

(1) Veröffentlichungsnummer: 0 320 565 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

45 Veröffentlichungstag der Patentschrift: 30.09.92

(51) Int. Cl.5: **E01F** 15/00

(21) Anmeldenummer: 88110730.4

(2) Anmeldetag: 05.07.88

- (54) Gleitschwelle für Verkehrswege, bestehend aus Fertigteilen.
- Priorität: 16.12.87 DE 3742683
- (43) Veröffentlichungstag der Anmeldung: 21.06.89 Patentblatt 89/25
- 45 Bekanntmachung des Hinweises auf die Patenterteilung: 30.09.92 Patentblatt 92/40
- Benannte Vertragsstaaten: AT BE CH FR LI LU NL SE
- 66 Entgegenhaltungen:

CH-A- 438 402 DE-A- 1 534 470 DE-B- 1 292 156 DE-U- 1 977 839 DE-U- 8 025 723 DE-U- 8 708 908 FR-A- 776 756 US-A- 3 678 815

- 73) Patentinhaber: SPS SCHUTZPLANKEN GMBH **Gutwerkstrasse 45** W-8750 Aschaffenburg/Bay.(DE)
- (72) Erfinder: Urlberger, Karl **Gutwerkstrasse 45** W-8750 Aschaffenburg(DE)
- (4) Vertreter: Staeger, Sigurd, Dipl.-Ing. et al Patentanwälte Dipl.-Ing. S. Staeger Dipl.-Ing. Dipl.-Wirtsch.-Ing. R. Sperling Müllerstrasse W-8000 München 5(DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

10

15

20

25

35

40

50

55

Beschreibung

Die Erfindung bezieht sich auf eine Gleitschwelle für Verkehrswege, welche aus quer zur Fahrtrichtung miteinander verbundenen, als Fertigteile hergestellte, auf die Fahrbahn aufgesetzten, jeweils als Gehäuse ausgebildeten gleich hohen Halbelementen besteht, deren Querschnitt jeweils einen Teilquerschnitt des Querschnitts einer aus zwei Reihen von Halbelementen erstellbaren Doppelgleitschwelle bildet.

Aus dem DE-GM 87 08 908 ist eine derartige Gleitschwelle bekannt. Die Rückwand der einzelnen Halbelemente ist jeweils mit einem schwalbenschwanzförmigen Profil versehen, so daß zwei Halbelemente - ggfs. versetzt zueinander von oben aus ineinander geschoben werden können. Es wird zwar ein fester Zusammenhalt der Doppelgleitschwelle durch die schwalbenschwanzförmige Verzahnung der jeweiligen Rückwände erreicht, es ist jedoch die Herstellung der einzelnen Elemente relativ aufwendig und kompliziert und es besteht die Gefahr, daß die schwalbenschwanzförmigen Zakken schon bei einem geringfügigen oder schwachen Fahrzeugaufprall ausbrechen, so daß die ganze Doppelgleitschwelle im Aufprallbereich zerstört wird

Der Erfindung liegt die Aufgabe zugrunde, eine Gleitschwelle der eingangs erwähnten Art zu schaffen, deren Halbelemente einerseits allein oder anderseits auch in Form einer Doppelgleitschwelle benutzt werden können und relativ leicht herstellbar sind und deren Zusammensetzung zu einer Doppelgleitschwelle durch horizontales Verschieben der Halbelemente möglich ist.

Die Aufgabe wird dadurch gelöst, daß erfindungsgemäß die Halbelemente aus plattenförmigen Abschnitten hergestellt sind, daß jeweils der dem Verkehr abgewandte, die Rückwand bildende Plattenabschnitt des Halbelements lotrecht verläuft und daß zum Verbinden der Rückwände zweier Rücken an Rücken aneinanderliegender Halbelemente mittels einer Ösen/Bolzen-Verbindung die Halbelemente mit die Bolzen aufnehmenden Bohrungen versehene Laschen aufweisen, die in fahrbahnabgekehrter Richtung vom Halbelement abstehen, wobei jeweils den Laschen zugeordnete Öffnungen in gegenüberliegenden Rücken vorgesehen sind. Die z.B. als Hohlkörper ausgebildeten Halbelemente lassen sich für eine Einzelgleitschwelle oder auch für eine Doppelgleit-Schwelle ohne jegliche Veränderungen verwenden.

