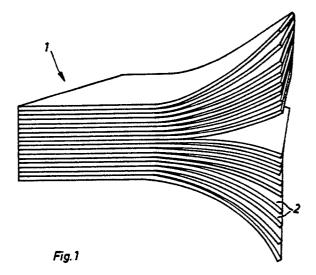
(12)


EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 88120543.9
- 2 Anmeldetag: 08.12.88

(5) Int. Cl.4: **B27M** 3/00 , **B27D** 1/00 , **B27G** 11/00

- 3 Priorität: 17.12.87 CH 4958/87
- Veröffentlichungstag der Anmeldung: 21.06.89 Patentblatt 89/25
- Benannte Vertragsstaaten:
 AT DE NL SE

- 7 Anmelder: PAVATEX AG Rigistrasse 8 . CH-6330 Cham(CH)
- © Erfinder: Wyss, Walter
 Bannstrasse 28
 CH-6312 Steinhausen(CH)
- Vertreter: Blum, Rudolf Emil Ernst et al c/o E. Blum & Co Patentanwälte Vorderberg
 11
 CH-8044 Zürich(CH)
- (A) Quaderförmiger Holzkörper zum Herausarbeiten von Holzbauteilen.
- © Ein quaderförmiger Holzkörper (1), der aus einer Vielzahl übereinandergeschichteter und miteinander ganzflächig verleimter harter Holzfaserplatten (2) besteht, lässt sich wie Massivholz bearbeiten. Aus einem solchen Holzwerkstoff herausgearbeitete Holzbauteile sind herkömmlichen Bauteilen aus gebräuchlichen Harthölzern hinsichtlich mechanischer und statischer Beanspruchung ebenbürtig und zeigen einen deutlich besseren Feuerwiderstand als beispielsweise Bauteile aus Eichenholz. Die Herstellkosten liegen wesentlich unter den Kosten für Harthölzer, so dass in vielen Applikationen die Verwendung dieses Holzwerkstoffs anstelle von Harthölzern oder anderen üblicherweise eingesetzten Materialien bedeutend wirtschaftlicher ist.

Quaderförmiger Holzkörper zum Herausarbeiten von Holzbauteilen

Die Erfindung bezieht sich auf einen quaderförmigen Holzkörper zum Herausarbeiten von Holzbauteilen.

Massivholz ist ein häufig verwendeter und vielseitig bearbeitbarer Werkstoff. Als nachteilig erweist sich die beschränkte Verfügbarkeit von Massivholz, insbesondere von hochwertigem Hartholz, was sich unter anderem in entsprechend hohen Kosten äussert.

Schon seit geraumer Zeit wird daher in einem Anwendungsbereich beschränkten Massivholz durch Holzwerkstoffe in Form von einzelnen harten Holzfaserplatten (Rohdichte > 800 kg/m³, gem. DIN 68 754 Teil 1) ersetzt. Im wesentlichen werden dabei Holzabfälle, wie sie bei der Bearbeitung von Massivhölzern, beispielsweise bei der Herstellung von Balken oder Brettern,entstehen, zunächst zu Fasern verarbeitet, welche anschliessend, zum Teil unter Zusatz von Bindemittel, zu einzelnen Platten gepresst werden. Der Einsatz solcher Platten ist jedoch auf zweidimensionale Anwendungen beschränkt. Auch eignen sich die Platten aufgrund ihrer ungenügenden Biegefestigkeit nicht als tragende Bauelemente. Zudem sind die Schlag- und Abrasionsfestigkeit sowie das Brandverhalten solcher Platten im Vergleich zu verschiedenen Massivhölzern beschränkt, so dass ihre Verwendung in Fällen starker mechanischer und statischer Beanspruchung oder bei erhöhten Anforderungen an den Brandschutz nicht in Betracht kommt.

Es bestehen also nach wie vor zahlreiche Applikationen, in denen kostspieliges und rares Massivholz und inbesondere Hartholz verwendet werden muss.

Hier will die Erfindung Abhilfe schaffen, indem sie einen quaderförmigen Holzkörper zum Herausarbeiten von Holzbauteilen vorschlägt, wie er im ersten Patentanspruch beschrieben ist.

Der quaderförmige Holzkörper besteht aus einer Vielzahl von übereinandergeschichteten harten Holzfaserplatten, wobei die einzelnen harten Holzfaserplatten mit den jeweils benachbarten harten Holzfaserplatten auf ihrer ganzen gemeinsamen Fläche verbunden sind. Die Anzahl der miteinander verbundenen Faserplatten kann beliebig gross sein, so dass ein Holzwerkstoff in Form eines dreidimensionalen Holzkörpers entsteht. Dadurch wird es möglich, diesen Holzwerkstoff wie ein Massivholz zu bearbeiten und Holzbauteile praktisch beliebiger Ausmasse herzustellen.

