Field of the Invention
[0001] A first aspect of this invention relates to solid cast detergent compositions which
are particularly useful in home, industrial and institutional warewashing machines.
A second aspect of this invention relates to methods for producing the detergent compositions.
A third aspect of this invention relates to methods for using the detergent compositions.
Background of the Invention
[0002] Warewashing compositions are typically available in liquid or granular form. While
these forms have many advantages such as ease of manufacture, rapid dissolution rate
and customer acceptance, they also have numerous drawbacks including stratification
or settling of individual components, limits to the percent of active ingredients
which may be incorporated, and instability of reactive components such as defoamers,
surfactants, bleaches, etc. Further, liquid and granular warewashing compositions
are easily spilled onto skin, clothing, etc. where they may cause injury and/or damage.
[0003] Accordingly, a need exists for a solid cast warewashing composition having a high
concentration of active ingredients and an effective bleach source which is capable
of being accurately, safely and efficiently dispersed into automatic warewashing machines.
Brief Discussion of the Invention
[0004] I have discovered that a stable, substantially nonaqueous readily soluble, effective
bleach-containing, solid cast warewashing detergent composition can be formed by combining
hydratable, crystalline alkali metal silicate and water under conditions sufficient
to cause substantially complete hydration of the silicate, and then combining an effective
cleaning and glass protecting proportion of the hydrated silicate with an effective
hardness sequestering proportion of a hydrated alkali metal condensed phosphate having
sufficient water of hydration to allow the cast composition to solidify and an effective
cleaning, bleaching and sanitizing proportion of a cellulose ether encapsulated bleaching
source.
[0005] I have further discovered that effective cleaning solutions can be readily formed
on demand from the solid block of warewashing composition by directing a solvent spray
at least one surface of the cast composition.
[0006] All references herein to wt-% alkali metal silicate are based upon an anhydrous basis
unless otherwise stated.
Detailed Discussion of the Invention
[0007] Broadly, the solid cast warewashing composition of this invention comprises water,
hydratable, crystalline alkali metal silicate, alkali metal condensed phosphate, cellulose
ether encapsulated bleach, and optionally, dye, perfume, surfactant, defoamer, an
additional sequestering agent such as an alkali metal salt of a polyacrylic acid,
a neutral soluble salt such as an alkali metal sulphate or an alkali metal chloride,
and/or alkali compound.
Alkali Metal Silicate
[0008] The solid cast warewashing composition contains about 20 to 55 wt-% hydratable, crystalline
alkali metal silicate, preferably 20 to 40 wt-%. Alkali metal silicates are the reaction
product of an alkali metal oxide (M₂O) and silicon dioxide (SiO₂) and have the general
chemical formula (M₂O)
x:(SiO₂)
y wherein x and y indicate the molar ratio of alkali metal oxide to silicon dioxide.
[0009] Methods of manufacturing alkali metal silicates having various x:y mole ratios are
well known as demonstrated by the general disclosure in Kirk-Othmar Encyclopedia of
Chemical Technology, 2d Ed., Vol. 18, pp. 139-141. The desired properties and benefits
of the solid cast warewashing composition described herein can be obtained using an
alkali metal silicate having an x:y ratio of about 1:1 - 3:1, preferably 1:1. At these
ratios, the alkali metal silicate has sufficient alkaline character to clean effectively
and sufficient silicon dioxide to protect aluminum, china, glassware, etc. from the
etchant effect of basic components in the composition. These silicates also have excellent
solidification properties.
[0010] For reasons of high cleaning performance, delicate ware protection and low cost,
the most preferred alkali metal silicate is sodium metasilicate having an Na₂O:SiO₂
ratio of about 1:1.
Alkali Metal Condensed Phosphate
[0011] The solid cast warewashing composition contains about 1 to 70 wt-% hydrated alkali
metal condensed phosphate as a detergent builder and hardness sequestrant, preferably
15 to 40 wt-%.
[0012] The service water commonly employed in cleaning baths contains substantial proportions
of hardness ions most commonly calcium and magnesium ions, which can react with detergent
components to decrease cleansing effectiveness and/or leave unsightly deposits upon
the substrate being cleaned. Sequestrants act to prevent or delay crystal growth of
calcium or magnesium compounds and thereby eliminate their reaction with other components
and/or their precipitation.
[0013] Condensed phosphate compositions useful in this invention include the water soluble
alkali metal orthophosphates, polyphosphates, pyrophosphates and metaphosphates. It
may be possible to employ some condensed phosphate in an anhydrous state and still
have the cast composition solidify quickly. However, it has been found that the use
of an anhydrous alkali metal tripolyphosphate results in a cast composition that takes
over a day to solidify.
[0014] It is preferable that the cast composition solidify as quickly as possible. If the
cast composition takes too long to solidify, the encapsulated chlorine source, which
is water soluble, breaks down releasing chlorine. Thus, the quicker the solidification
of the cast composition, the higher the percentage of chlorine retained in the cast
composition. A preferred time for solidification would be about 2 hours or less. It
is preferable that if an alkali metal tripolyphosphate is used in this invention that
it have a water of hydration greater than about 15 wt-% based upon the alkali metal
tripolyphosphate composition in order for the cast composition to solidify quickly.