Nach einer bevorzugten Ausführungsform der Erfindung sind zwischen den Rückwänden von in zwei beabstandeten Reihen als Doppelgleitschwelle angeordneten Halbelemente Abstandshalter angeordnet. Zweckmäßigerweise bestehen die von den Rückwänden senkrecht abstehenden Bodenwände

der Halbelemente jeweils aus zwei beabstandeten Plattenabschnitten;

vorzugsweise sind die Bodenwände mit Gleitfüßen versehen.

Die die oberen Seiten der Halbelemente bildenden Plattenabschnitte verlaufen vorzugsweise senkrecht zu den Rückwänden. Nach einer bevorzugten Ausführungsform der Erfindung steht vom Rand der von der Rückwand senkrecht abstehenden Bodenwand des Halbelements ein annähernd lotrecht angeordneter, streifenförmiger Plattenabschnitt als Abweisfläche beim Fahrzeugaufprall ab. Das Halbelement kann einen in ihm angeordneten Füllkörper tragen; dabei kann der Füllkörper aus einem Kunststoffgehäuse, ggfs. mit einem Füllstoff, z.B. Reifenrecyclingmaterial bestehen.

Nach einer anderen Ausführungsform der Erfindung bestehen die Abschnitte aus Stahl. Schließlich ist es möglich, daß die Rückwände einerseits die Laschen tragen und andererseits Schlitze zum Durchstecken der Laschen aufweisen.

In der Zeichnung sind beispielsweise Ausführungsformen stark schematisiert dargestellt; sie werden nachfolgend näher beschrieben. Es zeigt:

- Fig. 1 einen Querschnitt durch eine Doppelgleitschwelle;
- Fig. 2 einen Querschnitt ähnlicher Art durch eine abgewandelte Ausführungsform;
- Fig. 3 einen Querschnitt durch eine weitere abgewandelte Ausführungsform;
- Fig. 4 ein Beispiel für eine Verbindung zweier Halbelemente und
- Fig. 5 ein abgewandeltes Beispiel für eine Verbindung der Halbelemente.

Eine Doppelgleitschwelle 1 nach Fig. 1 besteht aus zwei spiegelbildgleich ausgebildeten Halbelementen 2, 3, die mit ihren jeweiligen Rückwänden 4 und 5 aneinander befestigt sind. Wie aus Fig. 4 und 5 ersichtlich ist, sind die jeweiligen Halbelemente jedoch so in bezug aufeinander versetzt miteinander verbunden, daß die in Querrichtung verlaufende Fugen 6 bzw. 7 zwischen den einzelnen Halbelementen in etwa auf der Hälfte des gegenüberliegenden Halbelemente verlaufen.

Auf diese Weise wird bei einer Verbindung der beiden Rückwände 4 und 5 - wie z.B. weiter unten näher beschrieben - ein Verbund geschaffen, der aus einzelnen Halbelementen zusammengesetzt ist, welche z.B. eine Höhe von ca. 50 cm und eine Fußbreite von 25 cm besitzen.

Es liegt auf der Hand, daß das Profil der Halbelemente beliebig sein kann. Im vorliegenden Fall ist von einem Profil ausgegangen, bei dem an eine lotrechte Abweisfläche im Bodenbereich 8 eine schräge Auffahrfläche 9 angeschlossen ist, wobei im Kronenbereich der Halbelemente wiederum eine beispielsweise 10 cm hohe lotrechte Abweisfläche 10 vorgesehen ist.

Bei der in Fig. 1 dargestellten Ausführungsform finden ca. 4 mm starke Stahlplatten Verwendung. Während es natürlich möglich ist, die jeweiligen Stirnseiten oder zumindest nur eine Stirnseite eines Halbelements mit einer dem gesamten Queschnitt des letzteren entsprechenden Stahlplatte abzuschließen, können - wie dargestellt - auch an ihren beiden Enden offene Halbelemente Verwendung finden, deren Bodenwand 11 aus zwei aufeinandergerichteten Flanschen besteht, so daß die Zugänglichkeit des Inneren der Halbelemente vom Boden aus gewährleistet ist. Die Rückwand 5 und der etwa 10 cm hohe lotrechte Abweisabschnitt 8 des Halbelementes kann durch zwei oder drei T-förmige Streben 12 ausgesteift werden.