Die vorliegende Erfindung weist eine Reihe überraschender Vorteile auf. So haben Experimente gezeigt, dass der Brandwiderstand von Bauelementen, welche aus dem vorgeschlagenen quaderförmigen Holzkörper hergestellt sind, deutlich besser

ist, als derjenige von herkömmlichen Bauelementen, welche üblicherweise aus Eichenholz oder ähnlichen Materialien bestehen. Im weiteren werden Biegefestigkeitswerte erreicht, die auch einen Einsatz von solcherart hergestellten Bauelementen als tragende Bauteile erlauben. Bezüglich Abrasion und Schlagfestigkeit ist dieser Holzkörper den üblichen Harthölzern zumindest ebenbürtig.

Anlässlich solcher Experimente hat sich zudem erwiesen, dass der Schichtverlauf solcher Bauelemente vorteilhafterweise so gewählt wird, dass die Schichten im wesentlichen senkrecht zur beanspruchten Oberfläche des Bauelements verlaufen. Die Erfindung erlaubt also in einer Vielzahl von Applikationen, bei denen herkömmlicherweise Massiv- und insbesondere teure und seltene Materialien verwendet werden mussten, den Ersatz derselben durch einen wesentlich preisgünstigeren Holzwerkstoff.

Im folgenden wird die Erfindung anhand von Zeichnungen näher erläutert. Dabei zeigt:

Fig. 1 den prinzipiellen Aufbau des erfindungsgemässen quaderförmigen Holzkörpers;

Fig. 2a-d eine schematische Darstellung eines Verfahrens zur Herstellung des erfindungsgemässen quaderförmigen Holzkörpers.

Fig. 3a-i eine Reihe von Bearbeitungsmöglichkeiten des quaderförmigen Holzkörpers;

Fig. 4a-g verschiedene Ausführungen von Türflügeln aus dem quaderförmigen Holzkörper;

Fig. 5a und 5b zwei mögliche Ausführungen einer Türe samt zugehörigem Türrahmen beziehungsweise zugehöriger Türzarge aus dem quaderförmigen Holzkörper;

Fig. 6 einen Bodenbelag aus dem quaderförmigen Holzkörper;

Fig. 7 eine mögliche Ausführung eines tragenden Bauteils aus dem quaderförmigen Holzkörper; und

Fig. 8a-c mögliche Ausführungen schussicherer Bauteile aus dem quaderförmigen Holzkörper.

Fig. 1 zeigt einen quaderförmigen Holzkörper 1, der aus einer Vielzahl von übereinandergeschichteten harten Holzfaserplatten 2 besteht. Die harten Holzfaserplatten 2 sind jeweils auf ihrer ganzen gemeinsam Fläche mit den benachbarten Holzfaserplatten verbunden. Zur besseren Erklärung des Aufbaus sind die Holzfaserplatten 2 teilweise aufgefächert dargestellt.

Die Fig. 2a-d zeigen schematisch ein Verfahren zur Herstellung des erfindungsgemässen quaderförmigen Holzkörpers, bei dem die einzelnen Holzfaserplatten mittels einer Leimvorrichtung, darge-

50

35

stellt durch zwei mit Austrittsöffnungen versehene Leimbehälter 3.1, 3.2, miteinander verleimt werden. Hinter der Leimvorrichtung wird eine erste Faserplatte 2.1 bereitgelegt, während vor der Leimvorrichtung zwei Faserplatten 2.2, 2.3 aufeinandergelegt werden (Fig.2a). Die aufeinandergelegten Faserplatten 2.2, 2.3 werden anschliessend durch die Leimvorrichtung geführt (angedeutet durch den Pfeil A in Fig. 2b). Die Faserplatte 2.3 wird dabei auf ihrer gesamten Oberseite, die Faserplatte 2.2 auf ihrer gesamten Unterseite mit einer gleichmässigen Leimschicht versehen. Nach dem Passieren der Leimvorrichtung (Fig. 2c) wird die Faserplatte 2.2 mit ihrer leimbestrichenen Unterseite auf die bereitliegende Platte 2.1 gelegt, die obere Faserplatte 2.3 wird gedreht (angedeutet durch Pfeil B) und mit ihrer leimbestrichenen Fläche auf die Platte 2.2 gelegt. Die drei Faserplatten 2.1, 2.2, 2.3 bilden nun einen dreischichtigen Holzkörper 1, der mit jeder Wiederholung des beschriebenen Ablaufs um zwei weitere Schichten zunimmt. Auf diese Weise entsteht ein quaderförmiger Holzkörper mit einer praktisch beliebigen Anzahl aufeinanderliegender Schichten von Faserplatten.

