(19)
(11) EP 0 308 651 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.03.1989 Bulletin 1989/13

(21) Application number: 88113441.5

(22) Date of filing: 18.08.1988
(51) International Patent Classification (IPC)4C10M 159/00, C10M 101/04, C10M 163/00
// (C10M101/04, 101:04),(C10M159/00, 159:08, 159:12),(C10M163/00, 135:06, 159:08, 159:12),(C10N30/06, 60:10, 60:12)
(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(30) Priority: 21.08.1987 US 88186

(71) Applicant: INTERNATIONAL LUBRICANTS, INC.
Seattle Washington 98108 (US)

(72) Inventors:
  • Landis, Phillip S.
    Alexandria Virginia 22312 (US)
  • Erickson, Frank
    Seattle Washington 98166 (US)

(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät 
Maximilianstrasse 58
80538 München
80538 München (DE)


(56) References cited: : 
   
       


    (54) Jojoba oil and jojoba oil derivative lubricant compositions


    (57) There is disclosed an improved lubricant base composition for incorporation into a wide variety of lubricat­ing compositions. The improved lubricant base composition comprises at least two ingredients selected from jojoba oil, sulfurized jojoba oil, and a phosphite adduct of jojoba oil.


    Description

    Technical Field



    [0001] The present invention relates to a lubricant base composition and lubricant compositions with anti­friction properties that contain jojoba oil and jojoba oil derivatives as the active lubricating agents. More specifically, this invention relates to a composition of jojoba oil and a phosphite adduct of jojoba oil and/or a sulfurized jojoba oil that is used in combination to form the active lubricating agents.

    Background Art



    [0002] Jojoba oil is a natural mixture of straight-­chain, unsaturated, monocarboxylic acid esters comprising primarily C₁₈ to C₂₄ monounsaturated alcohols esterified with C₁₈ to C₂₄ monounsaturated acids. The double bond is located predominantly in the C₉ position in both the alcohol and acid portion of the esters. Jojoba oil is conventionally cold-pressed from the seed of Simmondsia chinensis, a desert shrub native to California, Arizona, and Mexico.

    [0003] Jojoba oil and many of its derivatives have been disclosed in the literature. Jojoba oil has been used primarily in cosmetics and hair shampoos, but has also been disclosed as useful as a lubricant. Arndt, United States Patent 4,557,841, refers to jojoba oil as a lubricating additive and useful in the range of 0.1% to 10% (w/w) in a motor oil with a standard motor oil formu­lation. Kuble, United States Patent 2,921,874, refers to the use of jojoba oil as a cold forming lubricant for use in cold extrusion of metals. Further, Brown et al., United States Patent 4,360,387, refer to the use of iso­morphous compositions of trans-isomerates of jojoba oil as useful as food machinery lubricants. Hollinshead, United States Patent 3,849,323, refers to blended petro­leum products for lubrication containing a natural oil, such as jojoba oil.

    [0004] There is a largely unfulfilled need for new and improved lubricants and lubricant additive systems to improve the friction properties of lubricants, such as cutting fluids, precoat oils, metal-working oils, auto­matic transmission fluids (ATFs), gear oils, way oils, and automotive and marine oils. Various jojoba oil derivatives alone have been suggested as lubricating oil compositions. For example, German Patent 3,309,211 refers to the reaction of jojoba oil with P₂S₅ at high temperature and under a nitrogen atmosphere. German Patent 3,327,127 refers to the use of jojoba oil in a sulfochlorinated mixture to improve anticorrosion or anti­wear properties. Miwa et al. ("Extreme-Pressure Lubri­cant Tests on Jojoba and Sperm Whale Oils," J. Amer. Oil Chemists' Soc. 56:765-70, 1979) refers to lubricant tests on sulfurized jojoba oil as an extreme-pressure additive for motor oils, gear lubricants, and automotive transmis­sion fluids. Miwa et al. found that the sulfurized jojoba oil as an antiwear additive for lubricants was at least equivalent to, and in some cases superior to, sulfurized sperm oil.