[0015] For reasons of product performance, the preferred condensed phosphate composition
is sodium tripolyphosphate having a water of hydration greater than about 15 wt-%
prior to its addition to the other component. While both granular and powdered condensed
phosphate compositions can be usefully employed in the present invention, granular
condensed phosphates, having a particle size of about 10 to 40 U.S. Mesh, are preferred
to reduce the product viscosity during processing.
Encapsulated Chlorine Source
[0016] The solid cast warewashing composition of this invention contains about 0.1 to 20
wt-%, preferably 0.1 to 15 wt-%, of an encapsulated bleach. The bleach is coated with
a first or inner coating of a separating water soluble compound and a second or outer
coating of a cellulose ether.
BLEACHING AGENT
[0017] Bleaches suitable for use as the core component include any of the well known bleaching
agents capable of removing stains from such substrates as dishes, flatware, pots and
pans, textiles, countertops, appliances, flooring, etc. without significantly damaging
the substrate. A nonlimiting list of such bleaches includes active halogen releasing
bleaches such as hypochlorites, chlorites, chlorinated phosphates, chloroisocyanates,
chloroamines etc.; and peroxide compounds such as hydrogen peroxide, perborates, percarbonates
etc. Preferred bleaches include those bleaches which liberate an active halogen species
such as Cl⁺, Br⁺, OCl⁻ , or OBr⁻ under conditions normally encountered in typical
cleaning processes. Most preferaby, the bleaching agent releases Cl⁺ or OCl⁻ . A nonlimiting
list of useful chlorine releasing bleaches includes calcium hypochlorite, lithium
hypochlorite, chlorinated trisodium phosphate, sodium dichloroisocyanurate, potassium
dichloroisocyanurate, [(monotrichloro)-tetra(monopotassium dichloro)] pentaisocyanurate,
trichloromelamine, sulfondichloro-amide, 1,3-dichloro-5,5-dimethyl hydantoin, n-chlorosuccinimide,
n,n′-dichloroazodicarbonimide, n,n-chloroacetyl urea, n,n′-dichlorobiuret, chlorinated
dicyanamide, trichlorocyanuric acid, and hydrates thereof.
[0018] Because of their higher activities and high bleaching efficiencies the most preferred
bleaching agents are the alkali metal salts of chloroisocyanurates and the hydrates
thereof.
SEPARATING COMPOUNDS
[0019] Compounds suitable for use as the inner coating component include any compound which
is solid at those temperatures likely to be encountered during storage of the encapsulated
bleach (i.e. -5° to 50°C), is chemically compatible with (i.e. does not react with)
either the bleaching agent core or the water soluble cellulose ether outer coating,
and is capable of separating the bleaching agent from the cellulose ether so as to
prevent deactivation of the bleach by the cellulose ether. Useful separating compounds
include specifically but not exclusively water insoluble compounds such as
C 11 - 30 fatty acids, waxes and water soluble compounds such as alkyl sulfonates,
alkyl sulfates, detergent builders and detergent fillers. Because of their ability
to readily release the bleach core under conditions typically encountered during detergent
use, the water soluble compounds are preferred. Most preferably, the separating compound
is an inorganic detergent builder or filler useful in the cleaning composition into
which the bleach is to be employed. A nonlimiting list of such detergent builders
and fillers includes inorganic compounds such as sodium sulfate, sodium chloride,
tetrasodium pyrophosphate, alkali metal silicates, tetrapotassium pyrophosphate, pentasodium
tripolyphosphate, pentapotassium tripolyphosphate, sodium sequicarbonate, potassium
sequicarbonate, phytates, etc. Because of their low cost, ease of availability, ease
of use and efficient detergent building properties the inner coating compound preferably
comprises a mixture of sodium sulfate and a tripolyphosphate.
WATER SOLUBLE CELLULOSE ETHERS
[0020] Cellulose is a linear polymer of anhydroglucose units held together by glucosidic
linkages. Each anhydroglucose unit contains three hydroxyl groups - one primary and
two secondary. Cellulose derivatives such as cellulose ethers are formed by reaction
of the cellulose with a chemical reagent at these hydroxyl groups. For example, hydroxyethylcellulose
can be prepared by the reaction of alkali cellulose with ethylene oxide in the presence
of isopropanol, tert-butanol or acetone in accordance with the following equation:

[0021] Cellulose derivatives useful as the outer coating component in the present invention
are the water soluble cellulose ethers selected from the group consisting of (C₁₋₄)
alkyl cellulose, carboxy (C₁₋₄) alkyl cellulose, hydroxy (C₁₋₄) alkyl cellulose, di(C₁₋₄)
alkyl carboxy (C₁₋₄) hydroxy (C₁₋₄) cellulose, (C₁₋₄) alkyl hydroxy (C₁₋₄) alkyl cellulose
and mixtures thereof. For reasons of bleach stabilizing performance and ease of application,
the preferred cellulose ethers are the hydroxy (C₁₋₄) alkyl celluloses with the most
preferred cellulose ethers being hydroxyethylcellulose and hydroxy-propylcellulose.
