(1) Publication number:

0 317 957 A2

12

EUROPEAN PATENT APPLICATION

21 Application number: 88119419.5

(5) Int. Cl.4: A61K 47/00 , A61K 39/395

② Date of filing: 22.11.88

Priority: 23.11.87 US 124313

(43) Date of publication of application: 31.05.89 Bulletin 89/22

Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

Applicant: Bristol-Myers Company 345 Park Avenue New York New York 10154(US)

Inventor: Senter, Peter D.
211 Summit Avenue East, S421
Seattle Washington(US)

Representative: Kinzebach, Werner, Dr. Patentanwälte Reitstötter, Kinzebach und Partner Sternwartstrasse 4 Postfach 86 06 49 D-8000 München 86(DE)

Drug-monoclonal antibody conjugates.

There is disclosed a drug-monoclonal antibody conjugate wherein the antibody is linked to a antitumor drug using disulfide benzyl carbamate or carbonate as the linker. The conjugate is used for delivering an active antitumor drug to the site of tumor cells in a mammal by administering the drug-monoclonal antibody conjugate.

EP 0 317 957 A2

DRUG-MONOCLONAL ANTIBODY CONJUGATES

BACKGROUND OF THE INVENTION

This invention relates to anti-tumor drug-monoclonal antibody conjugates and their use for the delivery of cytotoxic agents to tumor cells.

Reference is made to the European patent application of the same applicant (inventor Peter D. Senter filed on the same date as the present application and entitled "Anti-Tumor Prodrugs"; internal file number M/29 241). The disclosure of said application is incorporated herein in its entirety.

The use of tumor-associated monoclonal antibodies as carriers for cytotoxic agents has received considerable attention in the past several years (Moller, 1982). The objective of much of this work has been to improve the efficacy of anticancer drugs while diminishing the undesired and oftentimes toxic side-effects. Investigations have been undertaken or proposed to accomplish this objective by use of antibody-drug conjugates in which the antibody serves to deliver the anticancer drug to the tumor.

In order for this approach to be effective, it is necessary that the antibody be highly tumor selective and that the drug be delivered in an active, cytotoxic form. Drugs such as methotrexate (Endo, 1987), daunomycin (Gallego et al., 1984), mitomycin C (MMC) (Ohkawa et al., 1986) and vinca alkaloids (Rowland et al., 1986) have been attached to antibodies and the derived conjugates have been investigated for antitumor activities. In many cases, the sporatic activities of such conjugates can be attributed to the diminished activity of the drug when covalently attached to the antibody. Many examples exist in the art which illustrate linkage of antibodies to drugs by means of relatively stable chemical bonds which undergo slow non-specific release e.g. hydrolysis.

Additional problems may arise when the drug is released from the antibody, however, in a chemically modified form. Although the drug may now have access to its site of activity, the chemically modified drug can be significantly less potent.

Because of these considerations, there is a need for the development of new linking strategies, i.e. new drug-antibody conjugates, that can release chemically unmodified drug from the antibody in such a way that the drug can exert its maximal level of activity. Studies have shown that prodrug compounds that are benzyl carbamate disulfide derivatives of mitomycin C(MMC), mitomycin A (MMA), and daunomycin release chemically unmodified drug when the disulfide bond is reduced (Senter, cross-referenced patent application; see Fig. 1).

I have conceived that a prodrug strategy that relies on disulfide bond reduction for drug release may be ideally suited for the delivery of drugs to tumors with tumor associated antibodies since many solid tumors have been shown to exist in oxygen-deficient environments and possess enhanced levels of reducing agents such as glutathione, NADH and NADPH (Sartorelli, 1986). These reducing agents can effect the release of free drug from benzyl carbamate disulfide drug conjugates by reduction of the disulfide bond.

The use of benzyl carbamate disulfide linkers for drug-antibody conjugates may also be of use for the intracellular release of drugs in cases where the antibody is taken up inside the cell by receptor-mediated endocytosis. Intracellular thiols such as glutathione could then reduce the disulfide-linked conjugates.

SUMMARY OF THE INVENTION

This invention is a drug-antibody conjugate wherein the antibody and the drug are linked using disulfide benzyl carbamate, e.g. a MMC-antibody conjugate, or disulfide benzyl carbonate, e.g.an etoposide-antibody conjugate.

In another aspect, this invention is a method for delivering to the site of tumor cells in a mammal an active antitumor drug by administering to the mammal the drug-monoclonal antibody conjugate according to this invention.

