphatic or aromatic sulfonyloxy group, a silyloxy group, or an imido group, -W- R_{31} has the same meaning as defined in the general formula (IV), wherein R_{41} and R_{42} may be connected to each other to form a 5-membered to 7-membered ring, or two substituents of R_{42} to R_{46} which are present at the o-position to each other may be connected to each other to form a 5-membered to 7-membered ring, or R_{31} or R_{35} when W represents

may be connected to a group present at the ortho position thereto to form a 5-membered to 7-membered ring, $R_{41}^{'}$ has the same meaning as R_{35} defined in the general formula (IV), wherein $R_{41}^{'}$ may be connected with $R_{41}^{'}$ or R_{42} to form a 5-membered to 7-membered ring which is the same as defined for R_{41} , R_{50} represents an aliphatic group, a heteroaromatic group, a heterocyclic group, $R_{51}^{'}$ represents a hydrogen atom, an aliphatic group, a heteroaromatic group or a heterocyclic group, and $R_{35}^{'}$ has the same meaning as defined in the general formula (IV), and $R_{50}^{'}$ and $R_{51}^{'}$ or $R_{50}^{'}$ aNd $R_{35}^{'}$ may be connected to each other to form a 5-membered to 7-membered ring which is the same as defined above for $R_{41}^{'}$.

13. A silver halide color photographic material as claimed in Claim 12, wherein the compound represented by the general formula (IV-a) or (IV-f) is a compound represented by the following general formula (IV-a1), (IV-a2), (IV-a3), (IV-a4), (IV-a5), (IV-a6), (IV-a7), (IV-a8) or (IV-f1):

$$\begin{array}{c}
OR_{41} \\
R_{46} \\
R_{45}
\end{array}$$

$$\begin{array}{c}
R_{42} \\
R_{43} \\
OR'_{41}
\end{array}$$
(IV-al)

$$R_{41}O$$
 R_{42}
 R_{63}
 R_{64}
 R_{65}
 R_{45}
 R_{66}
 R_{66}
 R_{66}
 R_{66}

$$R_{41}O$$
 R_{45}
 R_{62}
 R_{65}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}

55

50

5

20

25

30

35

40

45

V

老

$$R_{46}$$
 R_{45}
 R_{43}
 CO_2R_{47}
 R_{47}
 R_{48}
 R_{49}
 R_{49}
 R_{49}

$$\begin{array}{c}
R_{73} \\
R_{74} \\
R_{74}
\end{array}$$

$$\begin{array}{c}
R_{71} \\
R_{72}
\end{array}$$

$$\begin{array}{c}
R_{71} \\
R_{72}
\end{array}$$

$$\begin{array}{c}
(IV-f1) \\
R_{72}
\end{array}$$

Ŧ

wherein R_{41} to R_{46} each has the same meaning as defined in the general formula (IV-a), R_{41} and R_{42} to R_{46} each has the same meaning as defined for R_{41} and R_{42} to R_{46} respectively, and each substituent may be connected to each other to form a 5-membered to 7-membered ring which is same as defined in the general formula (IV-a); R_{61} to R_{64} , which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group; R_{65} and R_{66} , which may be the same or different, each represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an alkylamino group, an acylamino group, or

wherein E_1 represents a non-metallic-atomic group necessary to form a 5-membered to 7 membered ring; R_{35} has the same meaning as defined in the general formula (IV-f); E represents a non-metallic atomic group necessary to form a 5-membered to 7 membered ring; and R_{71} to R_{74} , which may be the same or different, each represents a hydrogen atom or an alkyl group.

ŝ

t

- 14. A silver halide color photographic material as claimed in Claim 1, wherein the central metal of the organic metal complex is nickel.
- 15. A silver halide color photographic material as claimed in Claim 1, wherein the organic metal complex is a complex represented by the following general formula (V-a), (V-b), (V-c) or (V-d):

$$\begin{array}{c|c}
R_{84} \\
R_{85} - P = 0 \\
\hline
0 - M - 0 \\
0 = P - R'_{85}
\\
R'_{84}
\end{array}$$
(V-b)

wherein M represents copper, cobalt, nickel, palladium or platinum; R₈₀ and R'₈₀, which may be the same or different, each represents a hydrogen atom, an alkyl group, an aryl group or a hydroxy group, wherein