[0022] In most commercially available cellulose derivatives, some of the hydroxyl groups
are not substituted. The number of unsubstituted hydroxyl groups is known as the degree
of substitution (DS) and is designated by a number from 0 to 3 which represents the
average number of hydroxyl groups, of the three available in the anhydroglucose unit,
that have been substituted.
[0023] A special problem arises in the expression of degree of substitution for hydroxyalkyl
derivatives because each time a hydroxyalkyl substituent is added, a new reactive
hydroxyl group is formed and the number of reactive hydroxyl sites does not change.
The result is the formation of side chains, as shown below:

To describe the extent of the formation of side chains the term MS has been coined.
MS is defined as the number of moles of reagent (i.e. ethylene oxide) combined per
anhydroglucose unit.
[0024] The ratio of DS to MS is an indication of the average length of the side chains developed.
The DS, MS and ratio of DS to MS can affect the chemical properties of the cellulose
derivative and only those cellulose ethers that have a DS, MS and DS:MS which result
in a water soluble compound may be usefully employed in the present invention.
[0025] The DS of several useful cellulose ethers are set forth below:
Table 1
Cellulose |
Typical DS |
Preferred DS |
Hydroxymethyl |
0-2.6 |
1.3-2.6 |
Hydroxyethyl |
0-3 |
1.2-3 |
Hydroxypropyl |
1.4-3 |
1.4-3 |
Carboxymethyl |
0.4-1.4 |
0.7-0.9 |
[0026] The composition can comprise about 20 to 90 wt-%, preferably about 40 to 70 wt-%
bleach core, about 5 to 60 wt-%, preferably about 10 to 50 wt-% separating compound
inner coating and about 1 to 25 wt-%, preferably about 2 to 10 wt-% water soluble
cellulose ether outer coating.
[0027] While not intending to be limited thereby I believe that the water soluble cellulose
ethers described herein are capable of protecting a bleaching agent core from deactivation
in an alkaline environment because the cellulose ethers are water insoluble when in
the presence of at least about 10-50 wt-% inorganic salts such as sodium chloride,
sodium sulphate, sodium perborate, etc. (i.e. those conditions typically encountered
in solid detergents) and water soluble only when the wt-% of inorganic salt falls
outside these levels (i.e. those conditions typically encountered during use of the
detergent).
ENCAPSULATION PROCEDURE
[0028] The bleach may be encapsulated in any convenient manner capable of ensuring complete
coating of the bleach. Obtaining a complete protective coating with the cellulose
ether is simplified by the tendency of cellulose ethers to naturally form a nonporous,
evenly distributed coating on a particle. For reasons of low manufacturing cost and
ease of manufacture the bleach is preferably encapsulated in a fluidized bed as set
forth in detail in the Examples. Briefly, the separating composition is dissolved
in an appropriate solvent, such as water when water soluble, to form an inner coating
solution; the water soluble cellulose ether dissolved in water to form an outer coating
solution; the bleach particles fluidized in a fluidized bed apparatus, the inner coating
solution sprayed onto the fluidized particles and dried, and the outer coating solution
sprayed on the fluidized particles and dried.
Water
[0029] The solid cast warewashing composition contains about 8 to 60 wt-%, preferably 8
to 35 wt-% water in addition to the water of hydration in the hydrated alkali metal
condensed phosphate and other components of the cast composition. The water is necessary
to form a homogeneous mixture capable of being cast and solidified.
[0030] The use of the term "water" in reference to the cast composition refers to water
added as free water and not water added as water of hydration unless otherwise specified.
Other Components
[0031] In addition to those components previously described, other conventional detergent
components and fillers can be included in the solid cast warewashing composition including
a defoamer, a secondary sequestrant such as a polyacrylate, an alkali compound, a
detergent builder or filler, a dye and perfume.
[0032] A defoamer is a chemical compound with a hydrophobe/hydrophile balance suitable for
reducing the stability of protein foam. The hydrophobicity can be provided by an oleophilic
portion of the molecule; e.g., an aromatic alkyl or aralkyl group, an oxypropylene
unit or oxypropylene chain, or other oxyalkylene functional groups other than oxyethylene;
e.g., tetramethylene oxide. The hydrophilicity can be provided by oxyethylene units,
chains, blocks and/or ester groups; e.g., organophosphate esters; salt-type groups,
or salt-forming groups. Typically, defoamers are nonionic organic surface-active polymers
having hydrophobic groups, blocks or chains and hydrophilic ester groups, blocks,
units or chains; but anionic, cationic, and amphoteric defoamers are known. For a
disclosure of nonionic defoaming surfactants, see U.S. Patent No. 3,048,548, issued
August 7, 1962 (Martin et al), U.S. Patent No. 3,334,147, issued August 1, 1967 (Brunelle
et al), and U.S. Patent No. 3,442,242, issued May 13, 1969 (Rue et al). Phosphate
esters are also suitable, e.g. esters of the formula RO-(PO₃M)-
nR, wherein n is a number ranging from 1 to about 60, typically less than 10 for cyclic
phosphates, M is an alkali metal and R is an organic group or M, with at least one
R being an organic group such as an oxyalkylene chain. The solid cast warewashing
composition of this invention can include about 0 to 15 wt-% of a defoamer.