It has been demonstrated in the cross-referenced application that disulfide-bond reduction initiates a drug fragmentation process whereby the parent, i.e. unmodified, drug is released in an active, cytotoxic form. Furthermore, the rate of drug release can be controlled by sterically hindering the disulfide. Using the chemistry described in the cross-referenced application, there was no significant loss in drug activity. Substantially the same methodology has been found to be useful for the attachment of amine group-

15

5

10

25

40

45

50

containing drugs, and equivalent hydroxyl group-containing drugs and protein toxins, to antibodies for site-directed immunotherapy.

5 Description of the Figures

Fig. 1 illustrates the pathway for elimination of MMC from its corresponding prodrug.

Fig. 2 illustrates the synthesis of a representative drug-monoclonal antibody conjugate according to this invention.

Fig. 3 illustrates HPLC comparative analytical results derivatives as prodrugs according to this invention.

DETAILED DESCRIPTION OF THE INVENTION

15

10

This invention is an antitumor drug-monoclonal antibody conjugate having the general structural formula

25

wherein:

D is a antitumor drug moiety having pendant to the backbone thereof a chemically reactive functional group, by means of which the drug backbone is bonded to the disulfide benzyloxycarbonyl group, derived from the group consisting of a primary amino group represented by the formula R¹NH-, a secondary amino group represented by the formula R¹C-;

 R^1 is the backbone of said drug moiety when D is derived from the group consisting of a primary amino group, a secondary amino group, and an alcohol group wherein, in the case of a secondary amino group, when R^1 and R^2 are independent;

R², when R¹ and R² are independent, is selected from unsubstituted and substituted, and branched and straight-chain alkyl groups having 1-10 carbon atoms wherein the substituent is selected from 1 to 3 alkoxy groups having 1 to 3 carbon atoms and 1 to 3 halo groups; unsubstituted and substituted phenyl wherein the substituent is selected from 1 to 3 alkyl groups having 1 to 3 carbon atoms, 1 to 3 alkoxy groups having 1 to 3 carbon atoms, and 1 to 3 halo groups; and unsubstituted and substituted phenylalkyl wherein the phenyl moiety, when substituted, is substituted as defined above in the case of substituted phenyl and the alkyl moiety is a polyalkylene group having 1 to 3 carbon atoms;

 R^1 and R^2 , when taken together in a functional group derived from a secondary amine, represent the backbone of the drug moiety, D, having a divalent group chemically bonded to the nitrogen atom constituting said secondary amino group;

R3 and R4, independently, are selected from H and unsubstituted and substituted, and branched and straight-chain alkyl groups having 1-10 carbon atoms wherein the substituent is selected from 1 to 3 alkoxy groups having 1 to 3 carbon atoms and 1 to 3 halo groups; unsubstituted and substituted phenyl wherein the substituent is selected from 1 to 3 alkyl groups having 1 to 3 carbon atoms, 1 to 3 alkoxy groups having 1 to 3 carbon atoms, and 1 to 3 halo groups; and unsubstituted and substituted phenylalkyl wherein the phenyl moiety, when substituted, is substituted as defined above in the case of substituted phenyl and the alkyl moiety is a polyalkylene group having 1 to 3 carbon atoms;

m is an integer selected from 1 to 10; and

Ab represents a monoclonal antibody having a pendent amino group; and the substitution position of the group,

-S-S-(CR3R4)_m-

ö

C -NHAb

on the phenyl ring of the benzylcarbamate moiety is selected from the ortho- and para-positions.

Representative of said amino group-containing drugs are mitomycin-C, mitomycin-A, daunomycin, adriamycin, aminopterin, actinomycin, bleomycin, and derivatives thereof; and, representative of said alcohol group-containing drugs is etoposide.

The abbreviations used are as follows: MMC, mitomycin C; MMA, mitomycin A; DAU, daunomycin; PBS, phosphate buffered saline; HPLC, high pressure liquid chromatography; DDT, dithiothreitol; and Ab, monoclonal antibody.

In another aspect this invention is a method for delivering to the site of tumor cells in a mammal having enhanced levels of endogenous reducing agents including at least one member of the group of NADH, NADPH and glutathione, an active antitumor drug having pendant to the backbone thereof a chemically reactive functional group selected from the group consisting of a primary amino group represented by the formula, R¹NH-, a secondary amino group represented by the formula R¹R²N-, and a alcohol group represented by the formula R¹O wherein R¹ and R² are as defined above, comprising the steps of:

- (a) administering to the mammal an antitumor-effective amount of an antitumor drug-monoclonal antibody conjugate having formula I,
- (b) contacting the antitumor drug-monoclonal antibody conjugate with endogenous reducing conditions, and

15

20

(c) permitting the antitumor drug-monoclonal antibody conjugate to undergo reductive cleavage to release free drug from the conjugate.