Wie weiter unten näher beschrieben, werden die Rücken an Rücken anliegenden Halbelemente 2 und 3 mit einer Bolzen/Ösen-Verbindung zusammengehalten.

Die jeweiligen Bolzen 20 bzw. 21 erstrecken sich beispielsweise auf einer Höhe von 30 cm und sind durch Löcher oder Schlitze 22 in der Stirnwand 23 von oben in die Halbelemente einführbar. Die Bolzen weisen abgekröpfte Enden 24 auf, so daß sie durch ihre Halterungen 25 zwar durchgesteckt werden können; sie können jedoch nicht hindurchrutschen.

Jeweils an den Innenseiten der Rückwände 4 und 5 sind Flansche 30,32 angeschweißt,die in entsprechenden Bohrungen die Bolzen 20 oder 21 aufnehmen. Die Flansche 30 sind an der Rückwand 4 befestigt und greifen durch Schlitze 31 in der Rückwand 5; die Flansche 32 sind an der Rückwand 5 befestigt und greifen durch Schlitze 33 in der Rückwand 4. Die Wirkungsweise der Flansche 80,81 wird weiter unten näher erläutert.

Bei der in Fig. 2 dargestellten Ausführungsform ist wieder von einer Doppelgleitschwelle mit spiegelbildgleichen Querschnitt ausgegangen worden.

Die Rückwände sind mit lotrecht von ihnen abstehenden Bodenwänden 56, 57 verbunden, die gegebenenfalls mit Gleitfüßen versehen sein können. Im unteren Bereich der Halbelemente sind wiederum von der Bodenwand 56 bzw. 57 senkrecht abstehende Abweisstreifen 58, 59 vorgesehen, die lotrecht verlaufen.

In den Raum zwischen der Stirnwand 54 der Rückwand 51 der Bodenwand 56 und der Abweiswand 58 ist ein Füllkörper 60 eingesetzt.

Dieser Füllkörper kann aus einem Kunststoffgehäuse bestehen, in welchem z.B. Reifenrecyclingmaterial enthalten ist. Auf der einen Seite kann, wie mit der strichierten Linie 61 angedeutet, der Querschnitt dieses Kunststoffgehäuses in etwa dem Querschnitt der Halbelemente 1 und 2 nach Fig.1 angepaßt sein, auf der anderen Seite ist auch eine Ausführungsform eines Querschnitts möglich, wie er mit der strichierten Linie 62 angedeutet ist.

Das Füllmaterial bzw. das Gehäuse wird bei einem Fahrzeugaufprall, insbesondere einem stärkeren Fahrzeugaufprall verständlicherweise zerstört, während die zusammengesetzten Rückenwände 50 und 51 gewissermaßen als Zugband wirken. Sollten die beiden Halbelemente, die zusammen eine Doppelgleitschwelle bilden, mit Gleitfüßen versehen sein, so wird bei einem mehr oder weniger starken Fahrzeugaufprall die Gleitschwelle aus ihrer Ruhestellung verschoben und beult sich entsprechend aus. Versuche haben gezeigt, daß Ausbeulungen bis zu 1,5 m möglich sind, ohne daß das Zugband reißt.

Es liegt auf der Hand, daß auch ein einzelnes Halbelement als Einzelgleitschwelle Verwendung finden kann, wobei in diesem Fall eine Verankerung des Halbelements mit dem Erdboden oder mit der Verkehrsfläche erforderlich sein dürfte.

Nach Fig. 3 sind zwei Halbelemente 70 und 71 im Abstand voneinander angeordnet, wobei zwischen diesen Halbelementen als Abstandhalter Profileisen, rohrförmige Profile o.dgl. Verwendung finden. Diese Profileisen 72 und 73 sind an ihren freien Enden durch Platten 74, 75 die wiederum z.B. mit Schraubverbindungen 76 mit der jeweiligen Rückwand 77 des Halbelements 71 bzw. 78 des Halbelements 70 verbunden sind.

Auf die eben beschriebene Weise ist es erstmalig möglich, gleich ausgebildete Halbelemente,die jeweils eine Einzelgleitschwelle bilden, im Abstand voneinander anzuordnen, sei es als verschiebbare Doppelgleitschwelle oder sei es als mit dem Erdboden bzw. dem Verkehrsweg verankerte Doppelgleitschwelle.