[0033] The solid cast warewashing composition can employ a polyelectrolyte such as the polyacrylates
of molecular weight 1000-3000 as secondary chelating or sequestering agent. See, for
example, U.S. Patent No. 3,535,285, issued October 20, 1970 (Sabatelli et al), U.S.
Patent No. 3,579,455, issued May 18, 1971 (Sabatelli et al), U.S. Patent No. 3,700,599,
issued October 24, 1972 (Mizuno et al), and U.S. Patent No. 3,899,436, issued August
12, 1975 (Copeland et al). As is known in the art, polyacrylates (particularly alkali
metal salts of polyacrylic acid and its copolymers) can function as thickeners in
aqueous systems. Cast detergent compositions of this invention can contain up to 20%
by weight of a secondary sequestering agent in combination with the alkali metal condensed
phosphates.
[0034] An alkali compound may also be included in the solid cast warewashing composition
of this invention. Examples of useful alkalis include but are not limited to alkali
metal hydroxides, soluble alkali metal silicates with the formula (M₂O)
x:(SiO₂)
y wherein M is an alkali metal and the ratio of x:y is about 1.0:1.6 to 1.0:3.75, alkali
metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates, and alkali
metal borates. Up to 30% of such alkali compounds may be included in the solid cast
warewashing composition.
[0035] In addition, the cast composition can contain 0-15 wt-% of a surfactant for cleaning
purposes. Types of surfactants which can be used include nonionic, anionic, cationic,
and amphoteric surfactants, preferably nonionic surfactants.
[0036] A neutral soluble salt may also be included in the warewashing composition. Neutral
soluble salts are typically the reaction product of a strong acid and a strong base
including sodium sulfate, sodium chloride and others. Up to 20 wt-% of a neutral soluble
salt may be included in the warewashing composition.
[0037] The cast composition may further comprise up to 10 wt-% of a dye and up to 10 wt-%
of a perfume.
Method of Manufacturing Cast Detergent
[0038] While the following process is described with reference to specific components, it
should be understood that other components and similar processes can be used to form
a detergent solution which can be cast into a mold and will solidify upon hydration
of its hydratable component. A particularly useful detergent composition of this invention
is formed by heating an aqueous composition comprising about 8.0 to 60 wt-%, preferably
8 to 35 wt-% water and about 20 to 55 wt-% alkali metal metasilicate in a reaction
vessel to about 35 to 99°C., preferably 65 to 85°C. The composition is held at said
temperature range for about 15 minutes to two hours to form an alkali metal metasilicate
hydrate. The temperature of the composition is then allowed to fall below about 65°C.
by cooling.
[0039] About 1 to 70 wt-% of a hydrated alkali metal condensed phosphate having water of
hydration sufficient to increase the rate of the solidification of the cast composition
is added to the composition to form a suspension. The suspension is cooled to a temperature
below about 55°C., preferably about 48 to 55°C. The suspension is cast in a mold with
about 0.1 to 20 wt-% of the encapsulated bleaching source which is mixed into the
suspension prior to casting or co-added while pouring the suspension into the mold.
The composition is then cooled. As the mixture continues to cool, it solidifies to
form a cast composition.
[0040] In order to obtain a controlled and rapid solidification of the cast product, which
is preferred for production and quality successful reasons, the hydration of the metasilicate
should be held at a high temperature. In addition, no interfacing ions should be present
in the liquid metasilicate solution/slurry. The preparation of the cast composition
is conducted in such a manner as to limit as much as possible the amount of condensed
phosphate which dissolves and introduces itself into the crystallizing mass. A slurry
of condensed phosphate is preferred.
[0041] Optional components, including a dye, a perfume, a surfactant, a defoamer, an additional
sequestrant such as an alkali metal salt of a polyacrylic compound, a neutral soluble
salt, an alkali, or mixtures thereof, can also be included in the composition before
solidification.
[0042] A dye can be added anytime after the hydration of the metasilicate. A perfume can
be added at the same time as the encapsulate or just prior to casting, since excessive
heat destroys perfumes. A surfactant can be added anytime after the hydration of the
metasilicate. An additional sequestering agent such as an alkali metal salt of a polyacrylic
acid compound can be added anytime after the hydration of the metasilicate, preferably
prior to the addition of the encapsulate. A neutral soluble salt such as an alkali
metal chloride or an alkali metal sulfate can be added anytime after the hydration
of the metasilicate. A defoamer can be added anytime after the hydration of the metasilicate.
An alkali metal compound selected from the group consisting of alkali metal hydroxides,
soluble alkali metal silicates of the formula (M₂O)
x:(SiO₂)
y wherein M is an alkali metal and the ratio of x:y is about 1.0:1.6 to 1.0:3.75, alkali
metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates, alkali
metal borates and mixtures thereof can be added anytime after the hydration of the
metasilicate.
[0043] It is important in the production of the cast composition that the cast composition
solidify quickly since the chlorine encapsulate coating can dissolve in the added
water.
[0044] The present invention will be further understood by reference to the following specific
Examples which are illustrative of the composition, form and method of producing the
solid, cast detergent-containing article of this invention. It is to be understood
that many variations of composition, form and method of producing the cast detergent
would be apparent to those skilled in the art. The following Examples, wherein parts
and percentages are by weight, unless otherwise indicated, are only illustrative.
