(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88110551.4

(51) Int. Cl.4: B03D 1/02

22 Anmeldetag: 01.07.88

3 Priorität: 07.07.87 ZA 874930

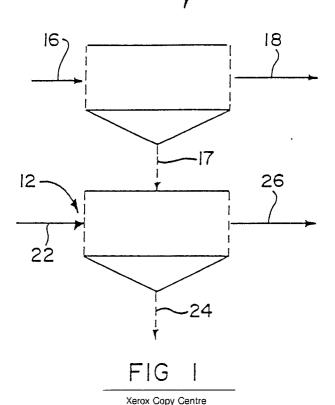
(43) Veröffentlichungstag der Anmeldung: 11.01.89 Patentblatt 89/02

Benannte Vertragsstaaten:
AT BE DE ES FR GB IT NL SE

Anmelder: Henkel Kommanditgesellschaft auf Aktien

Postfach 1100 Henkelstrasse 67 D-4000 Düsseldorf-Holthausen(DE)

Erfinder: Mackenzie, James Murdoch Wright


Stand 106 Gary Avenue Morningside Sandton(SA) Erfinder: Cabassi, Peter John Plot 1684 Wargrave Road East Henley-on-Klip Transvaal(ZA)

(4) Verfahren zur Gewinnung von Mineralen aus Erzen durch Flotation und Mittel zu seiner Durchführung.

57 Bei der Erzflotation werden Sammlergemische eingesetzt, die

- unsubstituierte primäre und sekundäre C₈₋₂₂-Alkyl-und/oder Alkenylamine und/oder deren Salze sowie

- Xanthate, Dithiophosphate, Mercaptobenzthiazole, Xanthogenformiate (Alkylkohlensäure-alkylxantogensäure-anhydride) und/oder Thionocarbamate enthalten.

EP 0 298 392 A2

Verfahren zur Gewinnung von Mineralen aus Erzen durch Flotation und Mittel zu seiner Durchführung

Die Erfindung betrifft ein Flotationsverfahren zur Gewinnung von Mineralen, insbesondere von sulfidischen Mineralen wie Pyrit, Chalcopyrit und Pentlandit sowie von Gold, aus Erzen. Weiterhin betrifft die Erfindung ein Sammlergemisch und Flotationshilfsmittel, die dieses Sammlergemisch enthalten.

Erfindungsgemäß wird ein Verfahren zur Gewinnung von Mineralen aus Erzen durch Flotation zur Verfügung gestellt, bei dem man gemahlenes Erz mit Wasser zu einer Erzsuspension (Trübe) mischt, in die Suspension in Gegenwart eines Sammlersystems Luft einleitet und den entstandenen Schaum zusammen mit dem darin enthaltenen Erzanteil abtrennt. Dieses Verfahren ist dadurch gekennzeichnet, daß man als Sammler ein Gemisch mit einem Gehalt an

- mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der Formeln I und II,

RNH₂ (I) R' R² NH (II)

- in denen R, R¹ und R² jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten, und wasserlöslichen Salzen der genannten primären und sekundären Amine gebildeten Gruppe und
- mindestens einer Thioverbindung B aus der aus Xanthaten, die Dithiophosphaten, Mercaptobenzthiazolen, Xantogenformiaten (Alkylkohlensäure- alkylxanthogensäureanhydriden) und Thionocarbamaten gebildeten Gruppe

einsetzt.

15

Die Erfindung stellt weiterhin ein Sammlergemisch zur Verwendung in der Gewinnung von Mineralen aus Erzen durch Flotation zur Verfügung mit einem Gehalt an

- mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der Formeln I und II,

 RNH_2 (I) R^1R^2NH (II)

in denen R, R¹ und R² jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten, und wasserlöslichen Salzen der genannten primären und sekundären Amine gebildeten Gruppe und

- mindestens einer Thioverbindung B aus der aus Xanthaten, Dithiophosphaten, Mercaptobenzthiazolen. Xanthogen formiaten (Alkylkohlensäure-alkylxanthogensäureanhydriden) und Thionocarbamaten gebildeten Gruppe.

Die als Aminverbindungen A eingesetzten unsubstituierten primären und sekundären Amine der Formeln I und II und ihre wasserlöslichen Salze stellen bekannte Verbindungen dar, die nach bekannten Verfahren der organischen Synthese hergestellt werden können. Die Alkyl- und Alkenylreste R. R' und R² in den Formeln I und II sind bevorzugt geradkettig, wie dies in den Aminen der Fall ist, die von natürlich vorkommenden Fettsäuren abgeleitet sind. Die Reste R, R¹ und R² sind deshalb bevorzugt geradkettige Octyl-, Decyl-. Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Eicosyl-, Docosyl-, Hexadecenyl-, Octadecenyl, und Docosenylreste. Die Amine der Formeln I und II können als definierte Einzelverbindungen eingesetzt werden. Es ist jedoch bevorzugt, Verbindungsgemische zu verwenden, in denen die Reste R, R¹ und R² jeweils innerhalb des definierten Bereichs der vorhandenen Kohlenstoffatome unterschiedliche Kettenlängen besitzen. Von ganz besonderem Interesse ist hier ein primäres Alkyl-Alkenylamin der Formel I mit 10 bis 18 Kohlenstoffatomen im Rest R und seine wasserlöslichen Salze. Die Alkyl-Alkenylreste dieses Amingemisches sind aus dem ungehärteten Fettsäuregemisch abgeleitet, das aus Rindertalg durch Fettspaltung erhalten wird. Dieses Amingemisch wird auch als "ungehärtetes Talgamin" bezeichnet.

Werden wasserlösliche Salze der Amine der Formeln I und II im erfindungsgemäßen Verfahren eingesetzt, so sind dies insbesondere Sulfate, Phosphate, Formiate, Propionate und vorzugsweise Chloride und Acetate.

In einer speziellen Ausführungsform der Erfindung, die sich insbesondere für die Aufbereitung von Gold enthaltenden Erzen eignet, verwendet man als Aminverbindung A das Acetat des oben beschriebenen primären Alkyl-Alkenylamins mit 10 bis 18 Kohlenstoffatomen. In dieser speziellen Ausführungsform ist es bevorzugt, als Thioverbindung B ein Xanthat oder ein Dialkyldithiophosphat einzusetzen.

Die als Thioverbindungen B eingesetzten Substanzen können wasserlöslich oder in Wasser untöslich sein. Die Xanthate, Dithiophosphate und Mercaptobenzthiazole sind wasserlösliche Alkalimetallsalze. Die Xanthogenformiate und die Thionocarbamate sind wasserunlösliche, ölige Substanzen. Im einzelnen kommen folgende Substanzgruppen als Thioverbindungen B in Betracht: Xanthate der Formel III,

R-O-C(S)-S-X (III)

in der R einen Alkylrest mit 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten, die Thiophosphate der Formel IV,

 $(RO)_2P(S)-S^-X^{\dagger}$ (IV)

in der R einen Alkylrest von 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten,

Natrium- oder Kaliumsalze des Mercaptobenzthiazols,

Xanthogenformiate (Alkylkohlensäure-alkylxanthogensäure-anhydride) der Formel V,

R1-O-C(S)-S-C(O)-O-R2 (V

in der R¹ und R² jeweils einen Alkylrest mit 1 bis 8 Kohlenstoffatomen bedeuten und Thionocarbamate der Formel VI.

 R^1 -O-C(S)-NHR² (VI)

10

in der R¹ und R² jeweils Alkylreste mit 1 bis 8 Kohlenstoffatomen darstellen.

Die genannten Thioverbindungen B stellen bekannte Verbindungen dar, die nach gängigen Verfahren der organischen Synthese hergestellt werden können.

