(19)
(11) EP 0 318 903 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
07.06.1989  Patentblatt  1989/23

(21) Anmeldenummer: 88119848.5

(22) Anmeldetag:  29.11.1988
(51) Internationale Patentklassifikation (IPC)4C10G 47/00, C10G 1/06
(84) Benannte Vertragsstaaten:
BE DE FR GB NL

(30) Priorität: 04.12.1987 DE 3741105

(71) Anmelder: VEBA OEL Technologie GmbH
D-45896 Gelsenkirchen (DE)

(72) Erfinder:
  • Klein, Wolfdieter
    D-4350 Recklinghausen (DE)
  • Strecker, Claus
    D-4650 Gelsenkirchen (DE)
  • Feuchthofen, Alfons
    D-4350 Recklinghausen (DE)
  • Bönisch, Ulrich
    D-4330 Mülheim/Ruhr (DE)

(74) Vertreter: Lindner, Wolfgang, Dr. 
Alexander-von-Humboldt-Strasse
45896 Gelsenkirchen
45896 Gelsenkirchen (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe


    (57) Bei den bekannten Verfahren erfolgt die Aufheizung der Einsatzprodukte auf die erforderliche Eintrittstemperatur in das Reaktionssystem der Sumpfphasenhydrierung mittels eines im Einsatzproduktstrom mit Fremdwärme betriebenen Aufheizofens. Die durch Mehrphasenströmung von Gasen, Dämpfen, Flüssigkeit und Feststoff in den Rohren des Aufheizofens gekennzeichneten Verfahrensbedingungen machen die Auslegung und den Betrieb solcher Öfen schwierig. Das neue Verfahren soll den Verzicht auf einen derartigen Ofen ermöglichen.
    Durch weitgehende und optimierte Ausnutzung der Wärmeenergie mittels Wärmetausch im Gegenstrom zu den ein Phasengemisch darstellenden Einsatzstoffen ist es möglich, die Zuführung von Fremdwärme auf die Aufheizung eines Teilstromes des Hydriergases in einem Hydriergasofen (24) zu beschränken (Zeichnung).
    Hydrierung schwerer Öle und ölhaltiger Rückstände.


    Beschreibung


    [0001] Die Erfindung bezieht sich auf ein Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe wie schwere Öle, Ölrückstände, Top- oder Vakuumrückstände, Syncrude aus Ölschiefer, Teersanden, Teeren und Pechen aus Steinkohle oder Braunkohle, mit wasserstoffhaltigen Gasen als Hydriergas unter den Bedingungen einer Sumpfphasenhydrierung bei erhöhter Temperatur und erhöhtem Druck in Anwesenheit eines Additivs oder auch eines Katalysators mit nachgeschalteter Heißabscheiderstufe unter getrennter Aufheizung eines aus den Einsatzstoffen und einem Teilstrom des Hydriergases gebildeten Einsatzstroms und eines zweiten Teilstroms des Hydriergases. Die Einsatzstoffe sind entweder bei Normaltemperatur oder bei erhöhten Temperaturen flüssig.

    [0002] Hierbei sind Temperaturen im Sumpfphasereaktor von etwa 400 bis 500 °C typisch, und der Verfahrensdruck kann zwischen 150 bis 1200 bar gewählt werden.

    [0003] Die Erfindung geht aus von einem Verfahren wie oben angegeben, bei dem Schweröl als Einsatzprodukt einem Vorheizer zugeführt wird und bei welchem ein in einem von dem Heißabscheiderkopfprodukt durchströmten Gaswärmetauscher aufgeheizter Teilstrom der insgesamt erforderlichen Hydriergasmenge dem vorgewärmten Gemisch von Schweröl, ggf. Additiv und Hydriergas vor Eintritt in den Sumpfphasereaktor zugegeben wird (vgl. DE 35 23 709 A1).