Zur Herstellung der einzelnen Faserplatten 2 werden im wesentlichen Abfall- und Resthölzer zu Holzfasern zerhackt und gemahlen und mit Wasser - allenfalls unter Beimischung von Klebe- und Imprägnierstoffen - zueinem Holzfaserbrei aufbereitet, welcher anschliessend geformt, entwässert und zu Rohplatten gewalzt wird. Bedingt durch diesen Herstellungsvorgang sind die einzelnen Holzfasern innerhalb einer Faserplatte im wesentlichen in parallel zur Oberfläche der Platte liegenden Ebenen angeordnet. Innerhalb dieser Ebene ist die Ausrichtung der Holzfasern isotrop.

Für den Einsatz bei der Herstellung des erfindungsgemässen quaderförmigen Holzkörpers werden diese Rohplatten zur Erhöhung der Widerstandsfähigkeit vorzugsweise zusätzlich durch Pressen bei erhöhten Temperaturen (z.B. 200 Grad Celsius) verdichtet und in einem weiteren Schritt in einer Härte- und Klimakammer vergütet. Auf diese Weise entstehen harte Holzfaserplatten mit einer hohen Rohdichte (z.B. 950 kg/m³). Bei dieser Rohdichte handelt es sich um einen Durchschnittswert, denn die Faserplatten weisen - bedingt durch den Herstellvorgang - nahe ihrer Oberflächen eine höhere Dichte auf als in der Plattenmitte. Dadurch weist der aus solchen Platten hergestellte Holzkörper 1 eine einem Massivholz vergleichbare Struktur auf, indem dichtere und daher härtere Zonen mit weniger dichten, weicheren Zonen abwechseln.

Vorzugsweise werden zur Herstellung des erfindungsgemässen Holzwerkstoffs Faserplatten mit einer maximalen Dicke von 5 Millimetern verwendet, da die Produktionskosten für Faserplatten mit einer gegebenen Rohdichte im Vergleich zur Plattendicke überproportional ansteigen.

Zur Gewährleistung einer durchgehend gleichen Plattendicke werden die Faserplatten anschliessend kalibriert. Eine konstante Plattendicke ist Voraussetzung dafür, dass die Faserplatten beim Verleimen auf ihrer gesamten Oberfläche gleichmässig mit Leim bestrichen werden, so dass also keine unverleimten Stellen entstehen, welche unter Umständen ein Auseinanderfallen des Holzkörpers bei seiner nachträglichen Bearbeitung zur Folge haben könnten.

Für die Verleimung der Plattn werden, je nach Einsatzgebiet der aus dem Holzkörper herausgearbeiteten Bauelemente, Thermoplaste oder Durolaste (für Brandschutz) verwendet.

Der auf diese Weise hergestellte Holzwerkstoff weist - wie Praxisversuche gezeigt haben - eine ganze Reihe überraschender Eigenschaften auf. Er ist hinsichtlich Abrasions- und Schlagfestigkeit sowie Feuerwiderstand den herkömmlicherweise verwendeten Massiv- und insbesondere Harthölzern (Eiche, Sipo, dunkelrotes Meranti, Sapelli, etc.) zumindest ebenbürtig, ja zum Teil sogar überlegen. Die gesamten Herstellkosten für diesen Holzwerkstoff liegen wesentlich unter den Kosten der erwähnten Massivhölzer, so dass eine Substitution derselben in vielen Applikationen wirtschaftliche Vorteile bringt.

Figur 3a zeigt in perspektivischer Ansicht einen Holzkörper 1, dessen Länge L und Breite B einzig durch die Abmessungen der zur Plattenherstellung verwendeten Vorrichtungen begrenzt sind. Die Dikke D des Schichtkörpers 1 ist, wie oben beschrieben, variabel in Abhängigkeit der Anzahl der miteinander verleimten Faserplatten sowie deren Plattendicke.

Der Holzkörper bildet also einen Quader, der, ähnlich wie ein Holzblock, bearbeitet werden kann. Insbesondere ist es möglich, einen beliebigen Körper herauszuarbeiten, was eine Verwendung dieses Holzwerkstoffs beim Formen-, Modell- und Vorrichtungsbau erlaubt.

Einige prinzipielle Bearbeitungsmöglichkeiten dieses Holzwerkstoffs sind Sägen und Fräsen (Figur 3b), Bohren (Figur 3c), Fälzen (Figur 3d), Nuten (Figur 3e), Stemmen (Figur 3f), Hobeln (Figur 3g), Profilieren (Figur 3h) sowie Drechseln (Figur 3i).

Ein aus diesem Holzwerkstoff bestehendes Bauelement kann in herkömmlicher Art oberflächenbehandelt oder beschichtet werden.