Die optimale Wirksamkeit der Thioverbindungen B ist in einem gewissen Maß von dem in der Trübe vorherrrschenden pH-Wert abhängig. Mercaptobenzthiazole, Xanthogenformiate und Thionocarbamate können im pH-Bereich von 2 bis 11 eingesetzt werden, wobei Mercaptobenzthiazole am besten unter relativ sauren Bedingungen wirken, während Xanthogenformiate und Thionocarbamate sowohl in alkalischen als auch in sauren Medien wirksam sind. Xanthate und Dithiophosphate wirken am besten in einem relativ alkalischen Medium im pH-Bereich von 6 bis 11,5. Soll ein Flotationsverfahren bei einem vorgegebenen pH-Wert durchgeführt werden, so ist dies bei der Auswahl der Thioverbindung B zu beachten. Umgekehrt ist bei vorgegebener Thioverbindung B bei der Durchführung der Flotation ein entsprechender pH-Wert in der Trübe einzustellen.

In dem Sammlergemisch, das in dem erfindungsgemäßen Verfahren eingesetzt wird, liegt das Gewichtsverhältnis von Aminverbindung A zu Thioverbindung B im Bereich von 1:9 bis 9:1, wobei Gewichtsverhältnisse von 1:4 bis 2:1 bevorzugt sind. Die Aminverbindungen A werden der Erzsuspension in Mengen von 1 bis 500 g pro metrischer Tonne Erz und die Thioverbindungen B in Mengen von 1 bis 500 g pro metrischer Tonne Erz zugesetzt.

In dem erfindungsgemäßen Verfahren kann der Trübe ein Schäumer zugesetzt werden, um den während der Flotation gebildeten Schaum zu stabilisieren. Hierfür eignen sich insbesondere die in der Flotation als Schäumer üblichen Alkohole, Propylenglykole und Ether, beispielsweise Methylisobutylcarbinol (4 Methylpentanol-2), der in 97 %iger Reinheit unter der Bezeichnung MIBC handelsüblich ist, Methylpolypropylenglykolether, deren Molgewicht im Zahlenmittel ca. 200 beträgt und Triethoxybutan, das unter der Bezeichnung TEB im Handel erhältlich ist. Für die Zwecke der Erfindung wird Methylisobutylcarbinol bevorzugt.

Zur Einstellung eines geeigneten pH-Wertes, der die Wirksamkeit der eingesetzten Aminverbindungen A und Thioverbindungen B fördert, können der Trübe in der Flotation übliche saure oder basische Mittel zugesetzt werden, beispielsweise Natriumsilikat, Kalk (Calciumoxid) und anorganische oder organische Säuren. Dabei ist darauf zu achten, daß das Mittel zur Einstellung des pH-Wertes gemäß dem jeweils zu gewinnenden Mineral und der jeweils eingesetzten Sammlerkombination auszuwählen ist, damit ein Flotationsmedium geeigneter Acidität oder Alkalinität erhalten wird.

Weiterhin können der Trübe im erfindungsgemäßen Verfahren gegebenenfalls geeignete übliche Drücker zugegeben werden, die die Aufgabe haben, die Flotation von unerwünschten Gangartmineralen zu verhindern. Die Drücker verbinden sich, normalerweise durch Adsorption, mit den Gangartmineralen und verhindern deren Aufschwimmen. Auf diese Weise wird die Abtrennung der Gangartminerale von dem zu gewinnenden Mineral gefördert. Geeignete Drücker für das erfindungsgemäße Verfahren sind insbesondere Guargummen und Dextrine. Besonders bevorzugt ist hier ein chemisch modifiziertes Guargummi mit einer linearen Kette von beta-D-Mannopyranoseeinheiten, die mit einzelgliedrigen, als Seitenketten auftretenden alpha-D-Galaktopyranosylresten 1,4-verknüpft sind. Die chemische Modifizierung umfaßt die Depolymerisation des Guargummis zur Verminderung des Molekulargewichts und die Substitution von Hydroxylgruppen in der Guarstruktur durch anionische Gruppen. In einem handelsüblichen Produkt, das unter der Bezeichnung ACROL® J2P 350 vertrieben wird, ist der Substitutionsgrad 0,1.

Zur Aktivierung der zu flotierenden sulfidischen Minerale können der Trübe in dem erfindungsgemäßen Verfahren übliche Aktivatoren zugesetzt werden. Als Aktivator hat sich insbesondere Kupfersulfat als geeignet erwiesen, das zusätzlich die Eigenschaft hat, die Struktur des gebildeten Schaumes günstig zu modifizieren.

Die in dem erfindungsgemäßen Verfahren zusätzlich zu den Aminverbindungen A und den Thioverbindungen B eingesetzten üblichen Flotationshilfsmittel wie Schäumer, Drücker und Aktivatoren werden in den für solche Flotationsverfahren bekannten und üblichen Mengen der Trübe zugesetzt. Die genannten alkali-

schen oder sauren Mittel werden in den Mengen eingesetzt, die für die Einstellung des gewünschten pH-Wertes notwendig sind.

Das in dem erfindungsgemäßen Verfahren zu verwendende Sammlergemisch kann neben den Aminverbindungen A und den Thioverbindungen B als weitere Komponenten Substanzen enthalten, die für ihre Sammlereigenschaften bekannt sind. Als besonders geeignet für diesen Zweck haben sich Kohlenwasserstofföle erwiesen, insbeson dere neutrale aliphatische und aromatische Lösemittel mit Siedepunkten im Bereich von 160 bis 260 °C. Bevorzugt sind Kohlenwasserstofföle mit niedrigem Aromatengehalt und einem Siedebereich von 190 bis 225 °C.

Die Aminverbindungen A, die Thioverbindungen B und die übrigen im erfindungsgemäßen Verfahren zu verwendenden Hilfsmittel können einzeln und nacheinander den zu flotierenden Trüben zugesetzt werden. Für die praktische Durchführung des Verfahrens kann es von Vorteil sein, wenn vorgemischte Kombinationen aus zwei oder mehreren Hilfsstoffen zur Verfügung gestellt werden, in denen die Komponenten in einem vorgegebenen Gewichtsverhältnis zueinander vorliegen. Als besonders vorteilhaft hat sich hier ein Flotationshilfsmittelgemisch erwiesen, das einen Gehalt an

- mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der Formeln I und II,

 RNH_2 (I) R^1R^2NH (II)

15

in denen R, R¹ und R² jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten, und Salzen der genannten primären und sekundären Amine gebildeten Gruppe,

- einem neutralen Kohlenwasserstofföl und
- einem Schäumer

in einem Gewichtsverhältnis von (4 - 6): (3 - 5): 1 aufweist und zur Verwendung in Verbindung mit mindestens einer Thiover bindung B aus der aus Xanthaten, Dithiophosphaten, Mercaptobenzthiazolen, Xanthogenformiaten (Alkylkohlensäure-alkylxanthogensäure-anhydriden) und Thiocarbamaten gebildeten Gruppe bestimmt ist.

Das Verfahren der Erfindung ist gekennzeichnet durch den Einsatz einer bestimmten, definierten Sammlerkombination. Die Durchführung der Flotation erfolgt unter den allgemeinen Bedingungen, die für die Verfahren des Standes der Technik bekannt sind. In diesem Zusammenhang sei auf die folgenden Literaturstellen zum technologischen Hintergrund der Erzaufbereitung verweisen: H.Schubert, Aufbereitung fester mineralischer Stoffe, Leipzig, 1967; B. Wills, Mineral Processing Technology Plant Design, New York, 1978; D.B. Purchas (ed.), Solid-Liquid Separation Equipment Scale-up, Croydon, 1977; E.S.Perry, C.J. van Oss, E. Grushka (ed.), Separation and Purification Methods, New York, 1973 bis 1978.

Das Verfahren der Erfindung ist besonders geeignet zur Anwendung bei sulfidischen Mineralerzen sowie für die Gewinnung von Gold, Platin, Uran, Kupfer, Zink, Nickel, Kobald, Silber. Blei und Eisen.

In den folgenden Beispielen sind Prozentangaben ohne weiteren Zusatz immer in Gewichtsprozent.