Bei der eben beschriebenen Ausführungsform ist von einem in sich geschlossenen Hohlprofil - zusammengesetzt aus Stahlplatten - ausgegangen worden, wobei jeweils Profileisen 80 und 81 den etwa 10 cm hohen lotrechten Abweisbereich der Halbelemente aussteifen und abstützen.

Die in Fig. 4 und 5 dargestellten Längsschnitte durch eine Anzahl von fest miteinander verbundenen Halbelementen 2 bzw. 2 zeigen zwei unterschiedliche Verbindungsmöglichkeiten der Rückwände aneinander.

Grundsätzlich unterscheiden sich diese beiden Verbundmöglichkeiten dadurch, daß bei der Ausführungsform nach Fig. 4 auch die Halbelemente in Gleitschwellenlängsrichtung unmittelbar miteinander fest verbunden sind, während bei der Ausführungsform nach Fig. 5 eine Verbindung der einzelnen Halbelemente lediglich mit den gegenüberliegenden Halbelementen vorgenommen ist.

Die jeweiligen Halbelemente 2 und 3 sind, wie aus Fig. 4 und 5 ersichtlich, jeweils versetzt zueinander mit ihren Rückwänden 4 und 5 aneinanderliegend miteinander fest verbunden.

Während die an der Rückwand 4 verschweiß-

10

15

25

30

35

40

45

50

55

ten Laschen 30 durch die Schlitze 31 hindurchgesteckt sind, sind die Laschen 32, die an der Wand 5 angeschweißt sind, durch die Schlitze 33 in der Rückwand 4 hindurchgesteckt. Die Anordnung erfolgt wechselseitig, so daß jede Rückwand in einer Ebene einen Schlitz und eine Lasche aufweist. wobei mindestens zwei solcher Ebenen an den Halbelementen vorgesehen sind.

Die Ausführungsform nach Fig. 4 und 5 gleichen sich in bezug auf die eben beschriebene Verbinduna.

In Fig. 4 ist jedoch noch eine zusätzliche Verbindung in Längsrichtung der Gleitschwelle vorgesehen, wobei parallel zu den Rückwänden 4 und 5 Laschen 80 bzw. 81 vorgesehen sind, die ebenfalls mit Bohrungen versehen sind und in einer Ebene unterhalb bzw. oberhalb der Laschen 32 bzw. 30 liegen. Diese Laschen verbinden die einzelnen Halbelemente unmittelbar in Längsrichtung der Gleitschwelle, so daß bei einem Fahrzeugaufprall nicht nur die einzelnen Bolzen und die entsprechenden Laschen 30 und 32 beansprucht werden, sondern auch die Laschen 80 und 81 mitwirken.

Patentansprüche

- 1. Gleitschwelle für Verkehrwege, bestehend aus quer zur Fahrtrichtung miteinander verbundenen, als Fertigteil hergestellten, auf die Fahrbahn aufgesetzten, jeweils als Gehäuse ausgebildeten gleichhohen Halbelementen, deren Querschnitt jeweils einen Teilguerschnitt des Querschnitts einer aus zwei Reihen von Halbelementen erstellbaren Doppelgleitschwelle bildet, dadurch gekennzeichnet, daß die Halbelemente aus plattenförmigen Abschnitten hergestellt sind, daß jeweils der dem Verkehr abgewandte, die Rückwand bildende Plattenabschnitt des Halbelements lotrecht verläuft, und daß zum Verbinden der Rückwände zweier Rücken an Rücken aneinanderliegender Halbelemente mittels einer Ösen/Bolzen-Verbindung die Halbelemente mit die Bolzen aufnehmenden Bohrungen versehene Laschen aufweisen, die in fahrbahnabgekehrter Richtung vom Halbelement abstehen, wobei jeweils den Laschen zugeordnete Öffnungen in gegenüberliegenden Rücken vorgesehen sind.
- 2. Gleitschwelle nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den Rückenwänden (77, 78) von in zwei beabstandeten Reihen als Doppelgleitschwelle angeordneten Halbelementen Abstandshalter (72, 73) angeordnet sind.
- 3. Gleitschwelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die von den Rückwän-