Die geltenden Brandschutzvorschriften für Gebäude schreiben für gewisse Durchgänge (für Personen, Fahrzeuge, Güter) Brandschutzgüten mit einer bestimmten Feuerwiderstandsklasse (z.B. Klasse T30: Feuerwiderstand 30 Minuten unter definierten Brand- und Prüfbedingungen) vor. Bei solchen Brandschutztüren muss der Türflügelrahmen aus

10

einem widerstandsfähigen Holz (z.B. Eiche) gefertigt sein. Praxisversuche haben erwiesen, dass Türen, deren Flügelrahmen aus dem erfindungsgemässen Holzkörper hergestellt ist, im Vergleich zu herkömmlichen Türen mit einem Flügelrahmen aus Eichenholz oder ähnlichen für diesen Einsatz geeigneten Materialien, ein deutlich besseres Brandverhalten aufweisen.

Figur 4a zeigt die Ansicht eines unbeschichteten Türflügels 10 mit einer Mittellage als Türfüllung 11 und einer Türflügelkante 12, die aus dem vorgeschlagenen qua derförmigen Holzkörper gefertigt ist.

Figur 4b zeigt einen horizontalen Schnitt entlang der Linie E-E der Figur 4a. Die Schichten des Holzkörpers aus dem die Türflügelkante 12 besteht, verlaufen zwecks besserem Brandverhalten vorzugsweise senkrecht zur Türblattebene. Die Türfüllung besteht z.B. aus einer Spanplatte, könnte aber ebensogut auch aus dem vorgeschlagenen Holzkörper gefertigt werden, wie dies Figur 4c veranschaulicht. Die Türfüllung setzt sich dabei aus einzelnen Bauelementen 18 zusammen, welche aus dem guaderdförmigen Holzkörper hergestellt sind. Der Schichtverlauf der Bauelemente 18 wird vorzugsweise senkrecht zur Türblattebene gewählt. Solche Türen weisen nicht nur einen erhöhten Feuerwiderstand auf, sondern eignen sich auch für schussichere Verkleidungen, worauf im Zusammenhang mit den Figuren 8a bjs 8c näher eingegangen wird. Zusätzlich kann der Türflügel beidseitig mit einem Deckbelag 13 (z.B. eine harte Holzfaserplatte), welcher je nach Verwendung noch beschichtet wird, versehen werden.

Im Sinne einer beispielhaften Aufzählung denkbarer Ausführungen zeigen die Figuren 4d-g weitere Horizontalschnitte analog demjenigen von Figur 4b und 4c.

Figur 4d zeigt eine Mittellage als Türfüllung 11 mit einer angeleimten Flügelkante 12 aus dem vorgeschlagenen Holzkörper, wobei die Flügelkante 12 zusätzlich gefälzt ist.

Figur 4e zeigt eine Mittellage als Türfüllung 11 mit einem angeleimten und gefälzten Flügelrahmen 12 aus dem vorgeschlagenen Holzkörper.

Figur 4f zeigt eine entsprechende Mittellage als Türfüllung 11 mit einem umleimten, gefälzten Flügelrahmen 12. Türfüllung und Flügelrahmen sind zudem mit einer Beschichtung 13 (Furnier, Kunststoffbelag, etc.) versehen.

Figur 4g zeigt einen zu Figur 4c analogen Türflügel mit einem gefälzten Flügelrahmen 12.

Figur 5a zeigt einen Horizontalschnitt durch einen Türflügel 10 und einen zugehörigen Türrahmen 14, der mit einer Mauer 17 verbunden ist. Der Aufbau des Türflügels 10 entspricht dabei demjenigen von Figur 4d. Der Türrahmen 14 besteht aus dem erfindungsgemässen Holzkörper, wobei dessen Schichten zwecks einfacher Montage (Bohren, Dübeln) vorzugsweise parallel zur Mauer 17 verlaufen. Der Türrahmen 14 weist zudem eine umlaufende Dichtung 15 auf.

Figur 5b zeigt einen Horizontalschnitt durch einen Türflügel 10 und eine zugehörige Türzarge 16. Der Aufbau des Türflügels 10 entspricht demjenigen von Figur 4g. Die Türzarge 16 umfasst die Mauer 17 mit ihren Teilen 16.1, 16.2, 16.3, welche aus dem erfindungsgemässen Holzkörper gefertigt sind, wobei ihre Schichten wiederum zwecks einfacher Montage vorzugsweise parallel zur jeweils anliegenden Wandfläche verlaufen.

Fussböden für industrielle und gewerbliche Zwecke, die grossen mechanischen Beanspruchungen ausgesetzt sind, bestehen oft aus Hirnholzparkett, dessen einzelne Elemente aus widerstandsfähigem und deshalb teurem Holz bestehen.