Die Erfindung wird im folgenden anhand bevorzugter Ausführungsbeispiele sowie unter Bezugnahme auf die Zeichnungen erläutert. Es zeigen:

Fig. 1 ein Fließbild eines Flotationsverfahrens, das in den Beispielen 1 und 2 eingesetzt wird;

Fig. 2 ein Fließbild eines Flotationsverfahrens, das in den Beispielen 3 bis 9 eingesetzt wird:

Fig. 3 eine graphische Darstellung der gemäß den Beispielen 3 bis 7 erhaltenen Ergebnisse;

Fig. 4 ein Fließbild eines Flotationsverfahrens, das in Beispiel 10 eingesetzt wird, und

Fig. 5 ein Fließbild eines Flotationsverfahrens, das in Beispiel 11 eingesetzt wird.

Die folgenden Beispiel 1 bis 9 betreffen Flotationsverfahren mit Golderzproben mit der folgenden Zusammensetzung bzw. im wesentlichen entsprechend dieser Zusammensetzung:

Zusammensetzung des Golderzes:

50

40

Quartzit 90 - 95 %

Chlorit 1 - 2 %

Pyrophyllit 3-5%

Cerussit 1 - 2 %

Pyrit 0,5 - 1,0 %

Uraninit Spuren

Kerogen Spuren; 0,2 %

Kohlenstoff Spuren

andere Sulfide (Pyrrhotit, Galenit, Chalcopyrit) Spuren

Gold (Metall) Spuren

Die Gangklassifikation entspricht derjenigen von Konglomeraten.

Weiterhin wird in den folgenden Beispielen ein primäres Alkyl-Alkenylamin der Formel RNH₂ (I) mit 10 bis 18 Kohlenstoffatomen (ungehärtetes Talgamin) als Sammler eingesetzt, in dem für R folgende Kettenlängenverteilung gilt:

C10 - 0,5 %

C₁₂ - 2,0 %

C14 - 3 - 5 %

C₁₆ - 28 - 35 %

C18 - 58 - 67 %

Die Jodzahl beträgt 35 bis 55.

15 Beispiel 1.

Flotation eines südafrikanischen Golderzes.

20

Eine bestimmte Menge südafrikanisches Golderz wurde mit Wasser zu einer Trübe mit einer solchen Teilchengröße vermahlen, daß 70 % der Teilchen durch ein Sieb mit 0,074 mm-Öffnungen (200 mesh) gingen. Der Feststoffgehalt der Trübe betrug 38 Gew.-%, ihre Dichte 1,32.

Die Vorflotation 10 und die Reinigungsflotation 12 wurden in üblicher Weise in einer Denver-12-Laborflotationszelle durchgeführt. Die Flotationsschritte sind in Form eines Fließbildes in Fig. 1 dargestellt.

Die Vorflotation 10 wurde in üblicher Weise mit einer Trübe 16 durchgeführt, die Wasser, gemahlenes Erz und Flotationshilfsmittel enthielt. Die Flotationshilfsmittel umfaßten ein Xanthat und ein primäres Amin, die zusammen ein Sammlergemisch (a) gemäß der Erfindung bilden, weiterhin einen Drücker (b) sowie Kupfersulfat (c). Einzelheiten für die Reagentien werden im folgenden wiedergegeben.

30

45

Zugesetzte Reagentien:

- (a) Sammlergemisch gemäß der Erfindung, enthaltend
- Natrium-n-propylxanthat (SNPX) in einer Menge von 50 g pro metrischer Tonne Feststoffe in der Trübe;
- ein Acetat des weiter oben beschriebenen ungehärteten Talgamins in einer Menge von 50 g pro metrischer Tonne Feststoff in der Trübe; und
- einen Schäumer, bestehend aus einem Methylpolypropylenglykolether der Formel CH- $(OC_3H_6)_{x^*}$ OH4 mit einem mittleren Molekulargewicht von ca. 200 (DOWFROTH 200) in einer Menge von 20 g pro metrischer Tonne Feststoff in der Trübe;
- (b) ein Drücker in Form eines chemisch modifizierten Guargummis (ACROL® J2P 350) in einer Menge von 10 g pro metrischer Tonne Feststoff in der Trübe; und
- (c) ein Aktivator/Schaummodifikator in Form von 35 g Kupfersulfat pro metrischer Tonne Feststoff in der Trübe; und
 - (d) Kalk zur Einstellung des pH-Wertes der Trübe auf 9,2.

Die Additive (b), (c) und (d) wurden getrennt voneinander der Trübe zugesetzt, desgleichen die Xanthat-, Amin- und Schäumerbestandteile des Sammlergemisches (a).

15 min nach dem Beginn der Vorflotation 10 erhielt man aus der Trübe 16 als Schaumprodukt ein Konzentrat nach Vorreinigung 17, das Gold und andere sulfidische Minerale (z.B. Eisensulfid) enthielt und mit einer begrenzten Menge von Gangmineralen verunreinigt war, und daneben Abgänge der Vorflotation 18, die den Hauptteil der ursprünglich in dem gemahlenen Erz vorhandenen Gangmineralen enthielten. Das Konzentrat aus der Vorflotation 17 wurde von den Abgängen der Vorflotation 18 abgetrennt; Proben der Abgänge 18 wurden getrocknet und auf üblichem Wege analysiert. Die Analysenergebnisse sind in der Tabelle 2 zusammengefaßt.

Die Reinigungsflotation 12 wurde mit einer Trübe nach Vorflotation 22 durchgeführt, die Wasser und das Konzentrat nach Vorreinigung 17 zusammen mit weiteren Anteilen Aktivator/Schaummodifikator und Drücker der unten erläuterten Additive (d) und (e) enthielt.

Für die Reinigungsflotation 12 wurden die folgenden Reagentien zugesetzt:

- (d) Kupfersulfat in einer Menge von 5 g pro metrischer Tonne Feststoff in der ursprünglich eingesetzten Trübe 16;
- (e) chemisch modifiziertes Guargummi (ACROL® J2P 350) in einer Menge von 10 g pro metrischer Tonne Feststoff in der ursprünglich eingesetzten Trübe 16.

5 min nach dem Beginn der Reinigungsflotation 12 ergab die Trübe nach Vorflotation ein Schaumprodukt mit einem Konzentrat nach Reinigung 24, das Gold und andere suifidische Minerale, verunreinigt mit einem verringerten Anteil an Gangmineralen, enthielt, sowie Abgänge der Reinigungsflotation 26 mit den restlichen Gangmineralen aus dem Konzentrat nach Vorreinigung 17. Proben des Konzentrats 24 und der Abgänge 26 wurden getrocknet und mittels üblicher Methoden analysiert: die erhaltenen Ergebnisse sind in der Tabelle 2 zusammengefaßt. Wenn nichts anderes angegeben ist, wurden die in Tabelle 1 zusammengefaßten Additive der ursprünglich eingesetzten Trübe für die Vorflotation zugesetzt.

Tabelle 1

5	1	jenschaften sowie der Zu für die Vor- und Reinigun	sammensetzung und Menge der Igsflotation.	
)	Gemahlenes Erz:	Mahlgröße Trübedichte Dichte	70 % < 0,074 mm (200 mesh) 38 Gew% Feststoff 1,32	
	Flotationshilfsmittel:			
	Sammler:	Na-n-Propylxanthat	50 g/t	
	und	primäres Aminacetat	50 g/t	
	Schäumer: Drücker:	DOWFROTH 200 ACROL® J2P 350	20 g/t	
	Didcker.	ACHOL® JZP 350	60 g/t für Vorflotation 10 g/t für Reinigungsflotation	
	Aktivator/Schaummodifikator:	Kupfersulfat	35 g/t für Vorflotation	
			5 g.t für Reinigungsflotation	
	<u>pH</u> :	9,2		
	Flotationszeit:	15 min für Vorflotation		
		5 min für Reinigungsflo	otation	

Tabelle 2

40	Analysener	Analysenergebnisse für Vor- und Reinigungsflotation					
			Gold	Gesamtscl	iesamtschwefel		
45		Gew%	Gehalt git	% Ausbringen	Gehalt % S	% Ausbringen	
50	Konzentrat nach Reinigung Abgänge der Reinigungsflotation Abgänge der Vorflotaion Berechnet für Flotationsaufgabe	2,9 2,9 94,2 100,0	7,2 1,98 0,26 0,511	40,8 11,2 48,0 100,0	32.85 3.19 0.13 1.17	81.6 7.9 10.5 100.0	

In einem kontinuierlichen Flotationsverfahren können die Abgänge nach Reinigung 26 rezirkuliert und der Trübe vor der Vorflotation 16 beigegeben werden.

