(f) Numéro de publication:

0 306 391 A1

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 88402119.7

22 Date de dépôt: 18.08.88

(s) Int. Ci.4: F 42 C 13/02

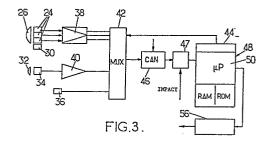
F 42 B 13/04

30 Priorité: 21.08.87 FR 8711808

43 Date de publication de la demande: 08.03.89 Bulletin 89/10

(84) Etats contractants désignés: CH DE GB LI SE

① Demandeur: INTERTECHNIQUE 61 Rue P. Curie ZI les Gâtines BP No. 1 F-78370 Plaisir (FR)


(2) Inventeur: Lemoing, Gérard 93-103 rue d'Aguesseau F-92100 Boulogne (FR)

> Kac, Charles 4, rue des Aulnes F-78340 Les Clayes sous Bois (FR)

Mandataire: Fort, Jacques
CABINET PLASSERAUD 84, rue d'Amsterdam
F-75009 Paris (FR)

Procédé et dispositif de repérage de cible à émission infrarouge et munition en comportant application.

6 Le dispositif utilisable sur une munition d'attaque de véhicule à moteur thermique comprend un détecteur à faible champ angulaire avant un capteur (24) sensible dans la plage allant de 3 à 5 μm et un capteur (34) sensible à l'infrarouge proche ; des moyens pour échantillonner la sortie des capteurs à une cadence telle qu'il y ait recouvrement des zones correspondant aux échantillons successifs; des moyens de mémorisation d'un nombre prédéterminé d'échantillons successifs ; des moyens de calcul faisant la différence entre les échantillons de la réponse du premier capteur et la moyenne de n échantillons précédents et provoquant, en cas de dépassement d'un seuil, la recherche d'une fin de transition par comparaison entre échantillons successifs mémorisés et la comparaison entre les échantillons du signal fourni par le second capteur pour la zone de transition avec des valeurs minimale et maximale déterminées.

Description

Procédé et dispositif de repérage de cible à émission infrarouge et munition en comportant application.

10

15

20

L'invention a pour objet le repérage de cibles à émission infrarouge, telles que les véhicules à moteur thermique, et elle trouve une application particulièrement importante dans le domaine des sous-munitions d'attaque de véhicules, souvent appelées sous-munitions intelligentes, qu'un vecteur, par exemple une munition tirée d'un tube de canon, place au dessus d'une zone dans laquelle a été repérée la cible et qui sont animées, au cours de leur descente, d'un mouvement de rotation provoquant un balayage de la zone.

On connaît déjà des sous-munitions de ce type dispersées à partir d'un avion. La plupart d'entre elles contiennent un capteur infrarouge choisi de façon à avoir une sensibilité élevée dans le domaine spectral d'émission des cibles. Mais ces dispositifs ont une sélectivité réduite, qui diminue la probabilité de détection ou accroit le risque de mise à feu intempestive.

La présente invention vise à fournir un procédé et un dispositif de détection répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'elle améliore la sélectivité et, en conséquence, accroît les possibilités de détection en effectuant une corrélation entre les émissions dans plusieurs plages de longueur d'onde

Dans ce but l'invention propose notamment un procédé de repérage de cible suivant lequel : on anime un détecteur à faible champ d'un mouvement angulaire de balayage du sol suivant un tracé prédéterminé, on échantillonne la réponse du détecteur dans une plage comprise entre 3 et 5 µm à une cadence suffisamment élevée pour qu'il y ait recouvrement des zones dont l'émission est échantillonnée : on mémorise les échantillons successifs. on identifie les échantillons dont la valeur dépasse la moyenne de n échantillons précédents d'un seuil prédéterminé, éventuellement ajusté en fonction des conditions ambiantes et/ou de l'altitude, en cas de présence d'un tel échantillon révélant le début d'une transition on recherche, à partir d'échantillons mémorisés, une fin de transition révélant une cible ; et on confirme l'existence de la cible par comparaison des échantillons de la réponse du détecteur dans l'infrarouge proche et de valeurs minimale et maximale prédéterminées, éventuellement ajusta-

L'invention propose également un dispositif permettant de mettre en oeuvre le procédé ci-dessus défini, comprenant un détecteur à faible champ angulaire ayant un capteur sensible dans la plage allant de 3 à 5 µm et un capteur sensible à l'infrarouge proche ; des moyens pour échantillonner la sortie des capteurs à une cadence telle qu'il y ait recouvrement des zones correspondant aux échantillons successifs; des moyens de mémorisation d'un nombre prédéterminé d'échantillons successifs ; des moyens de calcul faisant la différence entre les échantillons de la réponse du premier capteur et la moyenne de n échantillons précédents

et provoquant, en cas de dépassement d'un seuil, la recherche d'une fin de transition par comparaison entre échantillons successifs mémorisés et la comparaison entre les échantillons du signal fourni par le second capteur pour la zone de transition avec des valeurs mínimale et maximale déterminées.