Example 1
[0045] Into a 2 liter reaction vessel, provided with a stirring means and a heating means,
was charged 23.33 wt-% of substantially demineralized water followed by 35.42 wt-%
of anhydrous sodium metasilicate. The contents of the reaction vessel were then heated
to 82°C. The contents of the reaction vessel were held at this temperature for 70
minutes until hydrated metasilicate formed. The temperature of the contents was then
allowed to fall below 65°C. by cooling. 41.25 wt-% of a premix of 95.32 wt-% of large
granular hydrated sodium tripolyphosphate and 4.68 wt-% of a surfactant premix of
86 wt-% of a nonionic ethylene propylene oxide block copolymer terminated with propyloxide
and 14 wt-% of a mono and dialkyl acid phosphate ester rich in C₁₆ was then added
to the reaction vessel. The tripolyphosphate had a water of hydration of 19.42 wt-%.
The contents became viscous at this point. The contents were then cooled to 56°C.
while being mixed. The contents were then poured into a 0.1 liter container simultaneously
with 2.5 wt-% of the encapsulated chlorine source made in accordance with Example
6. The contents of the container were mixed for about 10 seconds. The contents were
then solidified in the container in about 30 minutes.
Example 2
[0046] Into a 2 liter reaction vessel, provided with a stirring means and a heating means,
was charged 23.33 wt-% of substantially demineralized water followed by 35.42 wt-%
of anhydrous sodium metasilicate. The contents of the reaction vessel were then heated
to 34°C. The contents of the reaction vessel were held at this temperature for 69
minutes until hydrated metasilicate formed. The temperature of the contents was then
allowed to fall below 66°C. by cooling. 41.25 wt-% of a premix of 95.32 wt-% of large
granular hydrated sodium tripolyphosphate and 4.68 wt-% of a surfactant premix of
86 wt-% of a nonionic ethylene propylene oxide block copolymer terminated with propyloxide
and 14 wt-% of a mono and dialkyl acid phosphate ester rich in C₁₆ was then added
to the reaction vessel. The tripolyphosphate had a water of hydration of 19.42 wt-%.
The contents became viscous at this point. The contents were then cooled to 53°C.
while being mixed. The contents were then poured into a 0.1 liter container simultaneously
with 2.5 wt-% of the encapsulated chlorine source made in accordance with Example
7. The contents of the container were mixed for about 10 seconds. The contents were
then solidified in the container in about 20 minutes.
Example 3
[0047] Into a 2 liter reaction vessel, provided with a stirring means and a heating means,
was charged 23.33 wt-% of substantially demineralized water followed by 35.42 wt-%
of anhydrous sodium metasilicate. The contents of the reaction vessel were then heated
to 89°C. The contents of the reaction vessel were held at this temperature for 57
minutes until hydrated metasilicate formed. The temperature of the contents was then
allowed to fall below 66°C. by cooling. 41.25 wt-% of a premix of 95.32 wt-% of large
granular hydrated sodium tripolyphosphate and 4.68 wt-% of a surfactant premix of
86 wt-% of a nonionic ethylene propylene oxide block copolymer terminated with propyloxide
and about 14 wt-% of a mono and dialkyl acid phosphate ester rich in C₁₆ was then
added to the reaction vessel. The tripolyphosphate had a water of hydration of 19.42
wt-%. The contents became viscous at this point. The contents were then cooled to
52°C. while being mixed. The contents were then poured into a 0.1 liter container
simultaneously with 2.5 wt-% of the encapsulated chlorine source made in accordance
with Example 8. The contents of the container were mixed for about 10 seconds. The
contents were then solidified in the container in about 30 minutes.
Example 4
[0048] Into a reaction vessel, provided with a stirring means and a heating means, was charged
23.49 parts of substantially demineralized water followed by 35.67 parts of anydrous
sodium metasilicate. 39.92 parts of large granular hydrated sodium tripolyphosphate
having a particle size of 10 to 40 U.S. Mesh was then added to the reaction vessel.
1.62 parts of a surfactant premix of about 86 wt-% of a nonionic ethylene propylene
oxide block copolymer terminated with propyloxide and about 14 wt-% of a mono and
dialkyl acid phosphate ester rich in C₁₆ was added to the composition. 2.00 parts
of a 50% active solution of polyacrylic acid having a molecular weight of 4,800-7,000,
was added to the reaction vessel at this time. The formula comprised 105.20 total
parts. The contents became viscous at this point. The contents were then poured into
a 0.1 liter container simultaneously with 2.5 wt-% of the encapsulated chlorine source
and mixed. The encapsulated chlorine source used was made in accordance with Example
9. The mixture was then solidified in the container in 30 minutes. The percentage
of available chlorine present in the cast composition after 2 to 3 weeks at room temperature
was 84.92%
Example 5
[0049] Into a reaction vessel, provided with a stirring means and a heating means, was charged
23.49 parts of substantially demineralized water followed by 35.67 parts of anydrous
sodium metasilicate. 50.00 parts of large granular hydrated sodium tripolyphosphate,
having a particle size of 10 to 40 U.S. Mesh was then added to the reaction vessel.