Beispiel 2:

Flotation eines südafrikanischen Golderzes:

Beispiel 1 wurde mit den unten in Tabelle 3 zusammengefaßten Additiven wiederholt. Wenn nichts anderes angegeben ist, wurden die Additive der ursprünglich eingesetzten Trübe zugegeben; die Mengenangaben beziehen sich auf g/metrische Tonne Feststoff in der ursprünglich eingesetzten Trübe.

Tabelle 3

10	Zusammenfassung der Erzeigenschaften sowie der Zusammensetzung und Mengen der zugesetzten Additive für die Vor- und Reinigungsflotation.					
15	Gemahlenes Erz:	Mahlgröße Trübedichte Dichte	70 % < 0,74 mm (200 mesh) 38 % 1.32			
, 0	Flotationshilfsmittel:					
20 25	Sammler: und und und Zusätzlicher Schäumer: Drücker: Aktivator/Schaummodifikator: <u>pH</u> :	Na-n-Propylxanthat primäres Aminacetat Kohlenwasserstofföl* Methylisobutylcarbinol (MIBC; Schäumer) DOWFROTH 200 ACROL® J2P 350 Kupfersulfat	50 g/t 25 g/t 20 g/t 5 g/t 20 g/t 20 g/t 20 g/t für Vorflotation 10 g/t für Reinigungsflotation 35 g/t für Vorflotation 5 g/t für Reinigungsflotation			
	Flotationszeit:	15 min für Vorflotation				
30		5 min für Reinigungsflotation				

[&]quot;) Kohlenwasserstofföl mit einem Siedebereich von 190 bis 225 °C; Aromatengehalt von 0,5 % V/V, Dichte bei 20 °C 0,785; Flammenpunkt 65 °C (SHELLSOL® K)

Tabelle 4

45	Analysenerg	Analysenergebnisse für Vor- und Reinigungsflotation					
				Gold	Gesamtscl	nwefel	
50		Gew%	Gehalt g/t	% Ausbringen	Gehalt % S	% Ausbringen	
55	Konzentrat nach Reinigung Abgänge der Reinigungsflotation Abgänge der Vorflotation Berechnet für Flotationsaufgabe	2,8 2,0 95,2 100,0	8,5 1,78 0,27 0,53	44,9 6,7 48,4 100,0	32,25 2,5 0,17 1,12	81,0 4,5 14,5 100,0	

Das primäre Aminacetat wurde mit SHELLSOL K und MIBC vor der Zugabe zu Trübe vermischt. Ein Gemisch von ungehärteten primären Talgaminacetaten, SHELLSOL K und MIBC weist eine flüssige Konsistenz auf und läßt sich daher leichter handhaben als das Amin selbst (wie in Beispiel 1 verwendet), das eine pastenartige Konsistenz hat. Weiterhin wurde in diesem Beispiel eine um die Hälfte kleinere Menge des Amins der ursprünglich eingesetzten Trübe zugesetzt; die erhaltenen Ergebnisse sind im Vergleich zu denjenigen des Beispiels 1 dennoch vorteilhaft. Es ist zu beachten, daß der Chemikalienaufwand für die Flotation gemäß Beispiel 2 erheblich unterhalb demjenigen des Beispiels 1 liegt.

Beispiel 3:

5 Flotation eines südafrikanischen Golderzes.

Eine bestimmte Menge südafrikanisches Golderz wurde in Wasser zu einer Trübe mit den folgenden Eigenschaften vermahlen:

Mahlgröße des Erzes 70 % < 0,833 mm (20 mesh)

Trübedichte 24 % Gew.-% Feststoff

Dichte 1,18

15

20

Ein handelsübliches Sammlergemisch, das unter der Handelsbezeichnung TROCOL S50 vertrieben wird, wurde durch Vermischen der folgenden Komponenten hergestellt:

	Gewichtshältnis
ungehärtetes primäres Talgaminacetat	50 %
SHELLSOL K (neutrales Kohlenwasserstofföl)	40 %
MIBC	10 %

In einer Denver D12-Laborflotationskammer wurde eine Vorflotation 30 in üblicher Weise und wie in dem Fließschema der Fig. 2 dargestellt, durchgeführt. Die Trübe 34, bestand aus: dem gemahlenen Erz in Wasser,

150 g des oben beschriebenen Flotationshilfsmittelgemisches pro metrischer Tonne Feststoff in der Trübe, 50 g Kupfersulfat als Aktivator/Schaummodifikator pro metrischer Tonne Feststoff in der Trübe, und 100 g ACROL® J2P 350 als Drücker pro metrischer Tonne Feststoff in der Trübe.

Der pH-Wert des der Trübe iag zwischen 10,1 und 10,4.

10 min nach dem Beginn der Flotation ergab die Trübe 34 ein Schaumprodukt mit einem Konzentrat nach Vorreinigung 38, das Gold und andere sulfidische Minerale wie Eisensulfid enthielt und mit einer begrenzten Menge der ursprünglich in dem gemahlenen Erz vorhandenen Gangminerale verunreinigt war, sowie Abgänge der Vorflotation 36, die den Hauptteil der Gangmineralien enthielten.

Das Konzentrat 38 wurde in üblicher Weise von den Abgängen 36 abgetrennt. Proben der Abgänge aus der Vorflotation 36 und des Konzentrats 38 wurden getrocknet und analysiert; die Ergebnisse sind in der Tabelle 6 verzeichnet.

Das Flotationsverfahren gemäß Beispiel 3 wurde nicht entsprechend dem Verfahren der Erfindung durchgeführt. Der Trübe 32 wurde zwar eine Aminverbindung A gemäß der Definition des erfindungsgemäßen Sammlergemisches zugesetzt, jedoch keine Thioverbindung B. Beispiel 3 wurde durchgeführt, um Vergleiche mit den Ergebnissen der Beispiele 4 bis 6 zu ermöglichen, die gemäß dem Verfahren der Erfindung durchgeführt wurden.

Beispiele 4 bis 7:

45

Weitere Flotationen des gemahlenen Erzes aus Beispiel 3.

Das Beispiel 3 wurde mit folgenden Abweichungen wiederholt:

In den Beispielen 4 bis 6 wurde eine Sammlerkombination gemäß der Erfindung eingesetzt, die ein Gemisch von TROCOL S50 (siehe Beispiel 3) und Natriummethylxanthat in verschiedenen Gewichtsverhältnissen (gemäß der unten wiedergegebenen Tabelle 5) enthielt; das Flotationsverfahren wurde bei einem pH-Wert von 9,5 durchgeführt. Beispiel 7 wurde lediglich zu Vergleichszwecken mit einem Sammler durchgeführt, der nur Natriumethylxanthat und kein primäres oder sekundäres Amin enthielt.