The conjugate according to this invention may be provided for use according to the method of this invention to treat a host, particularly a mammalian host such as, for example, an experimental animal host, affected by a tumor, as a pharmaceutical composition. The pharmaceutical composition comprises a antitumor effective amount, i.e. a tumor growth-inhibiting amount, of the conjugate according to this invention and a pharmaceutically acceptable carrier and optionally, conventional pharmaceutically acceptable excipients and adjuvants.

The antibody component of the immunoconjugate of the invention includes any antibody which binds specifically to a tumor-associated antigen. Examples of such antibodies include, but are not limited to, those which bind specifically to antigens found on carcinomas, melanomas, lymphomas and bone and soft tissue sarcomas as well as other tumors. Antibodies that remain bound to the cell surface for extended periods or that are internalized are preferred. These antibodies may be polyclonal or preferably, monoclonal and can be produced using techniques well established in the art [see, e.g., R. A. DeWeger et al., "Eradication Of Murine Lymphoma And Melanoma Cells By Chlorambucil-Antibody Complexes, Immunological Rev., 62, pp. 29-45 (1982) (tumor-specific polyclonal antibodies produced and used in conjugates) and M. Yeh et al., "Cell Surface Antigens Of Human Melanoma Identified By Monoclonal Antibodies," Proc. Natl. Acad. Sci., 76, p. 2927 (1979) and J. P. Brown et al. "Structural Characterization Of Human Melanoma-Associated Antigen p97 With Monoclonal Antibodies," J. Immunol., 127 (no.2), pp. 539-546 (1981) (tumor-specific monoclonal antibodies produced)].

The pharmaceutical carrier ordinarily will be liquid to provide liquid compositions although liquid compositions would be expected to be more preferred because solid compositions would be expected to have lower absorbtion from the GI tract. The conjugates according to the invention may be provided as sterile soluble conjugates or compositions which can be dissolved or suspended in sterile water or other liquid medium to provide solutions and suspensions and emulsions for oral administration or for parenteral administration. Examples of liquid carriers suitable for oral administration include water, alcohol, poly-propylene glycol, polyethylene glycol and mixtures of two or more of the above. Examples of liquid carriers suitable for parenteral use include water-for-injection, physiological saline, and other suitable sterile injuection media. Suitable buffers for use with the liquid carrier to provide, generally, a suitable buffered isotonic solution include trisodium orthophosphate, sodium bicarbonate, sodium citrate, N-methylglucamine, L(+)-lysine, and L(+)-arginine to name but a few representative buffering agents.

The pharmaceutical composition will contain an amount of at least one conjugate of Formula I or mixture of one or more of said compounds of mixture thereof with another antitumor agent. The antitumor effective amount of compound of Formula I may be varied or adjusted widely depending upon the particular application, the form, the potency of the particular conjugate used, and the desired concentration of conjugate in the composition. Generally, the amount of active component will range between about 0.5-90% by weight based on total weight of composition.

In therapeutic use for treating a mammalian host, for example an experimental animal host, affected by a tumor, malignant or benign, the conjugates of this invention will be administered in an amount effective to inhibit the growth of the tumor, that is, a tumor growth-inhibiting amount will be in the range of about 0.1 to about 15 mg/kg of animal body weight/day. It is to be understood that the actual preferred dosage of

conjugate will vary widely depending upon the requirements of the animal being treated, the composition being used, and the route of administration. Many factors that modify the action of the anti-neoplastic agent will be taken into account by one skilled in the art to which this invention pertains including, for example, age, body weight and sex of the animal host; diet; time of administration; rate of excretion; condition of the host; severity of the disease; and the like. Administration may be carried out simultaneously or periodically within the maximum tolerated dose. Optimal administration (or application) rates for a given set of conditions may be readily ascertained by those skilled in the art using conventional dosage determination tests.

The following examples are illustrative of the scope and utility of this invention and are not to be construed as limiting the scope of the invention. Unless otherwise indicated, all parts and percentages are by weight and temperatures are in degrees Celsius. The compounds and conjugates are numbered with reference to Figs. 1 & 2.