    [0004] Bei den bekannten Verfahren der eingangs angegebenen Art erfolgt die Aufheizung der Einsatzprodukte auf die für den Eintritt in das Reaktionssystem der Sumpfphasenhydrierung erforderliche Temperatur mittels eines im Einsatzproduktstrom vorgesehenen Aufheizofens. Dieser Aufheizofen ist eines der kritischsten Bauteile jeder Sumpfphasehydrieranlage. Dies liegt insbesondere an den, durch hohen Wasserstoffpartialdruck im Rohr, hohe Rohrwandtemperaturen und hohen Gesamtdruck gekennzeichneten, Betriebsbedingungen, die über den einsetzbaren Werkstoff betriebstechnische Grenzen setzen.

    [0005] Nach "Die katalytische Druckhydrierung von Kohlen, Teeren und Mineralölen", Springer-Verlag, Berlin/Göttingen/Heidelberg 1950, Seite 232, erfolgte grundsätzlich die Aufheizung der Reaktionsteilnehmer in Wärmetauschern und im Spitzenvorheizer. Als Wärmeaustauscher wurden generell "Bündel"-Regeneratoren verwendet, und für die Spitzenvorheizung mittels des extern beheizten Aufheizofens wurden haarnadelförmige Druckrohre von 90 bzw. 110 mm lichtem Durchmesser und etwa 30 000 mm Gesamtlänge eingesetzt, wobei der Produkteinsatzstrom innerhalb der mittels Wälzgasbeheizung geheizten Rohre geführt wurde.

    [0006] Die durch eine Mehrphasenströmung von Gasen und Dämpfen, Flüssigkeit sowie Feststoff im Rohr gekennzeichneten Verfahrensbedingungen ziehen erhebliche Unsicherheiten bei der Auslegung des Aufheizofens sowohl bei der Berechnung des Druckverlustes als auch des Wärmetransportes nach sich.

    [0007] Der Einsatz derartiger Spitzenvorheizer ist mit verfahrenstechnischen Nachteilen behaftet, die sich aufgrund hohen Druckverlustes in dem Vorheizer, schlechter Wärmeübertragung sowie undefinierter Zustände wegen des im Rohr vorhandenen Dreiphasensystems ergeben.

    [0008] Betriebstechnische Nachteile resultieren aus der Neigung zur Verkrustung der Innenseite der Ofenrohre und aus Verkokungsreaktionen des Produktes in den Rohren. Damit verbunden sind eine Laufzeitbegrenzung der Hydrieranlage insgesamt sowie auch sicherheitstechnische Probleme wie das Auftreten von sogenannten "hot spots", die zu Rohrreißern führen können.

    [0009] Demgemäß besteht die Erfindungsaufgabe darin, die gesamte Wärmeführung des Prozesses unter Rückgewinnung der Reaktionswärme verfahrenstechnisch so zu gestalten, daß auf den extern zu beheizenden Einsatzproduktofen zur Aufheizung des Einsatzstromes verzichtet werden kann. In der Druckschrift DE 26 51 253 A1 ist zwar angegeben, daß bei einer Verfahrensweise ähnlich wie bei dem eingangs angegebenen Verfahren der durch Fremdwärme beheizte Vorerhitzer erheblich verkleinert oder unter Umständen sogar ganz weggelassen werden könne, dafür ist aber vorgesehen, daß eine in das Einsatzprodukt zurückzuführende Destillatfraktion in einem durch Fremdwärme beheizten Wärmetauscher erneut aufgeheizt wird. Die zusätzliche Aufheizung der Destillate bringe gegenüber der Aufheizung des Kohlebreis in einem Vorerhitzer den Vorteil der wesentlich geringeren Verkokungsneigung.

    [0010] Gemäß der Erfindung wird die genannte Aufgabe bei dem Verfahren der eingangs angegebenen Art dadurch gelöst, daß das Heißabscheiderkopfprodukt im indirekten Wärmetausch seine Wärme an die genannten Einsatzströme abgibt und daß durch weitere Aufheizung des separat geführten Teiles des Hydriergases in einem Hydriergasaufheizer und anschließende Vereinigung mit dem durch indirekten Wärmetausch aufgeheizten Einsatzstrom die notwendige Eintrittstemperatur in den Sumpfphasereaktor erreicht wird.

    [0011] Das angegebene Verfahren ist geeignet, hydrierbare flüssige kohlenstoffhaltige Einsatzstoffe wie schwere Öle, Ölrückstände (Top- und Vakuumrückstand), Syncrude aus z. B. Ölschiefer, Teersanden, Schwerölen, Teeren und Pechen aus Steinkohle bzw. Braunkohle u. dgl. zu verarbeiten.