In Figur 6 ist ein Teil eines Bodenbelags 20, der aus einzelnen Elementen 21 zusammengesetzt ist, dargestellt. Die Elemente 21 sind aus dem erfindungsgemässen Holzkörper herausgesägt und der besseren Widerstandsfähigkeit halber so angeordnet, dass die einzelnen Schichten vertikal zur Bodenebene verlaufen. Selbstverständlich ist es auch möglich einen solchen Boden nicht auf würfelförmigen, sondern aus länglichen Elementen, welche z.B. in der Art eines Riemenparkettbodens aneinandergefügt werden, herzustellen, wobei der Schichtverlauf wiederum vorzugsweise senkrecht zur Bodenebene gewählt word.

Im Holzbau müssen tragende Bauteile aus Hölzern mit einer hohen Biegefestigkeit hergestellt werden. Die dafür verwendeten Lagenhölzer (z.B. Furnierschicht- oder Furniersperrholz) können durch den erfindungsgemässen Holzwerkstoff ersetzt werden, denn dieser erreicht Bie gefestigkeitswerte von beispielsweise 40 N/mm2.

Figur 7 zeigt im Sinne eines Beispiels einen Doppel-T-Träger 25 mit einem auf Biegung beanspruchten Mittelteil 26, der aus dem vorgeschlagenen Holzwerkstoff besteht und mit einem Oberteil 27 und einem Unterteil 28 verleimt ist. Ober- und Unterteil können dabei aus herkömmlicherweise für solche Konstruktionen verwendetem Holz bestehen. Der Schichtverlauf des Mittelteils 26 ist vorzugsweise parallel zur Richtung der aufzunehmenden Kräfte. Selbstverständlich ist auch die Herstellung anderer tragender Bauteile (z.B. Balken) aus dem erfindungsgemässen Holzwerkstoff möglich.

Schussichere Türen, Verkleidungen und Abdeckungen, die gleichzeitig gewissen ästhetischen Anforderungen genügen müssen (z.B. in Schalterhallen von Banken oder Poststellen), bestehen oft aus Holzspanplatten mit einer Metallblecheinlage, was die Verarbeitung durch den Schreiner erschwert. Zur Anwendung gelangen auch widerstandsfähige Panzersperrhölzer, welche Harzver-