EXPERIMENTAL SECTION

15

Protein A purified monoclonal antibody designated L6 (IgG2a), which reacts to a glycolipid antigen on human lung carcinoma (Hellstrom et al., 1986) was provided by Drs. K.E. and I. Hellstrom (Oncogen, Seattle). The human tumor cell line, A549 was provided by Dr. J. Catino (Bristol-Myers Co., Wallingford).

Conjugate Binding Assay Immunoconjugates were serially diluted into growth media and 100 μ I aliquots were incubated at 4 °C with 1x10⁶ cells in 100 μ I growth media. After one hour, cells were washed twice and resuspended in 100 μ I medium containing 1:40 diluted goat anti-mouse IgG-FITC (Boehringer-Mannheim) for 20 minutes at 4 °C. Cells were washed and analyzed using a Coulter Epics V fluorescence cell analyzer. For each experiment, similarly diluted MAb was used as a non-conjugated positive binding control.

In Vitro Cytotoxicity Assay. A549 cells in 0.4 ml of McCoys complete medium were plated at 1000 cells/well in 12-well tissue culture plates and then allowed to incubate overnight at 37 °C. The cells were washed with RPMI media and conjugate in 0.4 ml of McCoys media were added. At periodic intervals (1, 3, 6 and 24 hr.), the cells were washed with RPMI to remove any unbound conjugate or drug, fresh McCoys media was added, and incubation was continued at 37 °C for a total of 24 hr. The colonies were stained with crystal violet and were counted with a Optimax 40.10 Image Analyzer.

General Procedure - Preparation of 1 and 2. A solution of 137 mg (0.55 mmol) of para- or orthomercaptobenzyl alcohol, * respectively, and 0.044 ml of pyridine (0.55 mmol) in 1 ml of dry dioxane was added over a 3 min period to a stirred solution of 0.032 ml (0.275 mmol) of trichloromethylchloroformate in 0.5 ml of dioxane. After stirring for 15 min., a solution of MMC (92 mg, 0.275 mmol) and triethylamine (0.153 ml, 1.1 mmol) in 4 ml of dioxane was rapidly added. After 5 min., the solvents were evaporated, and a solution of the residue in CH₂Cl₂ was extracted with satd. NaHCO₃, NaCl and dried (MgSO₄). The product was purified by flash chromatography on a 2x20cm SiO₂ column by first separating non-polar material with 30% ethyl acetate in petroleum ether (300ml), and then eluting the carbamate with 5% methanol in chloroform. The product, 1 and 2 respectively, was obtained as an amorphous blue solid which was dissolved in 3 ml of CH₂Cl₂ and added dropwise to 30 ml of pet ether. In the case of each of 1 and 2 respectively, a solid product was obtained having the following properties:

MMC Benzyl Carbamate Disulfide 1: yield 92% blue powder; mp 99° (dec); 1 H-NMR (pyr-d₅) δ 1.95 (s,3H,CH₃), 3.15 (s,3H,OCH₃), 3.4-4.2 (m,6H), 4.6-5.0 (m,2H), 5.20 (s,2H,ArCH₂), 5.6 (dd,1H), 6.9-7.8 (m,7H,ArH), 8.35-8.5 (m,1H,ArH); IR (KBr) ν 340, 2920, 1890, 1600, 1552 cm⁻¹; uv/vis (CH₃OH) λ max 356 nm (log ϵ = 4.31).

MMC Benzyl Carbamate Disulfide 2: yield 63% blue powder; mp 96-98 °C; ¹H-NMR (pyr-d₅) δ 1.90 (s,3H,CH₃), 3.07 (s,3H,OCH₃), 3.4-3.55 (m,2H), 3.8-4.05 (m,3H), 4.6-5.0 (m,3H), 4.85 (s,3H), 5.35-5.70 (m,3H), 6.8-7.7 (m,7H,ArH), 8.35 (d,1H,ArH); IR (KBr) ν 3400, 1692, 1600, 1552 cm⁻¹; uv/vis (CH₃OH) λ max 365 nm (log ϵ = 4.32).

Preparation of Hydroxysuccinimide Ester 6. To a solution of 125 mg (0.205 mmol) of 1 in 5 ml of acetone was added 18 μ l (0.205 mmol) of 3-mercaptopropionic acid. An additional 18 μ l of 3-mercaptopropionic acid was added after 1h and the reaction was complete after a total of 1-1/2h. The solvent was removed under vacuum and the residue was purified by flash chromatography (SiO₂) using 10% methanol in methylene chloride as eluant. The acid (5) was used in the next step without further purification.