    [0012] Mit Vorteil werden dem vorliegenden Verfahren aber auch neben den als Einsatzstoffe vorgesehenen schweren Ölen oder schweren mineralölhaltigen Rückständen Gemische von feingemahlener Kohle und der erfindungsgemäß vorgesehenen Einsatzstoffe als sogenannte Fremdöle ("Co-processing") zugeführt. Eine solche Arbeitsweise hat den Vorteil, daß die bei der Kohlehydrierung erforderlichen recycle-Ströme zur Anmaischung der feingemahlenen Kohle weitgehend oder ganz entfallen. Bevorzugt werden Gewichtsverhältnisse von Kohle und Fremdöl von 1 zu 5 bis 4 zu 5. Als einzusetzende Kohle kommen alle Sorten in Betracht, die wirtschaftlich hydriert werden können, z. B. typische Gasflammkohlen des Ruhrgebiets.

    [0013] Es wurde gefunden, daß das Verfahren durch weitestgehende Rückgewinnung der Wärmeenergie der Reaktionsprodukte so gestaltet werden kann, daß ein Hydriergasaufheizer für einen separaten Teilstrom des Hydriergases genügt, um die beim Anfahren erforderliche Anspringtemperatur der Hydrierreaktion beim Eintritt in den Hydrierreaktor in der Sumpfphase aufzubringen und Wärmeverluste auszugleichen. Dieses Ergebnis konnte nur durch Optimierung der Verfahrensführung der Reaktionsprodukte und der Einsatzprodukte im Gegenstrom erreicht werden, und es ist überraschend, daß es gelingt, die zuzuführende Wärmeenergie über einen Teilstrom des Hydriergases ohne Fremdbeheizung der flüssigen oder fest-flüssigen Einsatzprodukte in das Verfahren einzubringen.

    [0014] Als Hydriergasaufheizer, nachfolgend auch als Hydriergasöfen bezeichnet, kommen Umwälzöfen, vorzugsweise aber auch Strahlungsöfen, in Betracht, in denen eine Aufheizung auf eine Temperatur von 300 bis 650 °C, vorzugsweise 490 bis 550 °C erfolgt.

    [0015] In weiterer Ausgestaltung des vorgeschlagenen Verfahrens werden der Einsatzstrom (3) durch drei Wärmetauscher (18, 19, 20) und der separat aufzuheizende Hydriergasstrom (5) vor Eintritt in den Hydriergasofen (24) durch drei Wärmetauscher (21, 22, 23) im Gegenstrom zu dem Heißabscheiderkopfprodukt geführt.

    [0016] Bei der Aufteilung der Gesamt-Hydriergasmenge auf die beiden Teilströme kann auch so vorgegangen werden, daß für den Einsatzstrom Frischwasserstoff als Feed und für den zweiten Teilstrom des Hydriergases das Kreislaufhydriergas vorgesehen werden.

    [0017] Dabei tritt Strom (9) in Abstromrichtung nacheinander mit dem Einsatzstrom (3) in Wärmetauscher (20) und dem Teilstrom des Hydriergases (5) in Wärmetauscher (23) in Wärmetauschbeziehung und durchläuft einen Reaktor (27) zur Hydrierung in der Gasphase an einem Festbettkontakt. Der in Reaktor (27) raffinierte Produktstrom durchläuft als Strom (10) Wärmetauscher (19) und Wärmetauscher (22) in Wärmetauschbeziehung mit Strom (3) bzw. Strom (5) sowie einen Zwischenabscheider (28) mit Abtrennung einer Heißölfraktion (11). Der von Abscheider (28) abgezogene Reststrom (12) gibt in den Wärmetauschern (18) und (21) seine restliche für die Aufheizung der Einsatzprodukte verwertbare Wärme an Strom (3) und Strom (5) ab und wird einem Kaltabscheider (29) zugeführt, in dem eine Abtrennung von Abwasser und Abgas sowie die Gewinnung einer Kaltölfraktion (13) und Rückführung des Kreislaufhydrierungsgasanteils als Strom (15) über Kompressor (30) in den Prozeß erfolgen.