10

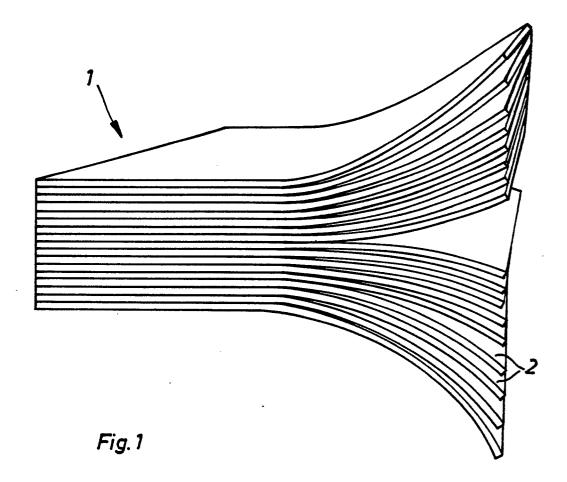
20

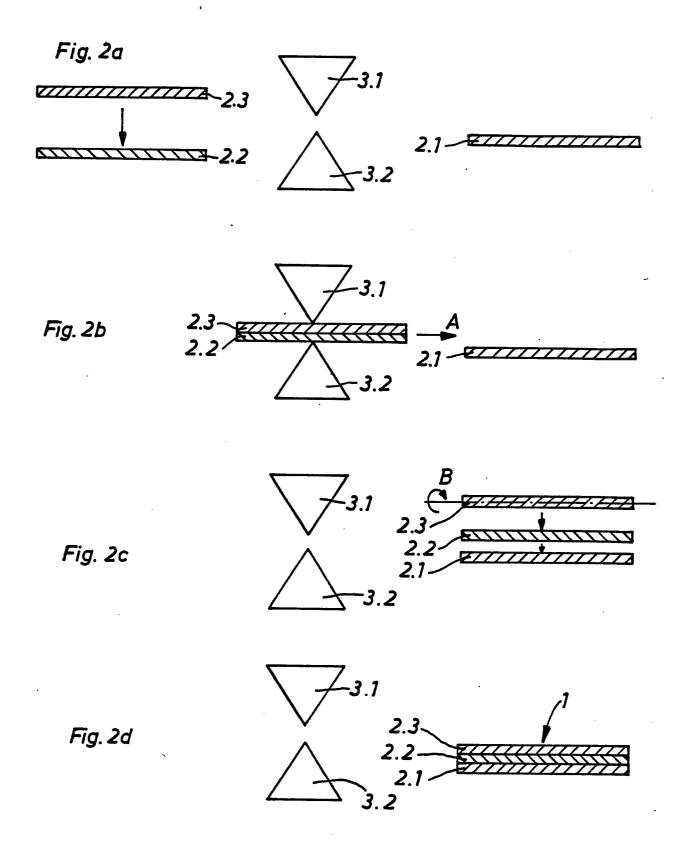
25

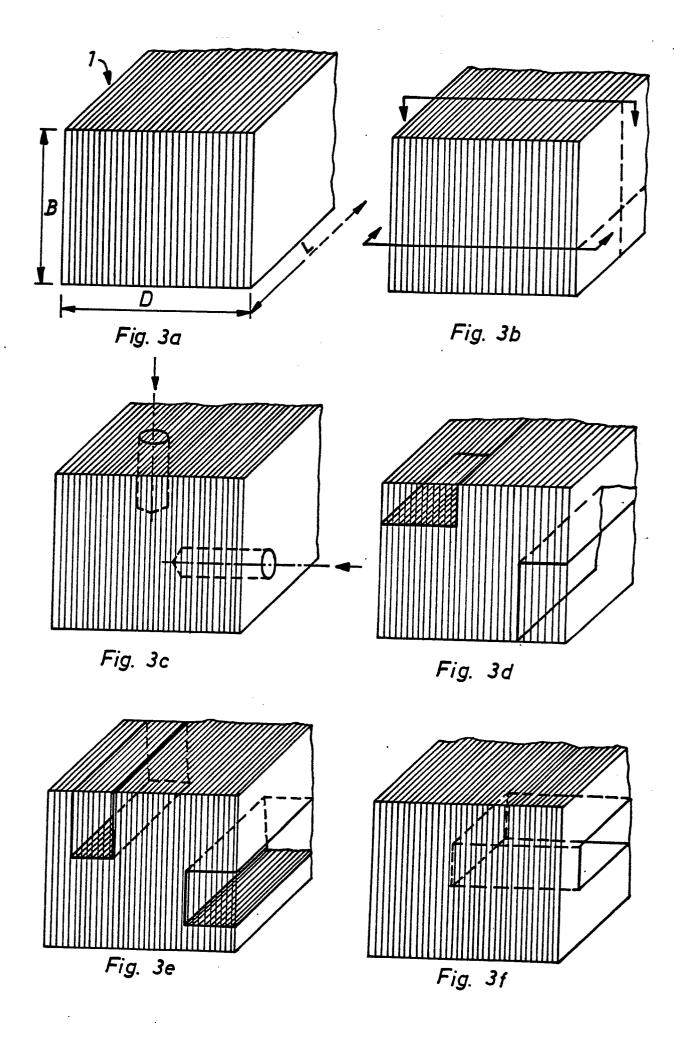
bindungen zur Erhöhung der Dichte enthalten. Solche Harzverbindungen können jedoch baubiologische Probleme ergeben und erschweren zudem die Weiterveredelung. Diese Baustoffe werden durch den erfindungsgemässen Holzwerkstoff, der baubiologisch unbedenklich und einfach zu bearbeiten ist, ersetzt.

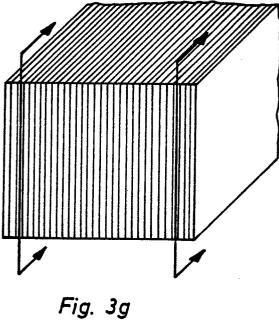
Die Figuren 8a-8c zeigen im Querschnitt den Aufbau solcher Verkleidungen und Abdeckungen aus dem vorgeschlagenen Holzwerkstoff, wobei die prinzipielle Schussrichtung durch den Pfeil S angedeutet ist. In ihrer einfachsten Ausführung besteht eine solche schussichere Verkleidung 30 nur gerade aus dem quaderförmigen Holzkörper, dessen Schichten im wesentlichen quer zur Schussrichtung S verlaufen (Figur 8a). Bei Schussversuchen hat sich jedoch erwiesen, dass Verkleigungen gemäss dem in Figur 8b dargestellten Aufbau zu bedeutend besseren Resultaten führen. Dabei besteht die Verkleidung 30 aus einem Mittel teil, der aus aneinandergereihten Elementen 32 aus dem erfindungsgemässen Holzwerkstoff gebildet wird, deren Schichten im wesentlichen parallel zur Schussrichtung S verlaufen. Dieser Mittelteil ist mit einem beidseitigen Deckbelag 33 (z.B. aus einer harten Holzfaserplatte) versehen, welche zusätzlich beschichtet oder furniert werden kann.