Tabelle 5

Additive für das gemahlene Erz der Beispiele 3 bis 7 (g/t Feststoff in der ursprünglichen Trübe) Beispiel Natriumethylxanthat TROCOL Kupfersulfat ACROL ® Nr. J2P 350

Tabelle 6

	Analysenerg	ebnisse der	Vorflotation	en gemäß Beis	pielen 3-7.			
			Gold			Gesamtschwefel		
Bsp. Nr.	Produkt	Gew%	Gehalt g/t	% Ausbringen	Gehalt % S	% Ausbringen		
3	Konzentrat	2,62	260,0	81,39	4,71	13,39		
	Abgänge	97,38	1,6	18,61	0,91	100,00		
	Ber. für Aufgabe	100,00	8,4	100,00	0,91	100,00		
4	Konzentrat	4,89	166,0	91,43	17,50	0,91		
	Abgänge	95,11	8,0	8,57	0,09	9,09		
	Ber. für Aufgabe	100,00	8,9	100,00	0,94	100,00		
5	Konzentrat	3,29	266,0	88,50	19,67	66,30		
	Abgänge	96,71	1,0	11,50	0,34	33,70		
	Ber. für Aufgabe	100,00	8,4	100,00	0,98	100,00		
6	Konzentrat	2,25	229,0	80,20	17,74	43,99		
	Abgänge	97,75	1,3	19,80	0,52	56,01		
	Ber. für Aufgabe	100,00	6,4	100,00	0,91	100,00		
7	Konzentrat	1,85	447,0	83,97	2,60	5,08		
	Abgänge	98,16	1,6	16,03	0,91	94,92		
	Ber. für Aufgabe	100,00	9,8	100,00	0,94	100,00		

Die Zahlenangaben in % für das Ausbringen an Gold und Gesamtschwefel wurden in einer graphischen Darstellung zusammengefaßt, die Fig. 3 der Zeichnungen zeigt. Es ergibt sich aus der Darstellung, daß das Ausbringen an Schwefel verbessert wurde, wenn ein Sammlergemisch gemäß der Erfindung, bestehend aus einem Gemisch eines Amins (im TROCOL S50) mit einem Xanthat anstelle des Amins ohne das Xanthat (Beispiel 3) oder des Xanthats ohne das Amin (Beispiel 7) verwendet wurde. Das Ausbringen an Schwefel nahm gemäß den Beispielen 4 bis 6 ab, wenn der Anteil an TROCOL in dem Sammlergemisch abnahm. Es ergibt sich weiterhin aus der Kurve, daß das Ausbringen an Gold in den Beispielen 4 und 5 verbessert wurde, während es im Beispiel 6 geringfügig kleiner als bei den Beispielen 3 und 7 war. Daraus ergibt sich, daß ein bevorzugter Anteil von TROCOL bei über 50 Gew.-% des vorhandenen Xanthats liegt.

Die Ergebnisse der obigen Beispiele legen nahe, daß zwischen dem Amin und dem Xanthat eine Wechselwirkung stattfindet. Dabei scheint es sich um eine Assoziation, wahrscheinlich eine ionische Assoziation zwischen diesen Verbindungen zu handeln, obwohl eine chemische Reaktion nicht auftritt. Weitere Anzeichen für eine Wechselwirkung oder ionische Assoziation wurden in Schäumungsversuchen erhalten.

Diese Schäumungsversuche umfaßten das Aufschäumen einer flüssigen Mischung von Natriumethylxanthat und eines oberflächenaktiven Mittels in einem Behälter unter Durchleiten von Luftblasen durch die Flüssigkeit, ein Überschäumen des Schaums über den Behälterrand, das Sammeln des Schaums und die Bestimmung der darin vorhandenen Konzentration von Xanthat, das Bestimmen der Konzentration des in der zurückbleibenden Flüssigkeit in dem Behälter vorhandenen Xanthats und die Berechnung des Konzentrationsfaktors des Xanthats in dem Schaum. Die Ergebnisse dieser Versuche werden weiter unten in der Tabelle 7 wiedergegeben.

In einem ersten dieser Versuche wurde ein anionisches oberflächenaktives Mittel. nämlich Dodecylsulfat, bei einem pH-Wert von 9.2 eingesetzt. In einem zweiten Versuch wurde kationisches Dodecylamin als oberflächenaktives Mittel bei einem pH-Wert von 9.2 verwendet. In weiteren acht Versuchen (Versuche 3 bis 10) wurden Acetate des primären ungehärteten Talgamins als kationische oberflächenaktive Mittel bei unterschiedlichen pH-Werten und in unterschiedlichen Verhältnissen von oberflächenaktiven Mittels zu Xanthat gemäß der unten wiedergegebenen Tabelle 7 eingesetzt.

Der Konzentrationsfaktor wurde berechnet, indem die Xanthatkonzentration in dem Schaum durch die Xanthatkonzentration in der zurückbleibenden Flüssigkeit geteilt wurde.

Tabelle 7

15

	Zu der Xanthatlösung gegebenes Tensid	Versuch Nr.	рН	Verhältnis Tensid : Xanthat bei Anfangskonzentration	Konzentrationsfaktor im Schaum
ſ	Dodecylsuifat	1	9,2	2:1	1,02
20	Dodecylamin	2	9.2	2:1	2,24
	ungehärtetes Talgaminacetat	3	8,5	2:1	4.20
		4	8,5	1:1	3,60
	ungehärtetes Talgaminacetat	5	9,2	2 : 1	3,20
		6	9,2	1:1	1,80
25		7	9.2	0.50 : 1	1,80
		8	9.2	0,25 : 1	1,20
	ungehärtetes Talgaminacetat	9	10,5	2:1	0.60
		10	10.5	1:1	0,70

30

Wie sich aus der Tabelle 7 ergibt und wie erwartet werden konnte, trat das anionische Tensid, Dodecylsulfat, nicht in Wechselwirkung bzw. assoziierte nicht mit dem Xanthat; dementsprechend ergibt sich überhaupt kein Anstieg bezüglich der relativen Konzentration des Xanthats in dem Schaum. Es ergab sich jedoch ein signifikanter Anstieg der Xanthatkonzentration in dem Schaum, wenn die kationischen Tenside (d.h. Dodecylamin und primäres Aminacetat) bei geeigneten pH-Werten eingesetzt wurden. Bei pH-Werten von 10,5, die oberhalb der pKa-Werte der in diesen Versuchen verwendeten Aminsalze liegen, tritt das Amin nicht mehr in kationischer Form auf; es ist daher nicht zu erwarten, daß es mit dem Xanthatanion in Wechselwirkung tritt oder assoziiert.

40

Beispiele 8 und 9:

45 Flotation eines südafrikanischen Golderzes.

Beispiel 3 wurde mit Diisobutyldithiophosphat (Dialkyldithiophosphat) anstelle von Xanthat in den in der Tabelle 9 angegebenen Mengen wiederholt, und zwar mit einer Erzprobe aus dem Unterstrom eines Cyclons aus einem tertiären Mahlkreis, die anstelle der in den vorigen Beispielen eingesetzten feiner gemahlenen Erze verwendet wurde; weiterhin wurden die in Tabelle 8 erläuterten Additive eingesetzt.

Tabelle 8

5	Zusammenfassung der Erzeigenschaften sowie der Zusammensetzung und Menge der Additive für die Flotation							
	Gemahlenes Erz:	Mahlgröße Trübedichte Dichte	wie in dem Unterstrom eines Cyclons eines tertiären Mahlkreises 68 Gew% Feststoff 1,82					
10	Flotationshilfsmittel:							
	Sammler:	Dialkyldithiophosphat TROCOL S50 (siehe Beispiel 3)						
	zusätzlicher Schäumer:	DOWFROTH	200					
15	Drücker:	ACROL J2P 350						
	pH-Modifikator:	Kalk (d.h. CaO)						
	pH-Wert:	11	11					
20	Flotationszeit:	2 min						

Beispiele 8 und 9 zeigen eine "flash flotation", die eingesetzt wird, wenn eine hoch angereicherte, kleine Konzentratmasse erforderlich ist. Die "flash flotation" umfaßt definitionsgemäß eine relativ kurze Flotationszeit. Demgemäß betrugen die Flotationszeiten für die Beispiele 8 und 9 lediglich 2 min. Eine längere Flotationszeit hätte eine höhere Ausbeute an Gold und Schwefel ergeben, jedoch in einem weniger angereicherten Konzentrat größerer Masse.