Le premier capteur comporte avantageusement plusieurs éléments photosensibles ayant des champs décalés dans le sens transversal au tracé de balayage. La détection des échantillons supérieurs à la moyenne s'effectue sur la moyenne de la réponse des éléments photo-sensibles, tandis que la recherche des transitions peut, pour plus de sélectivité, être effectuée sur la réponse des éléments sensibles séparés.

Grâce à la validation dans l'infrarouge proche, typiquement à une longueur d'onde d'environ 1 μ m, il est possible d'éliminer les détections ne correspondant pas à la cible recherchée, par exemple celles dues à l'émission de leurres.

L'invention propose également une sous-munition comportant un corps contenant une charge active à longue distance (charge creuse ou charge autoforgée) et munie d'oreilles déployables dont l'une au moins contient un détecteur du type ci-dessus défini, les oreilles étant prévues de façon à donner à l'axe de la charge un mouvement tel que la trace au sol de l'axe soit approximativement une spirale et la direction de détection étant décalée de l'axe de la charge vers l'avant dans le sens de la rotation.

L invention sera mieux comprise à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :

- la figure 1 est un schéma de principe, en perspective, montrant un montage possible du détecteur sur une sous-munition ;
- la figure 2 montre schématiquement la trace au sol du champ des capteurs du détecteur ;
- la figure 3 est un synoptique de principe de l'électronique du détecteur,
- les figures 4 à 7 sont des logigrammes respectivement de l'ensemble du procédé, du filtrage linéaire de détection dans la voie infrarouge lointain, de l'analyse de dispersion et de la confirmation.

La sous-munition 10 montrée schématiquement en figures 1 et 2 comporte un corps 12 contenant une charge de perforation à distance et muni de deux oreilles 14 et 16 montrées déployées, dans la position qu'elles occupent lors de la descente en chute libre de la sous-munition, après relachement par la munition elle-même. Ces oreiles 14 et 16 sont dessinées de façon qu'au cours de la descente l'axe 18 du corps de la sous-munition prenne un angle déterminé α , par exemple de 30°, avec la verticale et tourne autour de la verticale. L'axe 18 intercepte en conséquence le sol suivant un tracé en spirale 20 (figure 2).

L'oreille 16 contient un dispositif de repérage de

45

50

55

10

20

25

cible ayant des moyens de détection dont l'axe de visée est placé de façon à se trouver légèrement en avant de l'axe 18 du corps et de la charge qu'il contient. Ces moyens de détection sont alimentés par une batterie thermique placée dans le corps 12.

Les moyens de détection comprennent un capteur sensible au rayonnement infrarouge dans une plage pouvant aller de 3 à 5 µm, comportant plusieurs éléments photosensibles distincts 24, au nombre de trois sur la figure 3. Ce nombre de trois correspond en général au meilleur compromis entre complexité et sélectivité de détection. Il serait possible de le réduire à deux ou de l'augmenter au delà de trois.

Les éléments 24 sont associés à une optique 26 de focalisation donnant aux trois éléments des champs au sol 28 (figure 2) alignés transversalement à la trace et qui se recouvrent partiellement lorsque la sous-munition est à une altitude d'action efficace (par exemple au dessous de 150 m). Les champs angulaires sont faibles, de l'ordre de 0,5° chacun. Les champs sont également tels qu'il y ait recouvrement partiel du terrain balayé au cours de deux spires successives à l'altitude d'action efficace.

Les éléments sensibles 24 peuvent être des capteurs au Hg-Cd-Te associés à une optique 26 en germanium ou en matière plastique et munis d'un élément à effet Peltier 30 de refroidissement.

Les moyens de détection comprennent de plus un capteur 34 sensible dans l'infrarouge proche (vers 1 μm) également muni d'une optique 32 qui lui donne un champ correspondant à peu près à l'ensemble des champs des trois éléments 24. Enfin, un capteur de température ambiante 36 destiné à un ajustement des seuils de détection ou de la dynamique peut être prévu.