Figur 8c illustriert einen weiteren Aufbau einer schussicheren Verkleidung ähnlich demjenigen von Figur 8b. Zusätzlich wird hier der Mittelteil durch eine Mittelschicht 34 (z.B. harte oder poröse Holzfaserplatten oder Einlagen mit ähnlicher Wirkung zur Erhöhung der Dämpfung) ergänzt. Die Verarbeitung und Weiterveredelung solcher schussicherer Verkleidungen bietet keine besonderen Probleme; die Schussicherheit ist derjenigen herkömmlicher Verkleidungen zumindest ebenbürtig.


Die obigen Ausführungen umfassen nur eine beschränkte Zahl von Einsatzmöglichkeiten, deren es selbstverständlich noch weitere geben würde. Der vorgeschlagene quaderförmige Holzkörper kann prinzipiell überall dort eingesetzt werden, wo heutzutage, wegen grosser mechanischer und statischer Beanspruchung (Abrieb-, Druck- und Biegefestigkeit) oder erhöhten Anforderungen an den Feuerwiderstand, teurere Hartkörper oder vergleichbare Materialien verwendet werden müssen. Zu denken wäre dabei an Werkbänke, Küchenabdeckungen, Bahnwagen- und Fahrzeugböden, Doppelböden (Computerböden), Treppenkonstruktionen, Verkleidungen und Abdeckungen, Drechslereiarbeiten, etc.


Ansprüche


- 1. Quaderförmiger Holzkörper (1) zum Herausarbeiten von Holzbauelementen, gekennzeichnet durch eine Vielzahl von übereinandergeschichteten harten Holzfaserplatten (2), wobei die einzelnen harten Holzfaserplatten (2) mit den jeweils benachbarten harten Holzfaserplatten auf ihrer ganzen gemeinsamen Fläche verbunden sind.
- 2. Quaderförmiger Holzkörper nach Anspruch 1, dadurch gekennzeichnet, dass die einzelnen harten Holzfaserplatten (2) mit den jeweils benachbarten harten Holzfaserplatten auf der ganzen gemeinsamen Fläche verleimt sind.
- 3. Quaderförmiger Holzkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen harten Holzfaserplatten (2) eine Rohdichte von mindestens 950 kg/m³ aufweisen.
- 4. Quaderförmiger Holzkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen harten Holzfaserplatten (2) eine gleichmässige Dicke von höchstens 5 Millimetern aufweisen.
- 5. Türflügel (10) mit einer Türflügelkante beziehungsweise einem Türflügelrahmen (12) aus dem quaderförmigen Holzkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die harten Holzfaserplatten (2) des Holzkörpers im wesentlichen senkrecht zur Fläche des Türflügels (10) verlaufen.
- 6. Türflügel (10) mit einer Mittellage als Türfüllung (11) aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die harten Holzfaserplatten (2) des Holzkörpers im wesentlichen senkrecht zur Fläche des Türflügels verlaufen.
- 7. Türrahmen (14) beziehungsweise Türzarge (16) aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4, dadurch geknenzeichnet, dass die harten Holzfaserplatten (2) des Holzkörpers (1) parallel zu den jeweils zugehörigen Wandflächen verkaufen.
- 8. Tragendes Bauteil mit einem Holzbauelement aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4.
- 9. Elemente für einen Bodenbelag aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die einzelnen Elemente so angeordnet sind, dass die harten Holzfaserplatten (2) des Holzkörpers (1) vertikal zur Bodenebene verlaufen.
- 10. Schussicheres Bauteil (30) mit Bauelementen (32) aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die harten Holzfaserplatten (2) des


Holzkörpers im wesentlichen senkrecht zur gegen die Schussrichtung orientierten Oberfläche des Bauteils (30) verlaufen.

11. Verwendung von Holzbauelementen aus dem quaderförmigen Holzkörper nach einem der Ansprüche 1 bis 4 für statisch, mechanisch oder durch Wärme beanspruchte Bauteile, dadurch gekennzeichnet, dass die harten Holzfaserplatten des Holzkörpers im wesentlichen senkrecht zur beanspruchten Oberfläche des Bauteils verlaufen.