    [0005] The use of jojoba oil as a lubricating deriva­tive or agent in the prior art has been confined to single-agent use, i.e., jojoba oil and sulfurized deriva­tives of jojoba oil have been used individually as single agents in the art. There remains, however, much room for improvement of lubricating properties for automotive and marine oils, cutting fluids, precoat oils, metal-working oils, ATFs, gear oils, and way lubricants. The present invention represents novel compositions which are supe­rior to prior art lubricants for use in many well-known applications.

    Disclosure of the Invention



    [0006] The present invention provides a lubricant base and lubricating compositions containing a mixture of at least two of the following three compounds, jojoba oil, sulfurized jojoba oil, and a phosphite adduct of jojoba oil. The compositions of the present invention provide superior lubricating characteristics, having antifriction characteristics and antiwear and load-carrying properties that are superior to any one compound alone. Improved antifriction characteristics may result in reduced fuel consumption for internal-combustion engines and lowered operating temperatures when used in engines and other industrial machinery. Further, the present invention provides for cutting fluids, precoat oils, metal-working oils, ATFs, gear oils, way lubricants, greases, aviation oils, textile lubricants, hydraulic oils, circulating oils, steam cylinder oils, spindle oils, fire-resistant fluids, and automotive and marine oils that incorporate the inventive lubricant base as the active lubricating agent.

    Best Mode for Carrying Out the Invention



    [0007] As noted above, the present invention comprises a lubricant base and a lubricating composition with anti­friction properties, including antiwear and load-carrying properties, consisting of a lubricant base and a base fluid. The lubricant base comprises a mixture of two or three of the ingredients selected from the group consist­ing of jojoba oil, a phosphite adduct of jojoba oil, and sulfurized jojoba oil. The amounts of ingredients used in the compositions of this invention are based upon the final lubricating composition. The lubricant base can comprise about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) sulfurized jojoba oil. Alternatively, the lubricant base can comprise about 0.1% to about 20% (w/w) jojoba oil, about 0.1% to about 5% (w/w) sulfurized jojoba oil, and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil. Another lubri­cant base combination can comprise about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil. The lubricant base must contain a mixture of at least two of the three ingre­dients selected from the group consisting of jojoba oil, a phosphite adduct of jojoba oil, and a sulfurized jojoba oil, and possibly all three of these ingredients.

    [0008] The lubricant base is mixed with a base fluid to make a lubricating composition with antifriction properties, including antiwear and load-carrying proper­ties. Examples of lubricating compositions include cutting fluids, precoat oils, metal-working oils, ATFs, gear oils, way lubricants, greases, aviation oils, textile lubricants, hydraulic oils, circulating oils, steam cylinder oils, spindle oils, fire-resistant fluids, and automotive and marine oils. Examples of base fluids include hydrocarbon oil; synthetic hydrocarbon; an ester-­based lubricant; a mineral oil; a mixture of a mineral oil and an ester-based lubricant; a mixture of mineral oil, synthetic hydrocarbon, and an ester-based lubricant; a mineral oil-based grease; and a synthetic hydrocarbon-­based grease. Specifically, the base fluids are:

    a. mineral oils, such as paraffinic neutral 100˝, furfural-refined paraffinic oil, solvent-refined naph­thenic oil, and solvent-refined aromatic oil;

    b. synthetic hydrocarbon oils, such as hydrogenated or partially hydrogenated polydecene and other olefins, hydrogenated hexene oligomer, hydrogenated octene oligomer, hydrogenated decene oligomer, hydrogenated C₆₋₁₀ oligomer, and hydrogenated C₈₋₁₀ oligomer;

    c. ester fluids, such as pentaerythritol esters having the structures:

    wherein R is C₄H₉, C₆H₁₃, C₈H₁₇, or mixtures thereof,
    esters of trimethylolpropane and dipentaerythritol of the structures:

    wherein R is defined as above,
    di-2-ethylhexyladipate, di-2-ethylhexylsebacate, didecyl­adipate, and didecylsebacate;

    d. dialkylbenzenes, such as didocecylbenzene;

    e. polyglycols, such as UCON fluids, polypropylene­glycols of 1000 to 3000 molecular weight and polyethylene­glycols of 1000 to 3000 molecular weight;

    f. alkylaromatics; and

    g. dicarboxylic acids.