    [0018] Zur Temperaturregelung im Sumpfphasereaktor (25) und im Heißabscheider (26) wird mit Vorteil ein Teil des Kreislaufgasstroms (16) als Quenchgasstrom zur Verfügung gehalten und im Bedarfsfall eingespeist.

    [0019] Im Anschluß an den Kaltabscheider (29) kann in üblicher Weise eine Gaswäsche zur Aufarbeitung des Kreislaufhydriergasanteiles vorgesehen werden. Durch eine derartige Aufarbeitung wird durch Entfernung der in der Gaswäsche mittels Waschflüssigkeit löslichen C₁- bis C₄-Bestandteile ein ausreichender Wasserstoffpartialdruck in dem Hydriergassystem gewährleistet.

    [0020] Der separate Teilstrom aus der insgesamt einzusetzenden Hydriergasmenge kann 20 bis 95, vorzugsweise 40 bis 80 % der insgesamt erforderlichen Hydriergasmenge ausmachen.

    [0021] Das vorliegende Verfahren wird nachfolgend anhand des Schemas der Zeichnung mit den angegebenen Bezugszeichen weiter erläutert.

    [0022] Der aus einer Suspension mit dem Additiv bzw. Katalysator bestehende Strom der Einsatzstoffe (1) wird mit einem aus Kreislaufhydriergas, Strom (15), über Kompressor (30) unter Einspeisung von Frischwasserstoff, Strom (17), zusammengesetzten Teilstrom des Hydriergases (2) zu Strom (3) vereinigt und mittels indirektem Wärmeaustausch in den Apparaten (18), (19) und (20) auf die Bedingungen von Strom (4) vorgewärmt.

    [0023] Der separate Hydriergasstrom (5) wird ebenfalls im indirekten Wärmeaustausch in den Apparaten (21), (22) und (23) vorgewärmt und in Hydriergasaufheizer (24) auf die notwendige Temperatur erhitzt, so daß in der Mischung mit dem Stoffstrom (4) die erforderliche Reaktoreintrittstemperatur in Reaktor (25) für Strom (7) erreicht wird.

    [0024] Im Reaktor (25) bzw. einer Kaskade hintereinander geschalteter Reaktoren fallen die gewünschten Produkte an, die im Heißabscheider (26) in einen Rückstandsstrom (8) und in einen Kopfstrom (9) aufgetrennt werden.

    [0025] Der Kopfstrom (9) wird zur Vorwärmung im Gegenstrom zu Einsatzstrom (3) und Hydriergasstrom (5) in den vorgenannten Apparaten (18), (19), (20), (21), (22) und (23) genutzt. Die in der Figur gezeigte Schaltung sieht einen integrierten Gasphasereaktor (27) zwecks Raffination und weiterer Entfernung insbesondere der O-, S- und N-haltigen Heteroatomanteile vor. Gasphasereaktor (27) ist mit Vorteil zwischen Apparat (23) und Apparat (19) geschaltet.

    [0026] Die aufgrund des Wärmeentzuges in den Wärmetauschern kondensierten Produkte werden in Zwischenabscheider (28) und in Kaltabscheider (29) gesammelt. Die Kondensate werden als Heißöl (11) und Kaltöl (13) aus dem Hochdruckkreislauf ausgeschleust. Nach dem Heißölabzug kann Wasser eingespritzt werden, um die Versalzung der nachgeschalteten Wärmeaustauscher zu vermeiden.

    [0027] Das beim Hydrierprozeß gebildete Reaktionswasser wird gegebenenfalls zusammen mit dem Einspritzwasser im Kaltabscheider (29) abgetrennt und als Strom (14) aus dem Hochdruckkreislauf ausgeschleust. Es enthält u. a. die durch Raffination entfernten Heteroatomverbindungen in Form der in dem Abwasser gelösten einfachen Wasserstoffverbindungen H₂S und insbesondere NH₃.

    [0028] Je nach Auslegung der Wärmeaustauscher bzw. Anordnung des Zwischenabscheiders kann die Temperatur im Zwischenabscheider innerhalb eines bestimmten Bereiches frei gewählt werden.