Des amplificateurs 38 et 40 reçoivent les signaux de sortie des capteurs et attaquent un multiplexeur 42 commandé par une base de temps 44 commune à l'ensemble du dispositif.

Les signaux amplifiés de sortie des capteurs sont appliqués en séquence à un convertisseur analogique/numérique 46 qui alimente une unité de calcul 48 par l'intermédiaire d'un interface d'adaptation 47 qui reçoit également les données provenant de capteurs supplémentaires éventuels, par exemple de capteurs d'impact. La cadence d'échantillonnage et de numérisation fixée par la base de temps 44 est telle qu'il y ait recouvrement partiel de deux jeux d'échantillons successifs.

L'unité de calcul comporte un microprocesseur 50 associé à des mémoires vive 52 et morte 54 ; cette dernière stocke le programme de fonctionnement suivant les logigrammes représentés en figures 5 à 7. La mémoire vive doit avoir une capacité suffisante pour mémoriser l'ensemble des échantillons sur lesquels s'effectuent les opérations de corrélation permettant l'identification des cibles.

Le microprocesseur 50 est programmé pour calculer la moyenne des sorties des trois éléments 24 et appliquer cette moyenne à l'entrée d'un registre à décalage ayant par exemple n = 15 positions. Ces quinze positions sont regroupées en deux fenêtres d'analyse dont la première contient les n moyennes les plus anciennes (n étant par

exemple égal à 10 ou ajustable) et l'autre les $n_1 = n - n_0$ moyennes restantes.

L'identification d'une cible et la mise à feu de la charge s'effectuent en une étape de détection et une étape de confirmation avec discrimination, cette dernière faisant seule intervenir les données fournies par le capteur IR proche 34.

La figure 4 donne le logigramme d'ensemble du processus d'identification. Il comporte, après une initialisation, l'acquisition des données en provenance des détecteurs puis la détection des débuts de transition par filtrage linéaire et par analyse de dispersion. Si un début de transition est décelé, il y a recherche de fin de transition. Puis l'ensemble de la transition est analysé et les cibles sont discriminées des leurres et des sources IR parasites. Si la transition correspond aux caractéristiques des cibles visées et trouvées, il y a mise à feu de la charge par activation d'un circuit 56, suivant une direction légèrement en avant des détecteurs.

Les phases de détection (figures 5-6) et de confirmation (figure 7) seront maintenant décrites.

Détection

Deux modes de détection sont simultanément mis en oeuvre dans le procédé qui sera maintenant décrit. Le premier mode est schématisé par le logigramme de la figure 5.

Après l'initialisation, qui peut prendre diverses formes dont une sera exposée plus loin, le premier mode de détection est constitué par un filtrage linéaire mettant en oeuvre un algorithme simple, effectué en temps réel sur chaque séquence de trois fois quinze échantillons successifs dès que les quinze moyennes sont dans le registre de mémoire.

Le microprocesseur calcule la moyenne MMOY de tous les $n_0=10$ échantillons moyens de la fenêtre 1 et recherche la valeur maximum MMAX (ou les valeurs maximum et minimum) parmi les $n_1=5$ échantillons moyens de la fenêtre 2. Puis il calcule la différence TRANS = MMAX - MMOY et la compare à un seuil qui peut être soit affiché avant le tir, soit ajusté au cour de l'initialisation en fonction des conditions ambiantes.

Si TRANS est supérieur au seuil, on considère qu'il indique un début de transition (le terme "transition" désignant l'ensemble du phénomène commençant lors d'une détection et se terminant lorsque les signaux de sortie des capteurs 24 ont repris des niveaux relatifs qu'on peut qualifier de normaux) et une phase de confirmation est mise en peuvre.

Dans le cas contraire, la recherche est reprise sur un nouveau groupe d'échantillons.

Le second mode de détection s'effectue par analyse de dispersion, parallèlement au précédent (figure 6). Le microprocesseur 50 calcule la différence entre la sortie IRi de chacun de trois éléments 24 et la valeur moyenne SOMME entre les trois sorties et retient la différence maximum σ . Cette valeur est comparée à un seuil de dipsersion DISP préalablement affiché ou ajusté.

Si σ est supérieur au seuil, le microprocesseur passe encore à la phase de confirmation qui

5

10

20

comporte une analyse de transition et une discrimination utilisant le signal de sortie échantillonné du capteur infrarouge proche 34.