- den (4, 5) senkrecht abstehenden Bodenwände der Halbelemente jeweils aus zwei beabstandeten Plattenabschnitten (11) bestehen.
- 4. Gleitschwelle nach Anspruch 3, dadurch gekennzeichnet, daß die Bodenwände mit Gleitfüßen versehen sind.
 - 5. Gleitschwelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die die oberen Seiten der Halbelemente bildenden Plattenabschnitte (54, 55) senkrecht zu den Rückwänden verlaufen.
- Gleitschwelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß vom Rand der von der Rückwand senkrecht abstehenden Bodenwand (56, 57) des Halbelements ein annähernd lotrecht angeordneter, streifenförmiger Plattenabschnitt (58, 59) als Abweisfläche beim 20 Fahrzeugaufprall absteht.
 - 7. Gleitschwelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Halbelement einen in ihm angeordneten Füllkörper (60) trägt.
 - Gleitschwelle nach Anspruch 7, dadurch gekennzeichnet, daß der Füllkörper aus einem Kunststoffgehäuse (61), ggfs. mit einem Füllstoff, z.B. aus Reifenrecyclingmaterial, besteht.
 - Gleitschwelle nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Plattenabschnitte aus Stahl bestehen.
 - 10. Gleitschwelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Rückwände (4, 5) einerseits die Laschen (30, 32) tragen und andererseits Schlitze (31, 33) zum Durchstecken der Laschen (30, 32) aufweisen.

Claims

1. Skid barrier for traffic ways, comprising half elements of the same height which are connected to one another transversely to the direction of travel, are produced as a finished part, are placed on the roadway and are each constructed as a housing, and the cross-section of which in each case forms a part crosssection of the cross-section of a double skid barrier which can be produced from two rows of half elements, characterized in that the half elements are produced from plate-shaped sections, in that each plate section, remote from the traffic and forming a rear wall, of the half element runs vertically, and in that, to connect

20

25

40

45

50

55

by means of an eye-and-pin connection the rear walls of two half elements bearing against one another back to back, the half elements have tabs which are provided with bores receiving the pins and project from the half element in the direction remote from the roadway, openings associated with the tabs in each case being provided in opposing backs.

- Skid barrier according to Claim 1, characterized in that spacers (72, 73) are arranged between the rear walls (77, 78) of half elements arranged in two spaced rows as a double skid barrier.
- 3. Skid barrier according to Claim 1 or 2, characterized in that the base walls, projecting perpendicularly from the rear walls (4, 5), of the half elements each comprise two spaced plate sections (11).
- **4.** Skid barrier according to Claim 3, characterized in that the base walls are provided with slide feet.
- 5. Skid barrier according to one of Claims 1 to 4, characterized in that the plate sections (54, 55) forming the upper sides of the half elements run perpendicular to the rear walls.
- 6. Skid barrier according to one of Claims 1 to 5, characterized in that there projects from the edge of the base wall (56, 57), which projects perpendicularly from the rear wall, of the half element, a strip-shaped plate section (58, 59) arranged approximately vertically, as a deflection surface in the event of impact by a vehicle.
- 7. Skid barrier according to one of Claims 1 to 6, characterized in that the half element carries a filler body (60) arranged therein.
- **8.** Skid barrier according to Claim 7, characterized in that the filler body comprises a plastics housing (61), where appropriate with a filler, for example of recycled tyre material.
- Skid barrier according to one or more of Claims 1 to 8, characterized in that the plate sections are of steel.
- **10.** Skid barrier according to one of Claims 1 to 9, characterized in that the rear walls (4, 5) carry the tabs (30, 32) on the one hand and have slits (31, 33) for the tabs (30, 32) to be pushed through on the other hand.