Tabelle 9

30

35

Additive für das gemahlene Erz der Beispiele 8 und 9 (g/t Feststoff in der ursprünglichen Trübe)						
Bsp. Nr.	Dialkyldithiophosphat	ophosphat TROCOL DOWFROTH AC S50 200 J2				
8 9	10 10	20 40	30 30	- 10		

40

Tabelle 10

45

50

	Analysenergebnisse nach Flotationen gemäß den Beispielen 8 und 9.								
			Gesamtschwefel						
Bsp. Nr.	Produkt	Gew%	Gehalt g/t	% Ausbringen	Gehalt % S	% Ausbringen			
8	Konzentrat Abgänge Ber. für Aufgabe	2,8 97,2 100,00	804,00 3,65 26,10	86,4 13,6 100,00	1,47 1,18 1,19	3,5 96,5 100,00			
9	Konzentrat Abgänge Ber, für Aufgabe	3,0 97,0 100.0	855,00 3,45 29.00	85,5 11,5 100.00	9,49 0,91 1,17	24,4 75,6 100.00			

55

Wie sich aus Tabelle 10 ergibt, ist das Ausbringen an Gold aus dem Konzentrat nach Vorflotation beim

Einsatz eines Sammlers mit einem primären Amin und einem Dithiophosphat günstiger als das Ausbringen an Gold bei einem Sammler, der ein primäres Amin und ein Xanthat (vgi. Beispiele 4 bis 6) enthält. Das Ausbringen an Schwefel in dem Konzentrat nach Vorflotation gemäß den Beispielen 8 und 9, bei denen Dithiophosphat zusammen mit dem Acetat eines primären Amins verwendet wurden, ist jedoch deutlich niedriger als bei den Beispielen 4 bis 6, bei denen das Xanthat zusammen mit dem Acetat eines primären Amins verwendet wurde. Demgemäß sind Sammler, die in Abwesenheit von Kupfersulfat ein Gemisch aus einem primären oder sekundären Amin und einem Thiophosphat enthalten, für solche Flotationssysteme besser geeignet, bei denen das Ausbringen an Schwefel von sekundärer Bedeutung ist.

Die folgenden Beispiele 10 und 11 wurden mit Fabrikationsabgängen durchgeführt, die vor einigen Jahren als Abfall aus einem Goldgewinnungsverfahren verworfen worden waren und in denen sich Restcyanid an der Luft zersetzt hatte.

Beispiel 10:

15

25

Flotation von Fabrikationsabgängen.

Eine bestimmte Menge Fabrikationsabgängen aus früheren Goldgewinnungsverfahren wurde mit Wasser zu einer Trübe mit einer Mahlgröße von 70 % < 0,074 mm (200 mesh) und einer Trübedichte von 38 Gew.-% Feststoff bzw. einer Dichte von 1,32 gemahlen. Der Trübe wurde Schwefelsäure 48 zur Einstellung eines pH-Wertes von 4,0 zugesetzt. Das erhaltene Gemisch wurde sechs Stunden in einem Pachuca-Tank 49 konditioniert.

Es erfolgte zunächst eine erste Flotation 50.1 in üblicher Weise mit der ursprünglich eingesetzten Trübe 52, die aus dem gemahlenen Erz in Wasser und den folgenden Flotationshilfsmitteln 54 bestand: Natriummercaptobenzthiazol (SENKOL® 50) in einer Menge von 80 g pro metrischer Tonne Feststoff in der Trübe, als Sammler,

ACROL® J2P 350 in einer Menge von 60 g pro metrischer Tonne Feststoff in der Trübe, als Drücker DOWFROTH 200 in einer Menge von 20 g pro metrischer Tonne Feststoff in der Trübe, als Schäumer, und Kupfersulfat in einer Menge von 60 g pro metrischer Tonne Feststoff in der Trübe, zur Aktivierung von sulfidischen Mineralen und Schaummodifizierung.

5 min nach dem Beginn der Flotation 50.1 ergab die Trübe 52 ein Schaumprodukt mit einem ersten Konzentrat 54.1, das Gold und andere sulfidische Minerale enthielt und mit einer begrenzten Menge der ursprünglich in dem gemahlenen Erz vorhandenen Gangminerale verunreinigt war. Das Konzentrat 54.1 wurde in üblicher Weise abgetrennt; die Flotation wurde mit einer zweiten Flotation 50.2 mit der verbliebenen Trübe 52 fortgeführt. 10 min danach hatte sich ein weiteres Schaumprodukt an der Oberfläche der Trübe angesammelt, das ein zweites Konzentrat 54.2 enthielt. Daneben wurden die Abgänge 56 erhalten, die den größten Teil der ursprünglich in den Fabrikationsabgängen vorhandenen Gangminerale enthielten.

Die erste und zweite Flotation 50.1, 50.2 wurden in üblicher Weise durchgeführt und sind in dem Fließschema gemäß Figur 4 wiedergegeben.

Das Konzentrat 54.2 enthielt ebenso wie das Konzentrat 54.1 Gold und andere sulfidische Minerale, verunreinigt mit Gangmineralen. Das Konzentrat 54.2 wurde von den Abgängen 56 abgetrennt.

Das Konzentrat 54.1, das Konzentrat 54.2 und die Abgänge 56 wurden getrocknet und auf üblichem Wege analysiert. Die Ergebnise der Analyse sind in Tabelle 12 zusammengefaßt.

•

50

Tabelle 11

	Gemahlenes Erz:	Mahlgröße Trübedichte Dichte	70 % < 0,074 mm (200 mesh) 38 Gew% Feststoff 1,32	
0	Flotationshilfsmittel:		-	
	Sammler: Schäumer: Drücker:	Na-Mercaptobenzthiazol DOWFROTH 200 ACROL® J2P 350	80 g/t 20 g/t 60 g/t	
5	Aktivator/Schaummodifikator:	Kupfersulfat 60 g/t		
	Flotations-pH:	9,2		
	Flotationszeit:	5 min für die erste Flotation		
20		10 min für die zweite Flota	ation	

Tabelle 12

25

30

35

40

50

55

Analysenergebnisse der Flotationsprodukte							
		Gold	Gesamtschwefel				
	Gew%	Gehalt g/t	% Ausbringen	Gehalt % S	% Ausbringen		
Konzentrat 1	1,6	5,2	21,1	28,76	55,0		
Konzentrat 2	1,7	5,25	22,7	11,92	24,2		
Konzentrate 1 + 2	3,3	5,22	43,8	20,08	79,2		
Abgänge	96,7	0,23	56,2	0,18	20,8		
ber. für Aufgabe	100,0	0,40	100.0	0,83	100.0		

Beispiel 11:

⁴⁵ Flotation von Fabrikationsabgängen.

Eine bestimmte Menge Fabrikationsabgängen aus früheren Goldgewinnungsverfahrens wurde mit Wasser zu einer Trübe vermahlen. Der Trübe wurde Kalk 58 zur Einstellung eines pH-Wertes von 9,2 zugesetzt; das erhaltene Gemisch wurde 45 min in einem Pachuca-Tank 59 konditioniert.

Wie in Beispiel 10 beschrieben wurde eine erste Flotation 60.1 durchgeführt, jedoch mit Flotationshilfsmitteln 62, die ein Sammlergemisch gemäß der Erfindung einschlossen und die in der Tabelle 13 näher erläutert werden. Es wurde ein Konzentrat 64.1 erhalten.

Nach der ersten Flotation 60.1 wurde eine zweite Flotation 60.2 in üblicher Weise wie in Beispiel 10 beschrieben durchgeführt, wobei man ein zweites Konzentrat 64.2 erhielt. Vor der zweiten Flotation 60.2 wurde jedoch

a) der pH-Wert der restlichen Trübe durch Zugabe von Schwefelsäure 66 auf 4 eingestellt und die Trübe bei diesem pH-Wert etwa 45 min in einem Pachuca-Tank konditioniert; anschließend wurden

b) die Flotationshilfsmittel 70 gemäß Tabelle 13 zugesetzt.

Wie in Beispiel 10 wurde die zweite Flotation 10 min lang durchgeführt, bevor das entstandene zweite Konzentrat 64.2 und die Abgänge 72 gesammelt wurden.