Confirmation

La confirmation exige le calcul de paramètres qui seront comparés à des jeux de valeurs stockées en mémoire morte et correspondant à la signature des cibles

La figure 7 donne un exemple de logigramme de confirmation. L'analyse de transition est basée sur les données reçues des éléments photosensibles 24 et mémo risées après détection à confirmer. Elle est constituée par un traitement numérique en vol qui permet, par comparaison avec des modèles conservés en mémoire, d'écarter les phénomènes dont par exemple la durée (en nombre d'échantillons, éventuellement variable suivant l'altitude) les niveaux extrêmes SMIN et SMAX.

Dans le cas montré en figure 7, on détermine par le calcul le nombre NBPEL d'échantillons à l'intérieur de la transition, c'est-à-dire jusqu'au passage au dessous d'un seuil moyen calculé sur la fenêtre 2, et on mémorise les niveaux extrêmes SMIN et SMAX. Si la détection a été obtenue par analyse de dispersion, l'analyse de transition comporte également l'établissement d'une carte de répartition.

Enfin, le microprocesseur mémorise les échantillons du signal provenant du capteur IR proche 32 et notamment le niveau maximum NTR MAX.

L'analyse de dispersion comporte ensuite le calcul de valeurs TRANS et σ' qui permettent de définir le dépassement de la fin de la transition par les conditions :

TRANS' < SEUIL, et σ' < DISP

Une première étape de discrimination utilise les résultats des calculs et les compare avec des modèles contenus en mémoire morte. Le nombre NBPEL d'échantillons dans la transition est comparé à une valeur minimum et à une valeur maximum et seules sont retenues les transitions rentrant dans ce domaine ainsi que celles pour lesquelles les valeurs extrêmes SMIN et SMAX sont comprises entre un maximum et un minimum.

Dans l'affirmative, la dernière étape de confirmation utilise les signaux provenant du capteur infrarouge proche. Le microprocesseur calcule la différence entre la valeur maximum dans la fenêtre 2 et la valeur moyenne sur la fenêtre 1, cette dernière calculée à l'instant de détection d'un début de transition. La différence est comparée à une valeur minimale et une valeur maximale. Si le test est positif, il y a mise à feu.

L'étape d'initialisation mentionnée plus haut peut prendre diverses formes. Elle comportera en général une analyse de la scène et une prise en compte de la température ambiante. En particulier, l'initialisation peut comporter une analyse de la scène sur un tour complet de balayage et le calcul d'une moyenne. Les seuils seront ultérieurement calculés à partir de cette analyse et permettront de tenir compte d'une part de la nature du sol, de réflectivité très variable suivant qu'il s'agit de sable, de neige ou de bois et

de l'éclairement, dans des conditions qui peuvent être d'ensoleillement, de soleil voilé ou de ciel couvert. A partir de ces valeurs il est possible de calculer, par des algorithmes qui dépendront notamment des conditions d'emploi envisagées, les valeurs de σ et de TRANS mentionnés plus haut.

Revendications

1. Procédé de repérage de cible, caractérisé en ce que : on anime un détecteur à faible champ d'un mouvement angulaire de balayage du sol suivant un tracé prédéterminé, on échantillonne la réponse du détecteur dans une plage comprise entre 3 et 5 µm à une cadence suffisamment élevée pour qu'il y ait recouvrement des zones dont l'émission est échantillonnée; on mémorise les échantillons successifs, on identifie les échantillons dont la valeur dépasse la moyenne de n échantillons précédents d'un seuil prédéterminé, éventuellement ajusté en fonction des conditions ambiantes et/ou de l'altitude, en cas de présence d'un tel échantillon révélant le début d'une transition on recherche, à partir d'échantillons mémorisés, une fin de transition révélant une cible ; et on confirme l'existence de la cible par comparaison des échantillons de la réponse du détecteur dans l'infrarouge proche et de valeurs minimale et maximale prédéterminées, éventuellement ajustables.