Revendications

- 1. Bordure de sécurité modulaire pour voies de communication, constituée par des moitiés de modules de même hauteur, reliées entre elles transversalement à la direction du trafic, conçues en tant qu'éléments préfabriqués réalisés sous forme de caisson à poser sur la chaussée et dont la section transversale constitue une section transversale partielle de la section transversale d'une double bordure de sécurité matérialisée par deux rangées de moitiés de modules, caractérisée en ce que les moitiés de module sont fabriquées à partir de sections en forme de plaques, en ce que la section en forme de plaque orientée à l'opposé de la circulation et constituant la paroi dorsale de chaque moitié de module est perpendiculaire et en ce que pour unir au moyen d'une liaison du type à oeillet et boulon les parois dorsales de deux moitiés de module accolées dos à dos, les moitiés de module présentent des oreilles pourvues de perçages destinés au passage des boulons, lesquelles oreilles s'écartent de la moitié de module dans la direction opposée à la chaussée, des lumières correspondant aux oreilles étant ménagées dans les parois dorsales opposées.
- 2. Bordure de sécurité suivant la revendication 1, caractérisée en ce que des entretoises (72, 73) sont disposées entre les parois dorsales (77, 78) de deux moitiés de module placées en deux rangées équidistantes pour former une double bordure de sécurité.
 - 3. Bordure de sécurité suivant l'une des revendications 1 ou 2, caractérisée en ce que les bases des moitiés de module s'écartant perpendiculairement des parois dorsales (4, 5) sont constituées par deux sections de plaques (11) équidistantes.
 - 4. Bordure de sécurité suivant la revendication 3, caractérisée en ce que les bases sont pourvues de pieds coulissants.
 - 5. Bordure de sécurité suivant l'une des revendications 1 à 4, caractérisée en ce que les sections de plaque (54, 55) qui forment les faces supérieures des moitiés de module se développent perpendiculairement aux parois dorsales.
 - 6. Bordure de sécurité suivant l'une des revendications 1 à 5, caractérisée en ce qu'une section de plaque (58, 59) se dresse pratiquement à la verticale et sous forme linéaire, à partir du

bord de la base (56, 57) se développant perpendiculairement à la paroi dorsale de la moitié de module, pour former une surface qui dévie les impacts des véhicules.

7. Bordure de sécurité suivant l'une des revendications 1 à 6, caractérisée en ce que la moitié de module contient un corps de remplissage (60).

8. Bordure de sécurité suivant la revendication 7, caractérisée en ce que le corps de remplissage se compose d'une enveloppe de plastique (61) éventuellement garnie d'une matière de charge, par exemple une matière provenant du recyclage de pneumatiques.

9. Bordure de sécurité suivant l'une ou plusieurs des revendications 1 à 8, caractérisée en ce que les sections de plaque sont faites en acier.

10. Bordure de sécurité suivant l'une des revendications 1 à 9, caractérisée en ce que les parois dorsales (4, 5), d'une part, portent des oreilles (30, 32), et, d'autre part, présentent des fentes (31, 33) pour le passage des oreilles (30, 32).