EP 0 298 321 A2

 R_{80} and $R_{80}^{'}$ may be connected to each other; R_{81} , R_{82} , R_{83} , $R_{81}^{'}$, $R_{82}^{'}$ and $R_{83}^{'}$, which may be the same or different, each represents a hydrogen atom, an alkyl group or an aryl group, wherein R_{82} and $R_{83}^{'}$ or $R_{82}^{'}$ and $R_{83}^{'}$ may be connected to each other to form an aromatic ring or a 5-membered to 8-membered ring; R_{84} , R_{85} , $R_{84}^{'}$ and $R_{85}^{'}$, which may be the same or different, each represents an alkyl group, an aryl group, an alkylthio group, an arylthio group, an alkoxy group, an aryloxy group, an alkylamino group or an arylamino group; R_{86} , R_{87} , R_{88} , R_{89} , R_{90} , $R_{86}^{'}$, $R_{87}^{'}$, $R_{88}^{'}$, $R_{89}^{'}$, and $R_{90}^{'}$, which may be the same or different, each represents a hydrogen atom, an alkyl group or an aryl group, wherein at least one of $R_{86}^{'}$ and $R_{87}^{'}$, $R_{89}^{'}$ and $R_{90}^{'}$, $R_{86}^{'}$ and $R_{90}^{'}$, and $R_{90}^{'}$ may be connected to each other to form an aromatic ring or a 5-membered to 8-membered ring; X_1 represents a compound capable of coordinating to M; A_1 , A_2 , $A_1^{'}$ and $A_2^{'}$, which may be the same or different, each represents an oxygen atom, a sulfur atom, -NR₉₁-, a hydroxy group, an alkoxy group, an alkylthio group or

 R_{91} represents a hydrogen atom, an alkyl group, an aryl group, a hydroxy group or an alkoxy group; R_{92} and R_{93} , which may be the same or different, each represents a hydrogen atom or an alkyl group; and A_3 and A_3 each represents an oxygen atom, a sulfur atom or -NH-.

16. A silver halide color photographic material as claimed in Claim 1, wherein the color photographic material contains at least one of a yellow coupler, a magenta coupler and a cyan coupler.

17. A silver halide color photographic material as claimed in Claim 16, wherein the coupler is selected from those represented by the following general formula (C-I), (C-II), (M-I), (M-II) or (Y);

$$R_3 \xrightarrow{\text{OH}} \text{NHCOR}_1$$

$$R_2 \xrightarrow{\text{Y}_1}$$

$$\begin{array}{c}
R_7NH \\
N \\
N \\
N \\
R_9
\end{array}$$
(M-I)

$$\begin{array}{c}
R_{10} \\
N \\
N \\
\downarrow \\
Za = Zb
\end{array}$$
(M-II)

$$\begin{array}{ccc}
CH_3 & & & & \\
CH_3-C-COCHQ & & & & \\
& & & & & \\
CH_3 & & & & \\
& & & & & \\
CH_3 & & & & \\
\end{array} \tag{Y}$$

wherein, R₁, R₄, and R₅ each represents an aliphatic group, an aromatic group, a heterocyclic group, an aromatic amino group or a heterocyclic amino group; R₂ represents an aliphatic group; R₃ and R₅ each represents a hydrogen atom, a halogen atom, an aliphatic group, an aliphatic oxy group, or an acylamino group; R₅ represents a hydrogen atom, or a group represented by R₅ defined above; R₇ and R₉ each represents a substituted or unsubstituted phenyl group; R₈ represents a hydrogen atom, an aliphatic acyl group, an aromatic acyl group, an aliphatic sulfonyl group, or an aromatic sulfonyl group; R₁₀ represents a hydrogen atom or a substituent; Q represents a substituted or unsubstituted N-phenylcarbamoyl group; Za and Zb each represents a methine group, a substituted methine group, or = N-; and Y₁, Y₂, Y₃, Y₄, and Y₅ each represents a hydrogen atom, or a group capable of releasing upon a coupling reaction with the oxidation product of a color developing agent; wherein R₂ and R₃ or R₅ and R₆ may be connected to each other to form a 5-membered to 7-membered ring; or R₁, R₂, R₃ or Y₁; R₄, R₅, R₆ or Y₂; R₇, R₈, R₉ or Y₃; R₁₀, Z_a, Z_b or Y₄; and Q or Y₅ each may form a dimer or a higher polymer.

- 18. A silver halide color photographic material as claimed in Claim 1, wherein each amount of said at least one of compounds of (1) and said at least one of compounds of (2) is from 1×10^{-2} to 10 mols per mol of the coupler in the same layer.
- 19. A silver halide color photographic material as claimed in Claim 18, wherein the molar ratio of the amount of said at least one of compounds of (1) and said at least one of compounds (2) is from 0.1 to 10.