^{*} para- or ortho- dithiopyridyl- or 3-nitrophenylbenzyl alcohol

A solution of the acid (5, 0.186 mmole), N-hydroxysuccinimide (43 mg, 0.372 mmol) and dicyclohexyl carbodiimide (77 mg, 0.372 mmol) in 2 ml of dry DMF was stirred for 3 hrs. The precipitate was filtered and washed with ethyl acetate. After removal of the solvents under vacuum, the residue was purified by preparative TLC (SiO₂) using 10% isopropanaol in methylene chloride as eluant. The hydroxysucciniimide ester (6) was obtained as a fine blue solid (26 mg). 1 H-NMR (360 MHz, CDCl₃) δ 1.75 (s,3H,CH₃), 2.85 (s,4H, succinimide CH₂), 2.8-3.1 (m,4H), 3.81 (s,3H,OCH₃), 3.20 (m,1H), 3.27-3.55 (m,3H), 3.70 (q,1H), 4.0 (br s, 1H), 4.33 (t,1H), 4.40 (d,1H), 4.6-5.4 (m,6H), 7.4 (g,4H,ArH).

Preparation of Hydroxysuccinimide Ester 8. The hydroxysuccinimide ester 8 was prepared from the pyridyl disulfide 1 and 2-mercapto-2-methyl propionic acid as described for the synthesis of 6. A fine blue solid (55 mg) was obtained starting with 100 mg of 1. ¹H-NMR (220 MHz,CDCl₃) δ 1.68 (s,6H, 2CH₃), 1.77 (s,3H,CH₃), 2.83 s,4H,succinimide CH₂), 3.20 (s,3H,OCH₃), 3.25-3.75 (m,6H), 4.2-5.3 (m,6H), 7.40 (g,4H,ArH).

Preparation of Hydroxysuccinimide Ester 10. The hydroxysuccinimide ester 10 was prepared from the pyridyl disulfide $\frac{1}{2}$ and 2-mercapto-2-methyl propionic acid as described for the synthesis of 6. The product, 10, was obtained as a blue solid (10 mg) starting with 71 mg of 2. 1 H-NMR (220 MHz, CDCl₃) δ 1.53 (s,3H,CH₃), 1.61 (s,3H,CH₃), 1.78 (s,3H,CH₃), 2,90 (s,4H, succinimide CH₂), 3.20 (s,3H,OCH₃), 3.4-3.8 (m,6H), 4.21 (t,1H), 4.40 (d,1H), 4.50 (br s, 2H), 4.90 (q,1H), 5.2-5.4 (m,4H), 7.2-7.4 (m,2H,ArH), 7.80 (d,2H,ArH).

Preparation of Drug-antibody Conjugates 11-13. Solutions of the hydroxysuccinimide esters, 6, 8, 10, (2.9- $\overline{3.7}$ mM) in acetonitrile were added to L6 antibody (2.61 mg/ml) in 1.5 ml of 50 mM borate buffer (pH 8.5) containing 100 mM NaCl at 30 °C. The hydroxysuccinimide esters 8 and 10 (20-fold total molar excess) were added in four equal portions at 10 minute intervals while 6 (10-fold total molar excess) was added in two equal portions at 0 and 10 minutes. After 40 minutes, the precipitate was removed by centrifugation and the supernatants were dialyzed overnight against PBS at 4 °C. The dialysates were gently rotated with about 0.5g SM-2 polystyrene beads (BioRad) for 10 min. at 4 °C and then sterile filtered to remove any drug that was not covalently attached to the antibody. HPLC analyses (described below) of the conjugates indicated that no free drug or free-drug derivatives were present. The composition of the conjugates thus obtained were determined by the drug absorbance at 365 nm (ϵ = 21086) and the antibody absorbance at 280 nm (Abs 280 nm, 1 mg/ml = 1.4) and were as follows: 11, 0.86 mg/ml Ab (1.29 mg total), drug/Ab = 4.38/1; 12 0.70 mg/ml Ab (1.05 mg total), drug/Ab = 5.25/1.