2. Dispositif de repérage de cible à émission infrarouge, caractérisé en ce qu'il comprend un détecteur à faible champ angulaire ayant un capteur (24) sensible dans la plage allant de 3 à 5 μm et un capteur (34) sensible à l'infrarouge proche ; des movens pour échantillonner la sortie des capteurs à une cadence telle qu'il y ait recouvrement des zones correspondant aux échantillons successifs; des moyens de mémorisation d'un nombre prédéterminé d'échantillons successifs ; des moyens de calcul faisant la différence entre les échantillons de la réponse du premier capteur et la moyenne de n échantillons précédents et provoquant, en cas de dépassement d'un seuil, la recherche d'une fin de transition par comparaison entre échantillons successifs mémorisés et la comparaison entre les échantillons du signal fourni par le second capteur pour la zone de transition avec des valeurs minimale et maximale déterminées.

- 3. Dispositif selon la revendication 2, caractérisé en ce que le premier capteur comporte plusieurs éléments photosensibles (24) ayant des champs décalés dans le sens transversal au tracé de balayage.
- 4. Dispositif selon la revendication 3, caractérisé en ce que la détection des échantillons supérieurs à la moyenne d'un seuil prédéterminé s'effectue par comparaison de la moyenne de la réponse des éléments photosensibles pour un même échantillonnage avec la moyenne sur plusieurs jeux d'échantillons successifs antérieurs.
- 5. Dispositif selon la revendication 4, caractérisé en ce que la détection des échantillons supérieurs à

65

la moyenne s'effectue par comparaison entre la valeur maximale dans une fenêtre de longueur déterminée et la moyenne des échantillons dans une fenêtre précédente, plus longue que la première.

6. Dispositif selon l'une quelconque des revendications 2 à 5, caractérisé en ce que lesdits moyens de calcul sont programmés pour comparer d'une part la différence maximale entre les échantillons de sortie du capteur infrarouge propre et la moyenne d'échantillons précédents et d'autre part la dispersion desdits échantillons sur une fenêtre déterminée à des valeurs minimales et maximales prédéterminées.