A surfactant premix of 14 wt-% of a defoamer which is a mixture of mono and dialkyl
acid phosphates esters rich in C₁₆ and 86 wt-% of a nonionic ethylene propylene oxide
block copolymer terminated with propylene oxide was added to the reaction vessel.
1.90 parts of sodium hydroxide beads were then added to the reaction vessel. The composition
comprised 115.18 total parts. The contents were then poured into a 0.1 liter container
simultaneously with 2.5 wt-% of the encapsulated chlorine source. The encapsulated
chlorine source was made in accordance with Example 9. The contents of the container
were mixed in the container. The mixture was then solidified in the container in 45
minutes. The percentage of available chlorine present in the cast composition after
2 to 3 weeks at room temperature was 84.92%.
Example 6
[0050] Into a 32 liter container was placed 5.96 kg granular sodium sulfate, 1.62 kg sodium
tripolyphosphate and 23.76 kg water to form a first coating solution.
[0051] Into a fluidized bed was placed 14.59 kg of , granular dichloroisocyanurate dihydrate
(hereinafter bleach) which can be purchased from a number of sources. The bleach was
fluidized with air and the bed heated to 68 - 74° C. The entire amount of first coating
solution was sprayed onto the bleach granules through a Gustav Schlick Nozzle, Model
941, at an atomized air pressure of 40 psig to form once coated bleach particles.
[0052] Into the now empty 32 liter container was placed 1.14 kg KLUCEL J, a hydroxypropylcellulose
purchased from Hercules, Inc., and 34.47 kg water to form a second coating solution.
The bed temperature was adjusted to 71 - 72° C. and the entire amount of second coating
solution sprayed onto the once coated bleach particles through the Gustav Schlick
nozzle to form twice coated, protectively encapsulated bleach particles. The bed temperature
was then adjusted to 74° C. and the protectively encapsulated bleach particles dried.
The process yielded 23.15 kg of protectively encapsulated bleach particles comprising
60 wt-% core of dichloroisocyanurate monohydrate bleach, 35 wt-% first coat of a mixture
of 75 wt-% sodium sulfate and 25 wt-% sodium tripolyphosphate hexahydrate and 5 wt-%
second coat of KLUCEL J.
Example 7
[0053] Into a 32 liter container was placed 5.96 kg granular sodium sulfate, 1.62 kg sodium
tripolyphosphate and 23.78 kg water to form a first coating solution.
[0054] Into a fluidized bed was placed 13.43 kg of granular dichloroisocyanurate dihydrate
(hereinafter bleach) which can be purchased from a number of sources. The bleach was
fluidized with air and the bed heated to 72 - 74° C. The entire amount of first coating
solution was sprayed onto the bleach granules through a Gustav Schlick Nozzle, Model
941, at an atomized air pressure of 40 psig to form once bleach coated particles.
[0055] Into the now empty 32 liter container was placed 2.27 kg KLUCEL J, a hydroxypropylcellulose
purchased from Hercules, Inc., and 70.94 kg water to form a second coating solution.
The bed temperature was adjusted to 69 - 71° C. and the entire amount of second coating
solution sprayed onto the once coated bleach particles through the Gustav Schlick
nozzle to form twice-coated, protectively encapsulated bleach particles. The bed temperature
was then adjusted to 74° C. and the protectively encapsulated dichloroisocyanurate
monohydrate bleach particles dried. The process yielded 20.13 kg of protectively encapsulated
bleach particles comprising 55.0 wt-% core of bleach, 35 wt-% first coat of a mixture
of 75 wt-% sodium sulfate and 25 wt-% sodium tripolyphosphate hexahydrate and 10 wt-%
second coat of KLUCEL J.
Example 8
[0056] Into a 32 liter container was placed 7.26 kg granular sodium sulfate, 2.42 kg sodium
tripolyphosphate and 30.36 kg water to form a first coating solution.
[0057] Into a fluidized bed was placed 12.25 kg of a granular dichloroisocyanurate dihydrate
(hereinafter bleach) which can be purchased from a number of sources. The bleach was
fluidized with air and the bed heated to 63 - 71° C. The entire amount of first coating
solution was sprayed onto the bleach granules through a Gustav Schlick Nozzle, Model
941, at an atomized air pressure of 40 psig to form once coated bleach particles.
[0058] Into the now empty 32 liter container was placed 1.13 kg KLUCEL J, a hydroxypropylcellulose
purchased from Hercules, Inc., and 35.51 kg water to form a second coating solution.
The bed temperature was adjusted to 48 - 52° C. and the entire amount of second coating
solution sprayed onto the once coated bleach particles through the Gustav Schlick
nozzle to form twice-coated, protectively encapsulated bleach particles. The bed temperature
was then adjusted to 71° C. and the protectively encapsulated bleach particles dried.
The process yielded 21.95 kg of protectively encapsulated bleach particles comprising
about 50 wt-% core of dichloroisocyanurate monohydrate bleach, 45 wt-% first coat
of a mixture of 71 wt-% sodium sulfate and 29 wt-% sodium tripolyphosphate hexahydrate
and 5 wt-% second coat of KLUCEL J.