    [0009] Jojoba oil has the following structural formula:

    CH₃(CH₂)₇CH = CH(CH₂)j-

    -O-(CH₂)kCH = CH(CH₂)₇CH₃

    wherein j = 7, 9, 11 or 13
    k = 6, 8, 10 or 12

    [0010] While other sulfurized jojoba oils may be used in the present invention, a preferred sulfurized jojoba oil is the product of a reaction of jojoba oil and 10% to 20% sulfur to yield the following: n = 1-3
    A-Sn-A and

    and mixtures of both
    wherein A refers to the structure of jojoba oil.

    [0011] While other phosphite adducts of jojoba oil may be used in the present invention, a preferred phosphite adduct of jojoba oil is formed by the reaction of jojoba oil and a compound of the formula:

    (RO)₂-

    -H

    wherein R = H, C₁₋₁₂ alkyl, C₁₋₁₂ aryl, C₁₋₁₂ alkaryl, C₁₋₁₂ aralkyl, and cyclo C₁₋₁₂ alkyl. Preferably, R = C₄₋₈ alkyl, C₄₋₈ alkaryl, C₄₋₈ aralkyl, and cyclo C₄₋₈ alkyl. Most preferably, R is n-butyl.

    [0012] As may be seen from its structural formula, jojoba oil has two carbon-carbon double bonds. Accord­ingly, the phosphite adduct can be a diadduct or a mono­adduct of the jojoba oil. There are thus four examples of the phosphite adduct of jojoba oil are when R is butyl as follows:

    wherein j and k are defined as above.

    [0013] The present invention is further illustrated by the following examples which following examples are offered as an illustration and not a limitation of the present invention.

    [0014] Examples of the lubricant base and lubricating compositions are provided in the Tables 1 and 2. The attached tables also provide performance results from standard tests, including low-velocity friction appara­tus, the 4-ball wear test, and the Falex test. The proce­dures for each test are as follows.

    4-Ball Tests for Assessing Extreme-Pressure Properties



    [0015] The measurement of friction as related to roll­ing, drawing, and other metal-working operations depends upon the surface of the tool and workpiece and the viscos­ity and chemical makeup of the lubricant, as well as the pressure and temperature developed during processing. The 4-ball wear test machine provides, under controlled testing conditions, a procedure for measuring friction. The machine consists of three balls touching each other and clamped together in a horizontal plane. A fourth ball touches three clamped balls by being positioned between the three and is driven by a motor so that it revolves in contact with the clamped balls. The rotation takes place within a reservoir containing a test lubri­cant. A temperature-measuring device, as well as a heater, provides a method for controlling the temperature of the test fluid. The rotating ball is loaded and then rotated for a specific time at a specific speed. At the conclusion of the test, the scar patterns developed on the balls are measured. Any stains are observed, the diameter of the scar is measured, and the coefficient of friction is calculated by dividing the tangential force by the normal force at the ball surface.

    Low-Velocity Friction Apparatus



    [0016] The low-velocity friction apparatus (LVFA) is used to measure the friction of test lubricants under various loads, temperatures, and sliding speeds. The LVFA consists of a flat steel surface (diameter 1.5 inches) which is attached to a drive shaft and rotated over a stationary, raised, narrow ringed steel surface (area 0.08 inch²). Both surfaces are submerged in the test lubricant. Friction between the steel surfaces is measured as a function of the sliding speed at a lubri­cant temperature of 250°F. The friction between the rubbing surfaces is measured using a torque arm/strain gauge system. The strain gauge output, which is cali­brated to be equal to the coefficient of friction, is fed to the Y-axis of an X-Y plotter. The speed signal from the tachometer-generator is fed to the X-axis.

    Falex Test



    [0017] The Falex test consists of a method for measur­ing the torque and friction developed during rotation of a pin between two stationary V blocks. The pin as well as the V blocks can be made of various materials. The temperature of the lubricant bath into which the pin and V block are placed may also be varied. The load is applied by a ratchet arrangement. Wear measurements made above the transition pressure, that is, the load at which the lubricant film breaks down, can be a useful parameter if carried out under conditions comparable to actual operations.