An anti-tumor drug-antibody conjugate wherein the drug component is the alcohol group containing drug etoposide, whereby the etoposide is bonded to the disulfide benzyl moiety by a carbonate linkage rather than a carbamate linkage, is prepared by following substantially the foregoing procedures by first providing an etoposide benzyl carbonate disulfide by substituting etoposide (162 mg, 0.275 mmol) for MMC and then using the resulting etoposide benzyl carbonate disulfide in the place of the MMC benzyl carbamate disulfide in the remaining steps of the conjugate preparation.

Of course, MMA, daunomycin, adriamycin and the other amino group containing drugs can be used in place of MMC in the foregoing examples.

Stability of Conjugates. The conjugates 11-13 were diluted with an equal volume of growth media containing RPMI and 10% fetal calf serum. The solutions were incubated at 37 °C. Portions (0.25 ml) were applied to protein-A columns (0.25 ml) at periodic intervals and the columns were washed with PBS to remove any unbound material. The bound conjugates were eluted with 100 mM acetic acid containing 150 mM NaCl (0.5 ml) and quickly neutralized. Spectrophotometric analysis was used to determine the composition of the conjugates.

REACTION OF CONJUGATES WITH DITHIOTHREITOL

To a solution of the drug-antibody conjugates, 11-13 in PBS, was added dithiothreitol (final conc. 0.2 mM). After 19 hrs at room temperature, aliquots were analyzed by HPLC, using a 10 cm Whatman Partasil 5 ODS-3 reverse phase (C-18) column and the following gradient system: 30% CH₃OH in 0.1% acetate (pH 6) to 95% CH₃OH in 6 min; continued for 8 min; flow rate 2 ml/min; monitored at 340 nm.

55

50

40

Preparation of Conjugates. The hydroxysuccinimide esters 6, 8 and 10 were prepared from mitomycin C benzylcarbamate pyridyl disulfides 1 and 2 in a two-step process involving disulfide exchange with a thiol-substituted acid followed by esterification of the acid with N-hydroxysuccinimide (Fig. 2). Reaction of the hydroxysuccinimide esters with the antibody L6 at pH 8.5 resulted in the formation of antibody-MMC conjugates 11-13. The conjugates were free of any non-covalently attached MMC and were characterized by HPLC and uv/vis spectroscopy. It was possible to attach as many as six MMC molecules to L6 using the chemistry described. Presumably, amino groups on the antibody displace the hydroxysuccinimide esters on the activated drugs and amide bonds are formed between the antibody and the drug derivatives.

Release of Mitomycin C from the Conjugates. The ability of benzyl carbamate disulfide drug derivatives to undergo drug elimination upon disulfide bond reduction has been studied in some detail (Senter supra). The presumed mechanism for the fragmentation reaction of disulfide bond in the conjugates, 11-13, would lead to the release of MMC.

The L6-MMC conjugate, $\underline{11}$ was reduced with excess dithiothreitol, and the reaction was monitored by HPLC. It was observed that \underline{MMC} release occurred, as evidenced by comparison to an authentic sample (Fig. 3). In the absence of a reducing agent, the conjugates in PBS were completely stable under the reaction conditions.

It was of interest to determine whether steric hindrance of the disulfide bond would have an effect on the stability of the drug antibody conjugates. It has previously been reported that ricin-A chain immunotoxins with hindered disulfides were more stable in vitro than similar non-hindered immunotoxins (Worrell, et al., 1986).

The conjugates were incubated at 37 °C in 1:1 solutions of PBS and growth media containing RPMI and 10% fetal calf serum. The amount of drug that remained antibody bound was determined after the conjugates were re-isolated on a protein-A affinity column. After 24h, it was found that 11, 12 and 13 released 40%, 21% and 9% of the bound drug respectively. Therefore, increased conjugate stability can be achieved by increasing the degree to which the disulfide bond is hindered.

Binding and In Vitro Cytotoxicities of the Conjugates. The conjugates were tested for their ability to bind to receptors on the A549 lung carcinoma cell line. Fluorescence activated cell sorting indicated that all three conjugates bound to the cells just as well as the unmodified antibody. The chemistry used for drug attachment did not apparently affect the avidity of the antibody.

The cytotoxic activities of the conjugates on the A549 cell line was determined over a range of exposure times (Table 1). The least hindered conjugate, 11, displayed significant growth inhibition after only a 3h exposure, while the more hindered conjugates, 12 and 13, took considerably longer before a cytotoxic effect was observed. After 24 hours all three conjugates were highly cytotoxic. The IC-50 values obtained for conjugates 11, 12 and 13 after a 24 hour exposure were 55nM, 64nM, and 59nM respectively. The IC-50 value for free MMC after a 24 hour exposure was 50nM. Therefore, the conjugation chemistry preserves the activity of the drug.