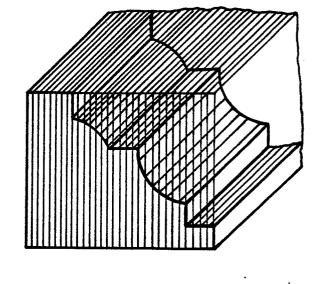


Fig. 3 h

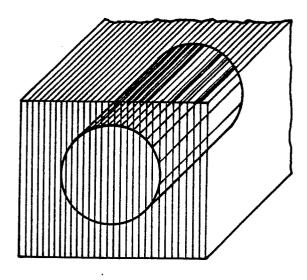
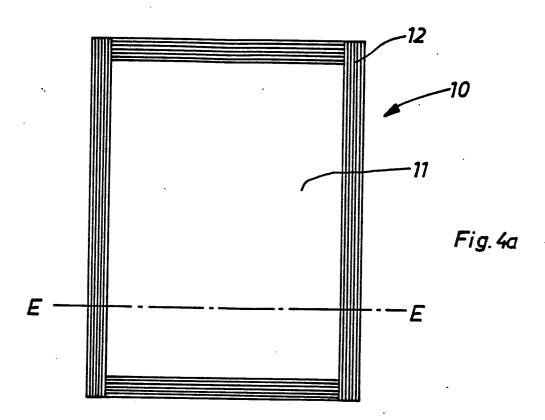
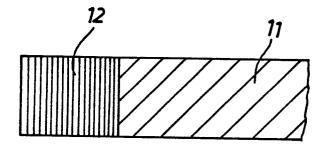
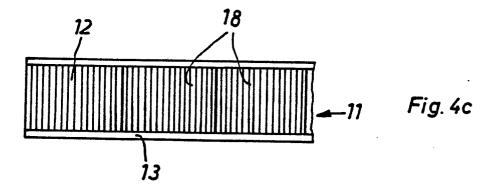
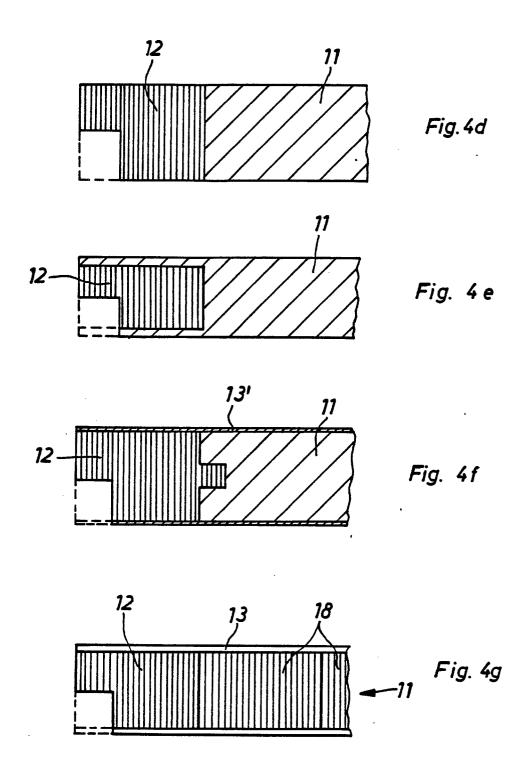
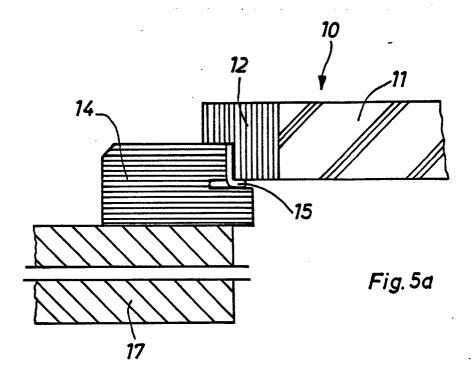
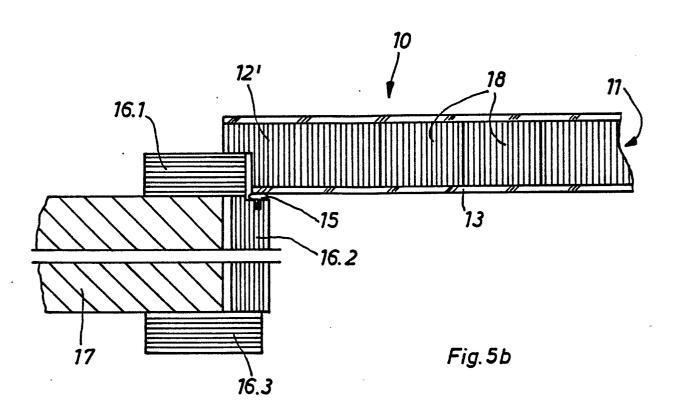
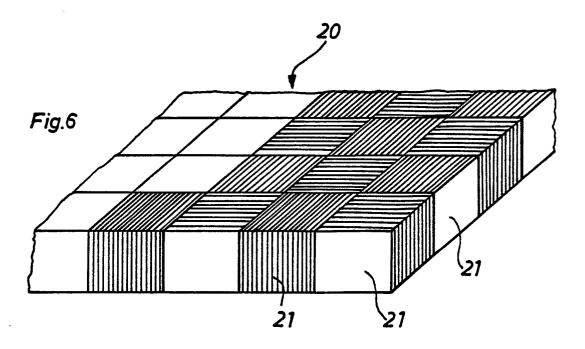



Fig.3i


Fig. 4b