Tabelle 13

A. Für die erste Flotation.		
Gemahlenes Erz:	Mahlgröße Trübedichte Dichte	70 % < 0,074 mm (200 mesh) 38 Gew% Feststoff 1.32
Flotationshilfsmittel:		-
Sammler: und Schäumer: Drücker: Aktivator: Schaummodifikator: pH-Regulator: pH: Flotationszeit:	Na-n-propylxanthat TROCOL S50 (s. Beispiel 3) DOWFROTH 200 ACROL® J2P 350 Kupfersulfat Kalk (CaO) 9,2	10 g.t 10 g.t 12 g.t 40 g.t 40 g.t

Tabelle 13 (Fortsetzung)

B. Für das zweite Verfahren.		
Flotationshilfsmittel:		
Sammler:	Na-Mercaptobenzthiazol	80 g/t
Schäumer:	DOWFROTH 200	4 g/t
Drücker:	ACROL® J2P 350	60 g/f
Aktivator/Schaummodifikator:	Kupfersulfat	30 g/1
pH-Regulator:	Schwefelsäure	
pH:	4,0	
Flotationszeit:	10 min	

Tabelle 14

Analysenergebnisse der Flotationsprodukte								
	Gold			Gesamtschwefel				
	Gew%	Gehalt g/t	% Ausbringen	Gehalt % S	% Ausbringen			
Konzentrat 1. Konzentrat 2 Konzentrate 1+2	1,0 1,8 2,8	10,55 6,00 7.63	26,61 25,9 51,2	25.3 20.46 22.65	34.5 47,8 82.3			
Abgänge ber. für Aufgabe	97,2 100,0	0,21 0,42	48,8 100,0	0,14 0.77	17.7 100,0			

Wie sich aus den Tabellen 12 und 14 ergibt, war das kombinierte Ausbringen an Gold in den vereinigten Konzentraten bei Verwendung eines Sammlergemisches der Erfindung günstiger als das Ausbringen an Gold bei Verwendung eines üblichen Sammlers. Bemerkenswert ist, daß in den ersten 5 min der Flotation mit dem mit dem Sammlergemisch der Erfindung in alkalischem Medium (d.h. pH 9,2) das Ausbringen an Gold höher war als in den ersten 5 min der Flotation mit einem üblichen Sammler in saurem Medium. Das Ausbringen an Schwefel war höher, wenn das Sammlergemisch gemäß der Erfindung verwendet wurde. Weiterhin waren die Gold- und Schwefelgehalte in bei den kombinierten Konzentraten höher, wenn das Sammlergemisch gemäß der Erfindung verwendet wurde.

Als weitere Vorteile der Erfindung sind die Wirksamkeit und die leichte Handhabbarkeit der Flotationshilfsmittel zu nennen, insbesondere bei Verwendung des Reagensgemisches TROCOL, sowie die verbesserte Ausbeute an zu gewinnenden Mineralen.

Bei der Flotation von Erzen und gelagerten Fabrikationsabgängen, bei denen die übliche Flotation unter Verwendung von Xanthaten oder anderen Sulfhydrylsammlern unter alkalischen Bedingungen keine befriedigenden Ergebnisse zeigt, ist es üblich, Säure zuzusetzen und Gold sowie sulfidische Minerale mit Sammlern wie Natriummercaptobenzthiazol zu flotieren. Dies bedingt jedoch zusätzliche Kosten, da Säure eingesetzt und die Abgänge mit Kalk neutralisiert werden müssen. Das Verfahren und die Flotationshilfsmittel der Erfindung ermöglichen jedoch auch hier eine befriedigende Flotation, unter alkalischen Bedingungen so daß ein Ansäuern weniger erforderlich wird und die sich in der Folge ergebenden Neutralisationskosten verringert werden.

20

30

40

50

55

Ansprüche

- 1. Verfahren zur Gewinnung von Mineralen aus Erzen durch Flotation, bei dem man gemahlenes Erz mit Wasser zu einer Erzsuspension mischt, in die Suspension in Gegenwart eines Sammlersystems Luft einleitet und den entstandenen Schaum zusammen mit dem darin enthaltenen Erzanteil abtrennt, dadurch gekennzeichnet, daß man als Sammler ein Gemisch mit einem Gehalt an
 - mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der Formeln I und II.

RNH₂ (I) R¹R²NH (II)

in denen R, R^1 und R^2 jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten, und Salzen der genannten primären und sekundären Amine gebildeten Gruppe und

- mindestens einer Thioverbindung B aus der aus Xanthaten, Dithiophosphaten, Mercaptobenzthiazolen, Xanthogenformiaten (Alkylkohlensäure-alkylxanthogensäure-anhydriden) und Thionocarbamaten gebildeten Gruppe

einsetzt.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Amine der Formeln I und II einsetzt, in denen R, R¹ und R² jeweils geradkettige Alkyl- oder Alkenylreste bedeuten.
- 3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Aminverbindung A ein Acetatsalz eines primären oder sekundären Amins ist.
- 4. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Aminverbindung A ein Chloridsalz eines primären oder sekundären Amins ist.
- 5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Thioverbindung B ein Xanthat der Formel III ist,

R-O-C(S)-S-X (III)

in der R einen Alkylrest mit 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten.

6. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Thioverbindung B ein Dithiophosphat der Formel IV ist,

 $(RO)_2P(S)-S^-X^{\dagger}$ (IV)

in der R ein Alkylrest mit 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten.

7. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Thioverbindung B ein Dialkyl-Xanthogenformiat (Alkylkohlensäure-alkylxanthogensäure-anhydrid) der Formel V ist

 R^1 -O-C(S)-S-C(O)-O- R^2 (V)

in der R¹ und R² jeweils einen Alkylrest mit 1 bis 8 Kohlenstoffatomen bedeuten.

8. Verfahren nach mindestens einem der Ansprüche 1 bis 4. dadurch gekennzeichnet, daß die Thioverbindung B ein Dialkylthionocarbamat der Formel VI ist.

R'-O-C(S)-NHR² (VI)

- in der R' und R² jeweils einen Alkylrest mit 1 bis 8 Kohlenstoffatomen bedeuten.
- 9. Verfahren nach mindestens einem der Ansprüche 1 bis 4. dadurch gekennzeichnet, daß die Thioverbindung B ein Natrium-oder Kalliumsalz eines Mercaptobenzthiazols ist.
- 10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Massenverhältnis von Aminverbindung A zu Thioverbindung B im Bereich von 1 : 9 bis 9 : 1, vorzugsweise im Bereich von 1 : 4 bis 2 : 1 liegt.
- 11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß man die Aminverbindung A der Erzsuspension als Bestandteil eines Gemisches zusetzt, das die Aminverbindung A, ein neutrales Kohlenwasserstofföl und einen Schäumer in einem Masseverhältnis von (4 6) : (3 5) : 1 enthält.
- 12. Verfahren nach mindestens einem der Ansprüche 1 bis 11. dadurch gekennzeichnet, daß man der Erzsuspension die Aminverbindung A in einer Menge von 1 bis 500 g pro metrischer Tonne Erz und die Thioverbindung B in Menge von 1 bis 500 g pro metrischer Tonne Erz zusetzt.
 - 13. Verfahren nach mindestens einem der Ansprüche 1 bis 12. dadurch gekennzeichnet, daß das Mineral ein sulfidisches Mineral ist.
 - 14. Verfahren nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man aus dem Schaum Minerale gewinnt, die mindestens eines der Elemente aus der aus Gold, Platin, Uran, Kupfer, Zink. Nickel, Kobalt, Silber, Blei und Eisen gebildeten Gruppe enthalten.
 - 15. Verfahren nach mindestens einem der Ansprüche 1 bis 14. dadurch gekennzeichnet, daß die Aminverbindung A ein Acetat eines primären Alkyl-Alkenylamins mit 10 bis 18 Kohlenstoffatomen ist.
- 16. Sammlergemisch zur Verwendung in der Gewinnung von Mineralen aus Erzen durch Fiotation mit einem Gehalt an
 - mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der Formeln I und II,

 RNH_2 (I) R^1R^2NH (II)

- in denen R, R¹ und R² jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten und Salzen der genannten primären und sekundären Amine gebildeten Gruppe und
 - mindestens einer Thioverbindung B aus der aus Xanthaten, Dithiophosphaten, Mercaptobenzthiazolen, Xanthogenformiaten (Alkylkohlensäure-alkylxanthogensäure I anhydriden) und Thiocarbamaten gebildeten Gruppe.
 - 17. Sammlergemisch nach Anspruch 16, dadurch gekennzeichnet, daß die Aminverbindung A ein Acetatsalz eines primären oder sekundären Amins ist.
 - 18. Sammlergemisch nach Anspruch 16. dadurch gekennzeichnet, daß die Aminverbindung A ein Chloridsalz eines primären oder sekundären Amins ist.
 - 19. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß die Thioverbindung B ein Xanthat der Formel III ist,