- 20. A silver halide color photographic material as claimed in Claim 1, wherein the compound(s) of (1) and the compound(s) of(2) are incorporated in at least one hydrophilic colloidal layer in the photographic material.
- 21. A silver halide color photographic material as claimed in Claim 20, wherein said hydrophilic colloidal layer is a silver halide emulsion layer.
- 22. A method for producing color images which comprises imagewise exposing a silver halide color photographic material containing at least one dye image forming coupler and subjecting the photographic material exposed to a color photographic processing under a presence of (1) at least one compound selected from the group consisting of compounds represented by the general formula (I), (II) or (III) and dimers or higher polymers containing at least one moiety derived from the compounds, and (2) at least one compound selected from the group consisting of organic color fading preventing agents represented by the general formula (IV) and dimers or higher polymers containing at least one moiety derived from the agents, organic metal complexes containing copper, cobalt, nickel, palladium or platinum as the central metal and having at least one organic ligand having at least one conformation and dimers or higher polymers containing at least one moiety derived from the complexes:

$$R_{1} \xrightarrow{\qquad \quad } A \xrightarrow{\qquad \quad } X \qquad (I)$$

$$R_{2} - C = Y \qquad (II)$$

$$B$$

$$R - Z \qquad (III)$$

35

40

45

- wherein R₁ and R₂ each represents an aliphatic group, an aromatic group or a heterocyclic group; X represents a group capable of being released upon a reaction with an aromatic amine developing agent; A represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond; n represents 0 or 1; B represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; Y represents a group capable of accelerating the addition of an aromatic amine developing agent to the compound represented by the general formula (II); wherein R₁ and X, or Y and R₂ or B may be connected to each other to form a cyclic structure; R represents an aliphatic group, an aromatic group or a heterocyclic group; and Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group,
- 30 R₃₀-W-R₃₁ (IV) wherein R₃₀ represents an aliphatic group, an aromatic group or a heterocyclic group; R₃₁ represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or

R₃₂, R₃₃ and R₃₄, which may be the same or different, each represents an alkyl group, an alkenyl group, an aryl group, an alkoxy group, an alkenoxy group or an aryloxy group; W represents -O-, -S- or

 R_{35} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, a sulfinyl group, an oxy-radical group or a hydroxy group; wherein R_{30} and R_{31} , or R_{35} and R_{30} or R_{31} may be connected to each other to form a 5-membered to 7-membered ring.

- 23. A method for producing color images as claimed in Claim 22, wherein said compounds are incorporated at least one of a developing solution, a bleaching solution, a fixing solution, a blixing solution, a stabilizing solution and washing water.
- 24. A method for producing color images as claimed in Claim 23, wherein each concentration of said at least one of compounds of (1) and said at least one of compounds of (2) in the processing solution or water is from 1×10^{-5} to 1 mol/L.

25. A color photographic print comprising a reflective support having thereon at least one of a layer containing a yellow image-forming dye, a layer containing a magenta image-forming dye and a layer containing a cyan image-forming dye, said photographic print has at least one layer containing (1) at least one compound selected from the group consisting of compounds represented by the general formula (I), (II) or (III) and dimers or higher polymers containing at least one moiety derived from the compounds, and (2) at least one compound selected from the group consisting of organic color fading preventing agents represented by the general formula (IV) and dimers or higher polymers containing at least one moiety derived from the agents, organic metal complexes containing copper, cobalt, nickel, palladium or platinum as the central metal and having at least one organic ligand having at least one conformation and dimers or higher polymers containing at least one moiety derived from the complexes

$$R_1 \xrightarrow{\qquad \qquad} A \xrightarrow{\qquad \qquad} X \qquad (I)$$

$$R_2 - C = Y \qquad (II)$$

R - Z (III)

wherein R₁ and R₂ each represents an aliphatic group, an aromatic group or a heterocyclic group; X represents a group capable of being released upon a reaction with an aromatic amine developing agent; A represents a group capable of reacting with an aromatic amine developing agent to form a chemical bond; n represents 0 or 1; B represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group or an aliphatic or aromatic sulfonyl group; Y represents a group capable of accelerating the addition of an aromatic amine developing agent to the compound represented by the general formula (II); wherein R₁ and X, or Y and R₂ or B may be connected to each other to form a cyclic structure; R represents an aliphatic group, an aromatic group or a heterocyclic group; and Z represents a nucleophilic group or a group capable of being decomposed in the photographic material to release a nucleophilic group,

 R_{30} -W- R_{31} (IV) wherein R_{30} represents an aliphatic group, an aromatic group or a heterocyclic group; R_{31} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group or

R₃₂, R₃₃ and R₃₄, which may be the same or different, each represents an alkyl group, an alkenyl group, an alkenoxy group, an alkenoxy group or an aryloxy group; W represents -O-, -S- or

 R_{35} represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, a sulfonyl group, a sulfinyl group, an oxy-radical group or a hydroxy group; wherein R_{30} and R_{31} , or R_{35} and R_{30} or R_{31} may be connected to each other to form a 5-membered to 7-membered ring.

55

50

30