    [0018] The following Tables 1 and 2 illustrate base fluids, jojoba oil in base fluids, jojoba oil with a dibutyl phosphite adduct plus base fluid, a jojoba oil plus dibutyl phosphite adduct and sulfurized jojoba oil plus base fluid for the LVFA test, the Falex wear test, and the 4-ball wear test. The two tables illustrate the improved lubricating properties of the compositions of the present invention.
    TABLE 1
    Compound Wt.% LVFA, % Reduction in Coefficient of Friction
        Sliding Speed 5 ft./min. Sliding Speed 5 ft./min.
    Base Fluid* 100.0 0 0
    Jojoba Oil 2.0 2 2
    Base Fluid 98.0
    Jojoba Oil 10.0 8 12
    Base Fluid 90.0
    Jojoba Oil 1.0 21 20
    Di-n-butylphosphite Adduct 4.0
    Base Fluid 95.0
    Jojoba Oil 5.0 24 28
    Di-n-butylphosphite Adduct 2.0
    Base Fluid 93.0
    Jojoba Oil 5.0 15 19
    Di-n-butylphosphite Adduct 2.0
    Sulfurized Jojoba Oil 1.0
    Base Fluid 92.0
    *Base Fluid is 100˝ Paraffinic Neutral Mineral Oil
    TABLE 2
      4-Ball Wear Test Results Falex Test
      Wear Scar Diameter Weld Load Lbs. to Fail
    Base Fluid 0.94 120 750
    Base Fluid + 1% Jojoba 0.78 160 -
    Base Fluid + 2% Jojoba 0.75 160 2900
    Base Fluid + 5% Jojoba 0.72 180 -
    Base Fluid + 5% Jojoba 0.68 160 3000
    Base Fluid + 2% Jojoba + 5% Sulfurized Jojoba 0.52 240 4500
    Base Fluid + 2% Jojoba + 0.5% Phosphite Adduct 0.52 220 4500
    Base Fluid + 1% Jojoba + 2% Sulfurized Jojoba + 0.5% Phosphite Adduct 0.45 280 4900
    Base Fluid + 1% Sulfurized Jojoba 0.58 220 3500
    Base Fluid + 2% Sulfurized Jojoba 0.50 230 4200
    Base Fluid + 5% Sulfurized Jojoba 0.51 250 4200
    Base Fluid + 10% Sulfurized Jojoba 0.50 280 4500
    Base Fluid + 0.5% Jojoba Phosphite Adduct 0.50 230 4200
    Base Fluid + 1.5% Jojoba Phosphite Adduct 0.48 250 4200


    [0019] The lubricant base may be added to different base fluids to obtain a composition having a variety of end-use applications. Examples of end-use applications with different base fluids are listed in Table 3.
    TABLE 3
    Application Base Fluid Viscosity SUS @ 100°F
    Auto Engine Oil Mineral Oil and/or Ester Fluid and/or Synthetic Hydrocarbon Oils 100-200
    Metal-Working Lubricant Mineral Oils 100-200
    Gear Lubricant Mineral Oils 300-3000
    Application Base Fluid Viscosity SUS @ 100°F
    Textile Lubricant Polyethyleneglycols Polypropyleneglycols 1000-3000
    Aviation Oils Pentaerithritol Esters and Trimethylolpropane Esters 100-150
    Grease Mineral Oil Synthetic Hydrocarbons 100-2000
    Hydraulic Oils Mineral Oils Synthetic Hydrocarbons 100-300
    Circulating Oils Mineral Oils Synthetic Hydrocarbon 900-3000
    Gas Engine Oils Mineral Oils Synthetic Hydrocarbons 350-600
    Diesel Engine Oils Mineral Oils, Esters and Synthetic Hydrocarbons 600-1000
    ATFs Mineral Oils Synthetic Hydrocarbons 140-300
    Way Lubricants Mineral Oils Synthetic Hydrocarbons 150-1000
    Steam Cylinder Oils Mineral Oils 1800-1900
    Fire-Resistant Fluids Mineral Oil (Water) 400-500
    Spindle Oils Mineral Oils 50-130


    [0020] The principles, preferred embodiments and modes of operation of the invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be constrained as limited to the particular forms disclosed, since these are to be regarded as illustrative rather than restric­tive. Variations and changes may be made by those skilled in this art without departing from the spirit of the invention.


    Claims

    1. A lubricant base constituent comprising a mixture of at least two ingredients selected from the group consisting of jojoba oil, a phosphite adduct of jojoba oil, and a sulfurized jojoba oil.
     