5

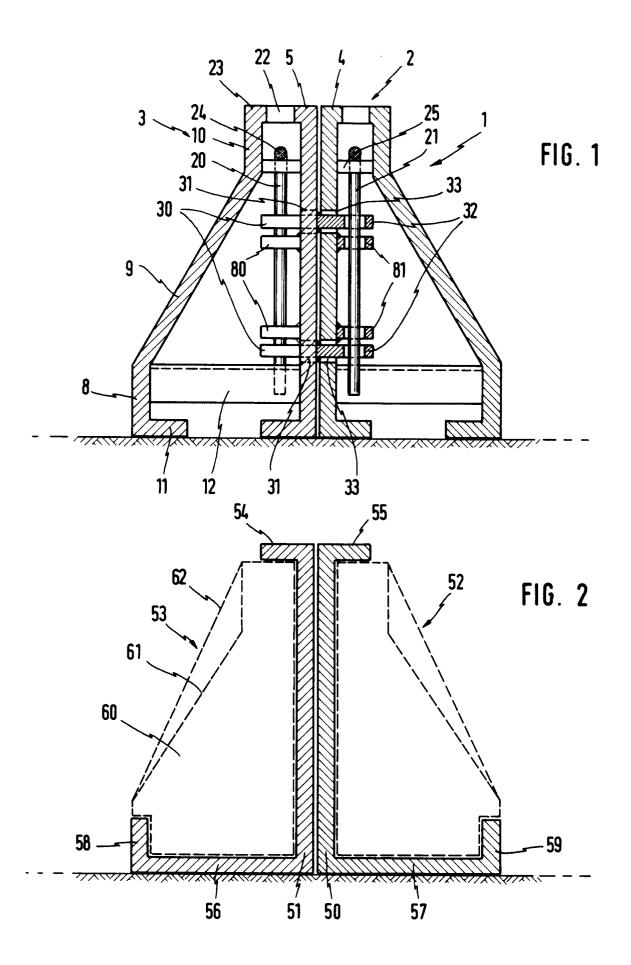
10

15

20

25

30


35

40

45

50

55

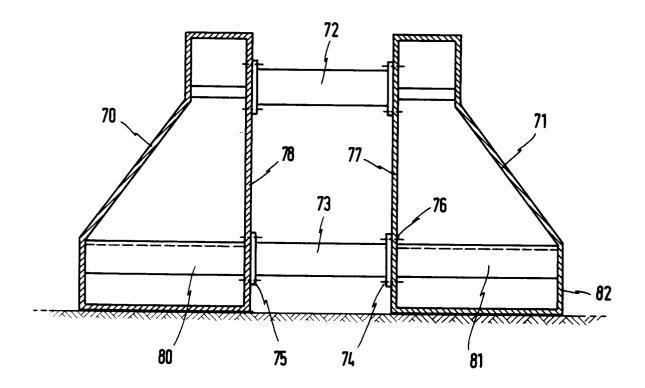
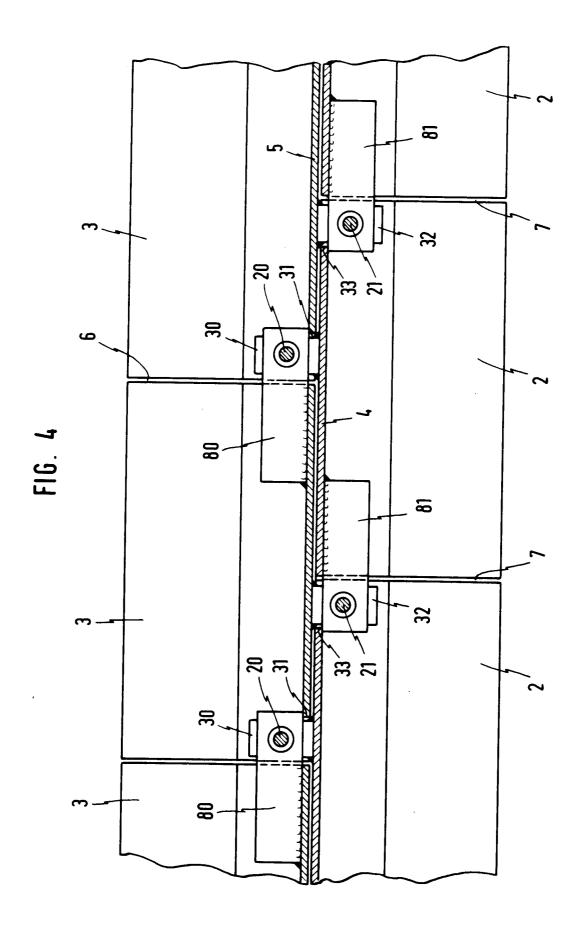
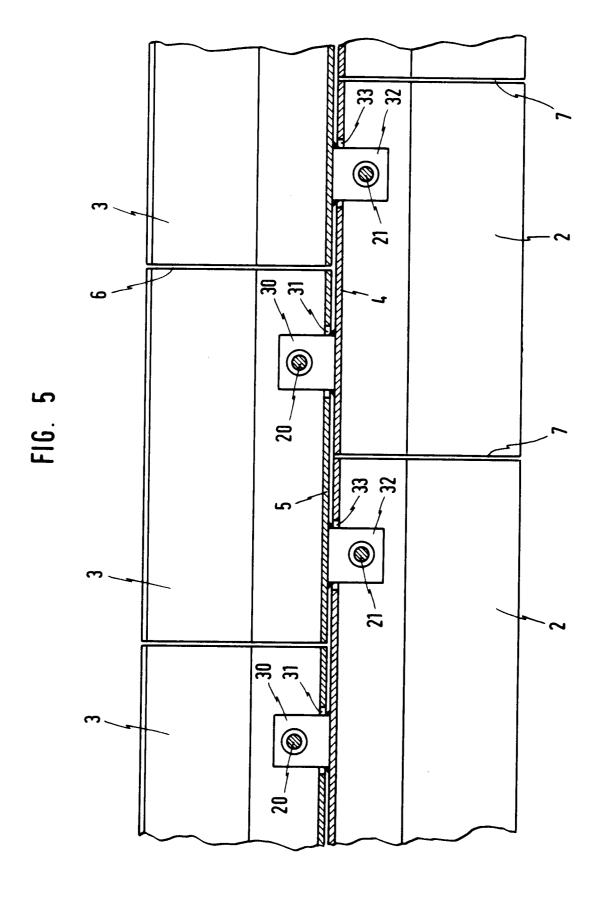




FIG. 3