Example 9
[0059] Into a mixing vessel was placed 4.77 parts granular sodium sulfate, 1.59 parts sodium
tripolyphosphate and 19.93 parts water to form a first coating solution.
[0060] Into a fluidized bed was placed 10.05 parts bleach, a granular dichloroisocyanurate
dihydrate (hereinafter bleach) which can be purchased from a number of sources. The
bleach was fluidized with air and the bed heated.
[0061] Into the now empty mixing vessel was placed 9.77 parts of an n-octyl sulfonate (40
wt-% n-octyl sulfonate, 60 wt-% water) to form a second coating solution. This second
coating solution was diluted with 9.88 parts of soft water. This solution was sprayed
onto the heated bed of particles to form twice coated protectively encapsulated bleach
particles.
[0062] Into the now empty 32 liter container was placed 2.00 parts KLUCEL J, a hydroxypropylcellulose
purchased from Hercules, Inc., and 63.00 parts water to form a third coating solution.
The bed temperature was adjusted to 56 - 64° C. and the entire amount of third coating
solution sprayed onto the twice coated bleach particles through the Gustav Schlick
nozzle to form thrice coated, protectively encapsulated bleach particles. The bed
temperature was then adjusted to 66° C. and the protectively encapsulated bleach particles
dried. The process yielded 17.5 parts of protectively encapsulated bleach particles
comprising about 43 wt-% core of dichloroisocyanurate monohydrate bleach, 31 wt-%
first coat of a mixture of 71 wt-% sodium sulfate and 29 wt-% sodium tripolyphosphate
hexahydrate, a second coat of 18 wt-% sodium n-octyl sulfonate and 9 wt-% third coat
of KLUCEL J.
1. A solid cast warewashing composition which comprises:
(a) about 20 to 55 wt-%, based upon the solid cast warewashing composition and calculated
on an anhydrous basis, of a hydratable, crystalline alkali metal silicate composition;
(b) about 1 to 70 wt-%, based upon the solid cast warewashing composition, of an alkali
metal condensed phosphate composition, having sufficient water of hydration to allow
the cast warewashing composition to solidify;
(c) about 0.1 to 20 wt-%, based upon the solid cast warewashing composition, of an
encapsulated bleaching source which comprises:
(i) a bleaching agent core;
(ii) an inner coating of a separating compound in an amount sufficient to retard any
chemical interaction between the bleaching agent core and an outer coating compound;
and
(iii) an outer coating of an encapsulating amount of a water soluble cellulose ether
compound selected from the group consisting of (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄)
alkyl cellulose, hydroxy (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄) alkyl hydroxy (C₁₋₄)
alkyl cellulose, (C₁₋₄) alkyl hydroxy (C₁₋₄) alkyl cellulose, and mixtures thereof.
(d) about 8 to 60 wt-%, based upon the solid cast warewashing composition, water;
(e) about 0 to 10 wt-%, based upon the solid cast warewashing composition, dye;
(f) about 0 to 10 wt-%, based upon the solid cast warewashing composition, perfume;
(g) about 0 to 15 wt-%, based upon the solid cast warewashing composition, surfactant;
(h) about 0 to 15 wt-%, based upon the solid cast warewashing composition, defoamer;
(i) about 0 to 20 wt-%, based upon the solid cast warewashing composition, alkali
metal salt of a polyacrylic acid compound;
(j) about 0 to 20 wt-%, based upon the solid cast warewashing composition of a neutral
soluble salt selected from the group consisting of an alkali metal sulphate compound
and an alkali metal chloride compound; and
(k) about 0 to 30 wt-%, based upon the solid cast warewashing composition, of an alkali
compound selected from the group consisting of alkali metal hydroxides, soluble alkali
metal silicates with the formula (M₂O)x:(SiO₂)y wherein M is an alkali metal and the ratio of x:y is about 1.0:1.6 to 1.0:3.75, alkali
metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates, alkali
metal borates and mixtures thereof.
2. Composition according to Claim 1, which comprises:
(a) about 20 to 40 wt-% of the said alkali metal silicate composition;
(b) about 15 to 40 wt-% of the said alkali metal condensed phosphate composition;
(c) about 0.1 to 15 wt-% of the said encapsulated bleaching source, the water content
of said bleaching source being about 8 to 35 %.
3. Composition according to Claim 1 or 2 wherein the inner coating compound of the
encapsulated bleaching source comprises a water-soluble coating compound.
4. Composition according to anyone of Claims 1 to 3 wherein the bleaching agent core
comprises a core of an active chlorine source.
5. Composition according to anyone of Claims 1 to 4 wherein the hydratable crystalline
alkali metal silicate has the formula (M₂O)x:(SiO₂)y wherein M is an alkali metal and the ratio of x:y is about 1:1 to about 3:1.
6. Composition according to anyone of Claims 1 to 5 wherein the alkali metal condensed
phosphate composition is hydrated.
7. Composition according to anyone of Claims 1 to 6 wherein the alkali metal condensed
phosphate comprises a hydrated alkali metal tripolyphosphate having sufficient water
of hydration to allow the cast composition to solidify.