    2. The lubricant base according to claim 1, comprising about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) sulfurized jojoba oil.
     
    3. The lubricant base according to claim 1, comprising about 0.1% to about 20% (w/w) jojoba oil, about 0.1% to about 5% (w/w) sulfurized jojoba oil, and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil.
     
    4. The lubricant base according to claim 1, comprising about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil.
     
    5. The lubricant base according to claim 1 wherein the phosphite adduct of jojoba oil is a mono- or a diadduct of the reaction product of:

    (RO)₂-

    -H

    and jojoba oil, wherein R is selected from the group consist­ing of hydrogen, C₁₋₁₂ alkyl, C₁₋₁₂ aryl, C₁₋₁₂ alkaryl, C₁₋₁₂ aralky], and cyclo C₁₋₁₂ alkyl.
     
    6. The lubricant base according to claim 5 wherein R is butyl.
     
    7. The lubricant base according to claim 5 wherein the point of attachment of the phosphite adduct on the jojoba oil moiety is at a carbon-carbon double bond.
     
    8. The lubricant base according to claim 1 and selected from the group consisting of:

    A-Sx-A, and combinations of both,
    wherein x is 1 to 3 and A is jojoba oil.
     
    9. A lubricating composition with antifriction properties, including antiwear and load-carrying properties, comprising a base fluid and a lubricant base comprising a mixture of at least two ingredients selected from the group consisting of jojoba oil, a phosphite adduct of jojoba oil, and a sulfurized jojoba oil.
     
    10. The lubricating composition according to claim 9 wherein the base fluid is selected from the group consist­ing of a hydrocarbon oil, a synthetic hydrocarbon, an ester-­based lubricant, a mineral oil, a mixture of a mineral oil and an ester-based lubricant, a mixture of mineral oil, synthetic hydrocarbon and ester-based lubricant, a mineral oil-based grease, and a synthetic hydrocarbon-based grease.
     
    11. The lubricating composition according to claim 9 wherein the lubricant base constitutent comprises about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) sulfurized jojoba oil.
     
    12. The lubricating composition according to claim 9 wherein the lubricant base constitutent comprises about 0.1% to to about 20% (w/w) jojoba oil, about 0.1% to about 5% (w/w) sulfurized jojoba oil, and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil.
     
    13. The lubricating composition according to claim 9 wherein the lubricant base constitutent comprises about 0.1% to about 20% (w/w) jojoba oil and about 0.1% to about 5% (w/w) of a phosphite adduct of jojoba oil.
     
    14. The lubricating composition according to claim 9 wherein the phosphite adduct of jojoba oil is a mono- or a di-adduct of the reaction product of:

    (RO)₂-

    -H

    and jojoba oil, wherein R is selected from the group consist­ing of hydrogen, C₁₋₁₂ alkyl, C₁₋₁₂ aryl, C₁₋₁₂ alkaryl, C₁₋₁₂ aralkyl, and cyclo C₁₋₁₂ alkyl.
     
    15. The lubricating composition according to claim 14 wherein R is selected from the group consisting of C₄₋₈ alkyl, C₄₋₈ alkaryl, C₄₋₈ aralkyl, and cyclo C₄₋₈ alkyl.
     
    16. The lubricating composition according to claim 15 wherein R is butyl.
     
    17. The lubricating composition according to claim 14 wherein the point of attachment of the phosphite adduct moiety on the jojoba oil moiety is at a carbon-carbon double bond.
     
    18. A phosphite adduct of jojoba oil being a mono- ­or a di-adduct of the reaction product of:

    (RO)₂-

    -H

    and jojoba oil, wherein R is selected from the group consist­ing of hydrogen, C₁₋₁₂ alkaryl, C₁₋₁₂ aralkyl, and cyclo C₁₋₁₂ alkyl.
     
    19. The phosphite adduct of jojoba oil according to claim 18 wherein R is selected from the group consisting of C₄₋₈ alkaryl, C₄₋₈ aralkyl, and cyclo C₄₋₈ alkyl.
     
    20. The phosphite adduct of jojoba oil according to claim 18 wherein the point of attachment of the phosphite adduct moiety on the jojoba oil moiety is at a carbon-carbon double bond.