R-O-C(S)-S-X (III)

- in der R einen Alkylrest mit 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten.
- 20. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß die Thioverbindung B ein Thiophosphat der Formel (IV) ist,

 $(RO)_2P(S)-S^-X^{\dagger}$ (IV)

45

55

- in der R einen Alkylrest mit 2 bis 8 Kohlenstoffatomen und X Na oder K bedeuten.
- 21. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 18. dadurch gekennzeichnet. daß die Thioverbindung B ein Dialkyl-Xanthogenformiat der Formel (V) ist,

 R^1 -O-C(S)-S-C(O)-O- R^2 (V)

- o in der R¹ und R² jeweils Alkylreste mit 1 bis 8 Kohlenstoffatomen bedeuten.
 - 22. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß die Thioverbindung B ein Dialkylthionocarbamat der Formel (VI) ist,

 $R'-O-C(S)-NHR^2$ (VI)

- in der R¹ und R² jeweils Alkylreste mit 1 bis 8 Kohlenstoffatomen bedeuten.
- 23. Sammlergemsich nach mindestens einem der Ansprüche 16 bis 18. dadurch gekennzeichnet, daß die Thioverbindung B ein Natrium- oder Kaliumsalz eines Mercaptobenzthiazols ist.

- 24. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, daß das Massenverhältnis von Aminverbindung A zu Thioverbindung B im Bereich von 1: 9 bis 9: 1, vorzugsweise im Bereich von 1: 4 bis 2: 1 liegt.
- 25. Sammlergemisch nach mindestens einem der Ansprüche 16 bis 24, dadurch gekennzeichnet, daß die Aminverbindung A ein Acetat eines primären Alkyl-Alkenylamins mit 10 bis 18 Kohlenstoffatomen ist.
- 26. Sammlergemisch nach Anspruch 25, dadurch gekennzeichnet, daß die Thioverbindung B ein Xanthat ist.
- 27. Sammlergemisch nach Anspruch 25, dadurch gekennzeichnet, daß die Thioverbindung B ein Dialkyldithiophosphat ist.
- 28. Flotationshilfsmittelgemisch zur Verwendung in Verbindung mit mindestens einer Thioverbindung B aus der aus Xanthaten, Dithiophosphaten, Mercaptobenzthiazolen, Xanthogenformiaten (Alkylkohlensäure-alkylxanthogensäure-anhydriden) und Thiocarbamaten gebildeten Gruppe, gekennzeichnet durch einen Gehalt an
- mindestens einer Aminverbindung A aus der aus unsubstituierten primären und sekundären Aminen der 15 Formeln I und II,

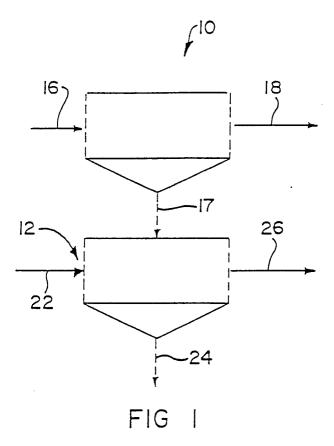
 RNH_2 (I) R^1R^2NH (II)

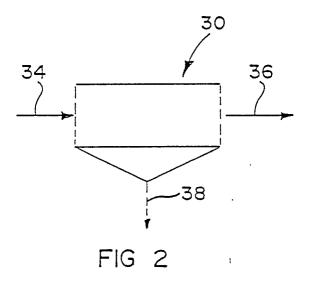
in denen R, R¹ und R² jeweils Alkyl- oder Alkenylreste mit 8 bis 22 Kohlenstoffatomen bedeuten, und Salzen der genannten primären und sekundären Amine gebildeten Gruppe,

- 20 einem neutralen Kohlenwasserstofföl und
 - einem Schäumer,

in einem Massenverhältnis von (4 - 6): (3 - 5): 1.

25


30


35

40

45

50

_}

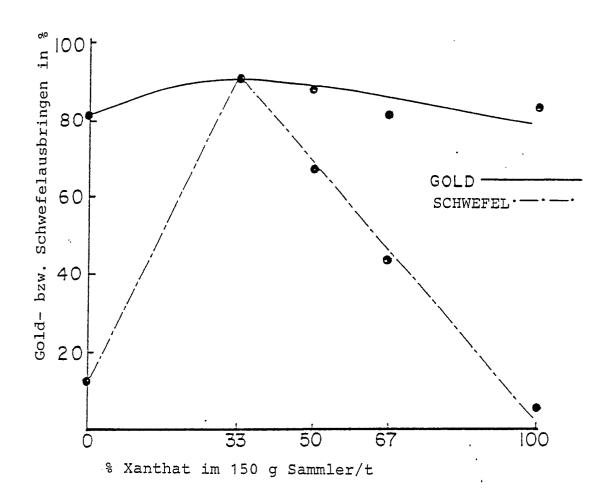
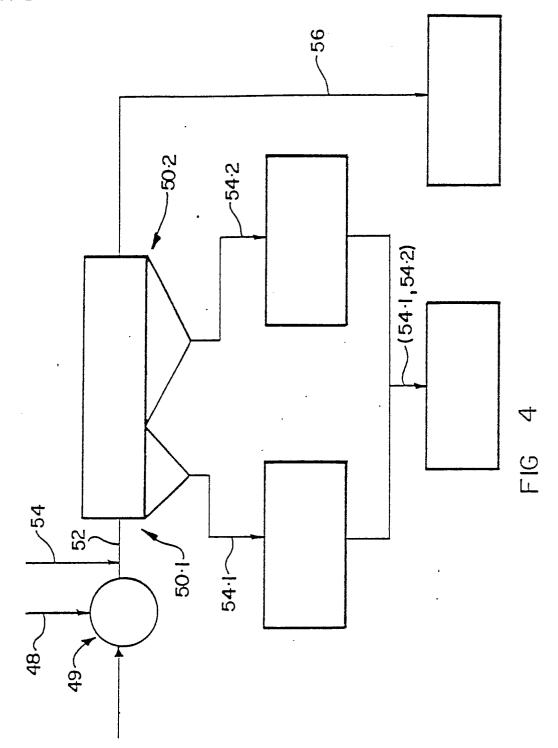
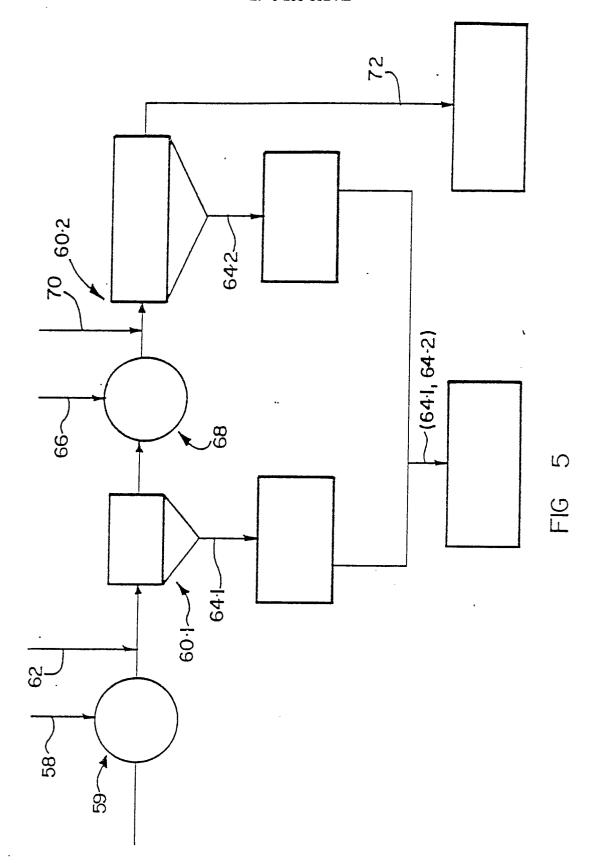




FIG 3

D 7881 EP

-1