    [0029] Das in Kaltabscheider (29) über Kopf gehende Restgas wird, ggf. nach Ausschleusung eines gewissen Anteils, mit einem Kreislaufkompressor (30) zurückgeführt. Dem Rückführgas wird zur Temperaturführung der Reaktoren und des Heißabscheiders Kaltgas als Strom (16) entnommen. Der für die Reaktion erforderliche Frischwasserstoff wird als Strom (17) zugegeben. Es kann auch vorgesehen werden, den Strom (2) als Frischwasserstoffstrom zuzugeben.


    Ansprüche

    1. Verfahren zur Hydrierung flüssiger kohlenstoffhaltiger Einsatzstoffe wie schwere Öle, Ölrückstände, Top- oder Vakuumrückstände, Syncrude aus Ölschiefer, Teersanden, Teeren und Pechen aus Steinkohle oder Braunkohle, mit wasserstoffhaltigen Gasen als Hydriergas unter den Bedingungen einer Sumpfphasenhydrierung bei erhöhter Temperatur und erhöhtem Druck ggf. in Anwesenheit eines Additivs oder auch eines Katalysators mit nachgeschalteter Heißabscheiderstufe unter getrennter Aufheizung eines aus den Einsatzstoffen und einem Teilstrom des Hydriergases gebildeten Einsatzstroms und eines zweiten Teilstroms des Hydriergases, dadurch gekennzeichnet, daß das Heißabscheiderkopfprodukt im indirekten Wärmetausch seine Wärmeenergie an die genannten Einsatzströme abgibt und daß durch weitere Aufheizung des zweiten Teilstromes des Hydriergases in einem Hydriergasaufheizer und anschließende Vereinigung mit dem durch indirekten Wärmetausch aufgeheizten Einsatzstrom die notwendige Eintrittstemperatur in den Sumpfphasereaktor erreicht wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einsatzstoffe im Gemisch mit feingemahlener Kohle eingesetzt werden.
     
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aufheizung in dem Hydriergasaufheizer auf eine Temperatur von 300 bis 650 °C, vorzugsweise 490 bis 550 °C erfolgt.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Einsatzstrom (3) durch Wärmetauscher (18), (19), (20) und der separat aufzuheizende zweite Teilstrom des Hydriergases (5) vor Eintritt in den Hydriergasofen (24) durch Wärmetauscher (21), (22), (23) im Gegenstrom zu dem Heißabscheiderkopfproduktstrom (9) geführt werden und daß Strom (9) in Abstromrichtung nacheinander mit dem Einsatzstrom (3) in einem Wärmetauscher (20) und dem Hydriergasstrom (5) in einem Wärmetauscher (23) dem Wärmeaustausch unterworfen wird, einen Reaktor (27) zur Hydrierung in der Gasphase an einem Festbettkontakt durchläuft, als Strom (10) einen Wärmetauscher (19) und einen Wärmetauscher (22) zwecks Wärmetausch mit Strom (3) bzw. Strom (5) sowie einen Zwischenabscheider (28) zur Abtrennung einer Heißölfraktion (11) durchläuft, um als Strom (12) einen Wärmetauscher (18) und einen Wärmetauscher (21) zwecks Wärmetausch mit Strom (3) bzw. Strom (5) sowie einem Kaltabscheider (29) zugeführt zu werden, wo eine Abtrennung von Abwasser und Abgas sowie die Gewinnung einer Kaltölfraktion und Rückführung eines Kreislaufhydriergasanteiles vorgenommen werden.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Teil des Kreislaufhydriergasstroms als Quenchgasstrom (16) zur Temperaturregelung in den Sumpfphasereaktor (25), den Heißabscheider (26) und in den Gasphasereaktor (27) eingespeist werden.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß nach dem Kaltabscheider (29) eine Gaswäsche zur Aufarbeitung des Kreislaufhydriergasanteiles vorgsehen wird.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der separat aufgeheizte Teilstrom (5) 20 bis 95, vorzugsweise 40 bis 80 % der insgesamt einzusetzenden Hydriergasmenge ausmacht.
     




    Zeichnung