REFERENCES

40

45

50

20

Endo, N., Kato, Y., Takeda, Y., Saito, M., Umemoto, N., Kishida, K., and Hara, T. In vitro cytotoxicity of a human serum-albumin-mediated conjugate of methotrexate with anti-MM46 monoclonal antibody. Cancer Research 47, 1076-1080 (1987).

Gallego, J., Price, M.R., and Baldwin, R.W. Preparation of four daunomycin-monoclonal antibody 791T/36 conjugates with antitumor activity. Int. J. Cancer, 33, 737-744 (1984).

Hellstrom, I., Beaumier, P.L. and Helstrom, K.E. Antitumor effects of Lb, and IgG2A antibody that reacts with most human carcinomas Proc. Natl. Acad. Sci. 83, 7059-7063 (1986).

Moller, G. (Ed): Antibody carriers of drugs and toxins in tumor therapy. Immunol. Rev., 62 (1982). .

Ohkawa, K., Tsukada, Y., Hibi, N., Umemoto, N.,, and Hara, T. Selective in vitro and invivo growth inhibition against human yolk sac tumor cell lines by purified antibody against human α -fetoprotein conjugated with mitomycin C via human serum albumin. Cancer Immunol. Immunother. 23, 81-86 (1986).

Rowland, G.F., Simmonds, R.G., Gore, V.A., Marsden, C.H. and Smith, W. Drug localisation and growth inhibition studies of vindesine-monoclonal anti-CEA conjugates in a human tumor xenograft. Cancer Immunol. Immunother. 21, 183-187 (1986).

Sartorelli, A.C. The role of mitomycin antibiotics in the chemotherapy of solid tumors. Biochem. Pharm. 35, 67-69 (1986).

Worrell, N.R., Cumber, A.J., Parnell, G.D., Mirza, A., Forrester, J.A. and Ross, W.C.J. Effect of linkage variation on pharmacokinetics of ricin A chain-antibody conjugates in normal rats. Anti-cancer Drug Design 1, 179-188, (1986).

TABLE 1

Percent inhibition of A549 colony formation after exposure to conjugates $\underline{11-13}$ at $10\mu g/ml$ L6. The effect of exposure time.

Conjugate

% inhibition of colony

formation

	(10µg/ml antibody	lh	3h	6h	24h
30	11	15%	45%	70%	95%
	12	12%	25%	0%	95%
35	13	10%	10%	0%	95%

Claims

40

45

50

5

10

15

20

25

1. An anti-tumor drug-monoclonal antibody conjugate having the general structural formula:

wherein:

D is a anti-tumor drug moiety having pendant to the backbone thereof a chemically reactive functional group, by means of which the drug backbone is bonded to the disulfide benzyloxycarbonyl group, derived from the group consisting of a primary amino group represented by the formula R¹NH-, a secondary amino group represented by the formula R¹O-; R¹ is the backbone of said drug moiety when D is derived from the group consisting of a primary amino

group, a secondary amino group, and an alcohol group wherein, in the case of a secondary amino group, when R¹ and R² are independent.

R², when R¹ and R² are independent, is selected from unsubstituted and substituted and branched and straight-chain alkyl groups having 1-10 carbon atoms wherein the substituent is selected from 1 to 3 alkoxy groups having 1 to 3 carbon atoms and 1 to 3 halo groups; unsubstituted and substituted phenyl wherein the substituent is selected from 1 to 3 alkyl groups having 1 to 3 carbon atoms, 1 to 3 alkoxy groups having 1 to 3 carbon atoms, and 1 to 3 halo groups; and unsubstituted and substituted phenalkyl wherein the phenyl moiety, when substituted, as substituted as defined above in the case of substituted phenyl and the alkyl moiety is a polyakylene group having 1 to 3 carbon atoms;

R¹ and R², when taken together in a functional group derived from a secondary amine, represent the backbone of the drug moiety, D, having a divalent group chemically bonded to the nitrogen atom constituting said secondary amino group; and