8. Composition according to anyone of Claims 1 to 7 wherein the alkali metal condensed
phosphate comprises a hydrated alkali metal tripolyphosphate having at least about
15 wt-%, based upon the hydrated alkali metal tripolyphosphate, water of hydration.
9. A method of cleaning ware which comprises the steps of:
(a) contacting a solid cast warewashing composition and water to form an aqueous cleaning
solution; and
(b) contacting soiled ware with the cleaning solution so as to remove soil from the
soiled ware; wherein the solid cast warewashing composition comprises:
(i) about 20 to 55 wt-%, based upon the solid cast warewashing composition and calculated
on an anhydrous basis, of a hydratable crystalline alkali metal silicate;
(ii) about 1 to 70 wt-%, based upon the solid cast warewashing composition, of an
alkali metal condensed phosphate composition having sufficient water of hydration
to allow the cast warewashing composition to solidify; and
(iii) about 0.1 to 20 wt-%, based upon the solid cast warewashing composition, of
an encapsulated bleaching source which comprises:
(1) a bleaching agent core;
(2) an inner coating of a separating compound in an amount sufficient to retard any
chemical interaction between the bleaching agent core and an outer coating compound;
and
(3) an outer coating of an encapsulating amount of a water soluble cellulose ether
compound selected from the group consisting of (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄)
alkyl cellulose, hydroxy (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄) alkyl hydroxy (C₁₋₄)
alkyl cellulose, (C₁₋₄) alkyl hydroxy (C₁₋₄) alkyl cellulose, and mixtures thereof;
(iv) about 8 to 60 wt-% water, based upon the solid cast warewashing composition;
(v) about 0 to 10 wt-%, based upon the solid cast warewashing composition, of a dye;
(vi) about 0 to 10 wt-%, based upon the solid cast warewashing composition of a perfume;
(vii) about 0 to 15 wt-%, based upon the solid cast composition, of a surfactant;
(viii) about 0 to 15 wt-%, based upon the solid cast composition, of a defoamer;
(ix) about 0 to 20 wt-%, based upon the solid cast composition, of an alkali metal
salt of a polyacrylic acid compound;
(x) about 0 to 20 wt-%, based upon the solid cast composition, a neutral soluble salt
selected from the group consisting of an alkali metal sulphate compound an alkali
metal chloride compound; and
(xi) about 0 to 30 wt-%, based upon the solid cast warewashing composition, of an
alkali compound selected from the group consisting of alkali metal hydroxides, soluble
alkali metal silicates with the formula (M₂O)x:(SiO₂)y wherein M is an alkali metal and the ratio of x:y is about 1.0:1.6 to 1.0:3.75,
alkali metal carbonates, alkali metal bicarbonates, alkali metal sesquicarbonates,
alkali metal borates and mixtures thereof.
10. A method of making a solid cast warewashing composition which comprises the steps
of:
(a) combining about 8 to 60 wt-%, based upon the solid cast warewashing composition,
water and about 20 to 55 wt-%, based upon the solid cast warewashing composition,
of a hydratable, crystalline alkali metal silicate composition to form an aqueous
composition;
(b) heating the aqueous composition to a temperature sufficient to hydrate the alkali
metal silicate;
(c) cooling the hydrated alkali metal silicate;
(d) combining about 1 to 70 wt-%, based upon the solid cast warewashing composition,
alkali metal condensed phosphate composition having sufficient water of hydration
to allow the cast warewashing composition to solidify, and the cooled hydrated alkali
metal silicate composition to form a mixture;
(e) cooling the mixture to about 110 to 140 °F.;
(f) combining the cooled mixture and about 0.1 to 20 wt-%, based upon the solid cast
warewashing composition, of an encapsulated bleaching source to form a liquid detergent
composition; the encapsulated bleaching source comprising:
(i) a bleaching agent core;
(ii) an inner coating of a separating compound in an amount sufficient to retard any
chemical interaction between the bleaching agent core and an outer coating compound;
and
(iii) an outer coating of an encapsulating amount of a water soluble cellulose ether
compound selected from the group consisting of (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄)
alkyl cellulose, hydroxy (C₁₋₄) alkyl cellulose, carboxy (C₁₋₄) alkyl hydroxy (C₁₋₄)
alkyl cellulose, (C₁₋₄) alkyl hydroxy (C₁₋₄) alkyl cellulose, and mixtures thereof;
and
(g) casting the liquid detergent composition into a container to form the solid cast
warewashing composition.
11. Method according to Claim 10 wherein (i) about 8 to 35 wt-%, based upon the solid
cast warewashing composition, water and about 20 to 40 wt-%, based upon the solid
cast warewashing composition, hydratable, crystalline alkali metal silicate composition
are combined to form the aqueous composition, and (ii) about 15 to 40 wt-%, based
upon the solid cast warewashing composition, alkali metal condensed phosphate composition
having sufficient water of hydration to allow the cast warewashing composition to
solidify, is combined with the cooled hydrated alkali metal silicate composition to
form the mixture, and (iii) about 0.1 to 15 wt-%, based upon the solid cast warewashing
composition, encapsulated bleaching source is combined with the cooled mixture to
form the liquid detergent composition.