10

15

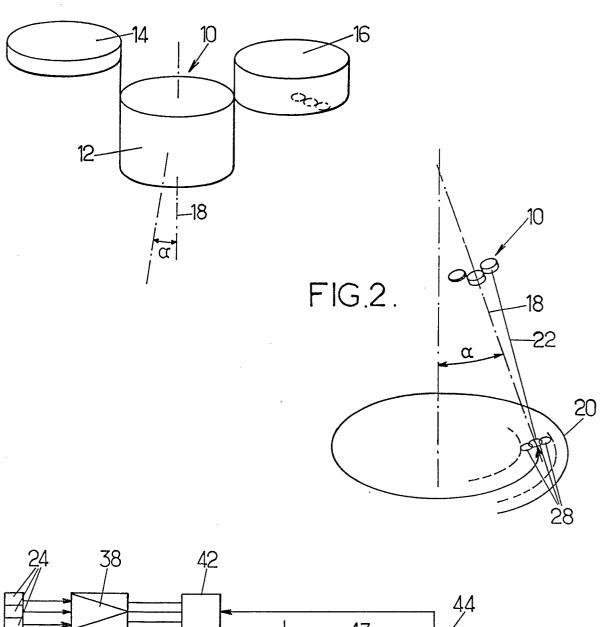
20

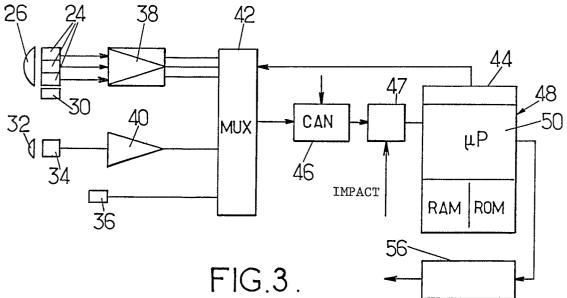
25

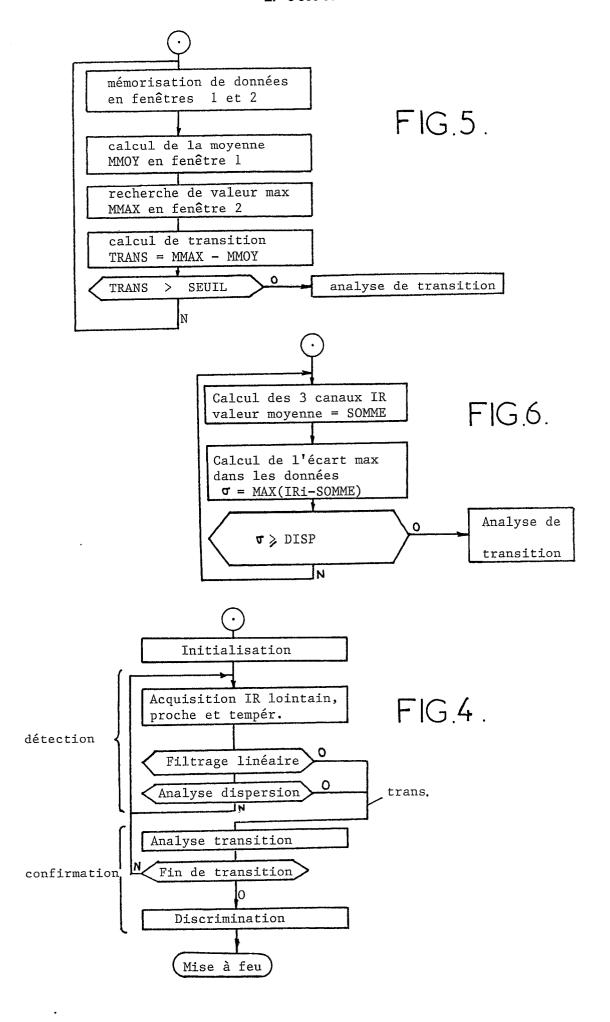
30

35

40


45


50


55

60

FIG.1.

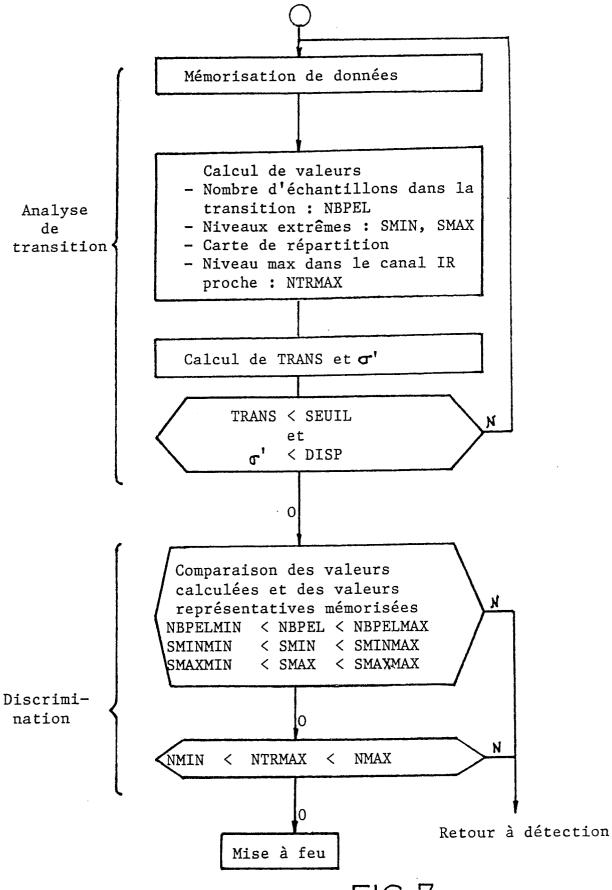


FIG.7.

RAPPORT DE RECHERCHE EUROPEENNE

EP 88 40 2119

Catégorie	Citation du document avec in des parties perti	dication, en cas de besoin, nentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
Χ	FR-A-2 556 086 (ETA * En entier *		1-3	F 42 C 13/02 F 42 B 13/04
Α	FR-A-2 527 783 (SPE * Page 6, lignes 5-3		1,2	
A	US-A-3 653 014 (W.F * Résumé; colonne 2, 3, ligne 11; figure	ligne 37 - colonn	4,6	
Α	FR-A-2 561 049 (HAN * Page 4, lignes 6-3	SA METALLWERKE) 8; figure 1 *	4	
Α .	GB-A-2 144 524 (DIE * Résumé; figure 1 * 		7	
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4)
				F 42 C G 01 S F 41 G F 42 B
Le p	résent rapport a été établi pour tou	tes les revendications		•
Lieu de la recherche LA HAYE		Date d'achèvement de la recherche 17-11-1988		Examinateur WEEL E.J.G.
CATEGORIE DES DOCUMENTS CITES X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie A: arrière-plan technologique		E : documer date de c avec un D : cité dan L : cité pour	T: théorie ou principe à la base de l'invention E: document de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la demande L: cité pour d'autres raisons &: membre de la même famille, document correspondant	

EPO FORM 1503 03.82 (P0402)