R³ and R⁴, independently, are selected from H and unsubstituted and substituted, and branched and straight-chain alkyl groups having 1-10 carbon atoms wherein the substituent is selected from 1 to 3 alkoxy groups having 1 to 3 carbon atoms and 1 to 3 halo groups; unsubstituted and substituted phenyl wherein the substituent is selected from 1 to 3 alkyl groups having 1 to 3 carbon atoms, 1 to 3 alkoxy groups having 1 to 3 carbon atoms, and 1 to 3 halo groups; and unsubstituted and substituted phenylalkyl wherein the phenyl moiety, when substituted, is substituted as defined above in the case of substituted phenyl and the alkyl moiety is a polyalkylene group having 1 to 3 carbon atoms;

m is an integer selected from 1 and 10; and

Ab represents a monoclonal antibody having a pendent amino group; and the orientation of the group,

-S-S-(CR³R⁴)_m- C -NHAb, on the phenyl ring of the benzylcarbamate moiety is selected from the ortho- and para-positions.

2. A compound according to claim 1 wherein the drug moiety, D, is a member selected from the group consisting of primary amine-containing and secondary amine-containing drugs.

3. A compound according to claim 2 wherein the drug moiety, D, is a member selected from mitomycin-C, mitomycin-A, daunomycin, adriamycin, aminopterin, actinomycin, bleomycin, and derivatives thereof.

4. A compound according to claim 1 wherein the drug moiety, D, is an alcohol group-containing drug.

5. A compound according to claim 4 wherein the drug moiety, D, is etoposide.

6. A process for preparing the conjugates of claims 1 to 5 which comprises reacting para- or orthomercaptobenzyl alcohol with PySCl, wherein Py is pyridyl, preferably 2-pyridyl, or 3-nitrophenyl,

reacting the so obtained compound with trichloromethylchloroformate in an inert organic solvent in the presence of a base, preferably pyridine,

reacting the so obtained compound with an antitumor drug D, wherein D is as defined in claim 1 in an inert organic solvent and preferably in the presence of a base, to obtain a compound of the general formula

reacting the so obtained compound with a mercaptocarboxylic acid of the general formula:

HS-(CR3R4)m-CO2H

30

40

50

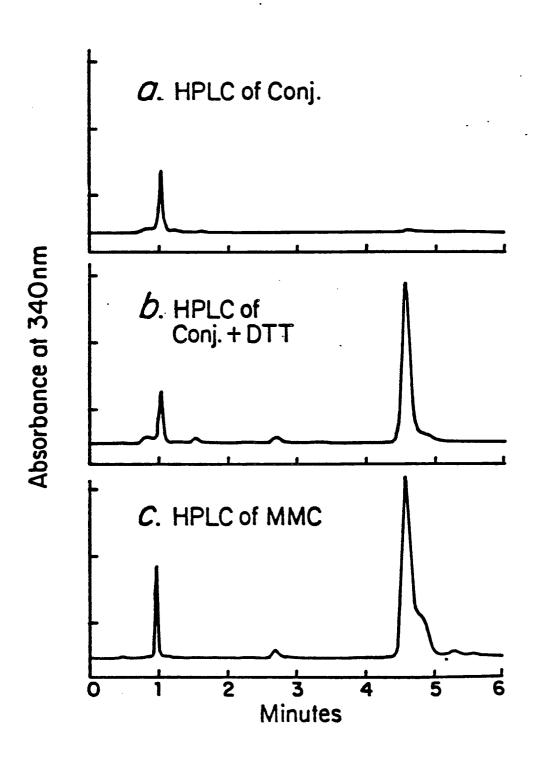
55

wherein R³, R⁴ and m are as defined in claim 1, in an inert organic solvent to obtain a compound of the general formula:

wherein R is hydrogen,

reacting the so obtained carboxylic acid with N-hydroxysuccinimide and a condensation agent, preferably

dicyclohexyl carbodiimide, in an inert organic solvent to obtain the hydroxysuccinimide ester of the above general formula, wherein R is


and reacting the so obtained compound with an antibody $Ab-NH_2$, wherein Ab is as defined in claim 1, in an inert reaction medium.

- 7. A pharmaceutical composition comprising at least one antibody conjugate of anyone of claims 1 to 5 and a pharmaceutically acceptable carrier and optionally, conventional pharmaceutically acceptable excipients and adjuvants.
- 8. A process for preparing the composition of claim 7 which comprises incorporating at least one compound of claims 1 to 5 into a pharmaceutically acceptable carrier and optionally, conventional pharmaceutically acceptable excipients and adjuvants.
- 9. The use of at least one antibody conjugate according to anyone of claims 1 to 5 for preparing a pharmaceutical composition for treating tumors.

FIGURE 1

FIGURE 2

FIGURE 3

