11 Veröffentlichungsnummer:

0 320 993 A1

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: **88121166.8**

51 Int. Cl.4: A43B 21/26 , A43B 13/18

② Anmeldetag: 16.12.88

Priorität: 17.12.87 DE 374272029.01.88 DE 3802607

Veröffentlichungstag der Anmeldung: 21.06.89 Patentblatt 89/25

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

71 Anmelder: ADIDAS SPORTSCHUHFABRIKEN
ADI DASSLER STIFTUNG & CO. KG
Adi-Dassler Strasse 1-2
D-8522 Herzogenaurach(DE)

2 Erfinder: Anderie, Wolf§
Daimlerstrasse 6§
D 8522 Herzogenaurach§(DE)
Erfinder: Schacher, Franz§
Schubertring 16§
D 8522 Herzogenaurach§(DE)

Vertreter: LOUIS, PÖHLAU, LOHRENTZ & SEGETH Ferdinand-Maria-Strasse 6 D-8130 Starnberg(DE)

4 Laufsohle für Sportschuhe.

© Eine Laufschle aus nachgiebigem Kunststoff für Sportschuhe mit einer unter der Fersenauftrittsfläche (A) vorgesehenen Ausnehmung (4) zur Aufnahme einer Vielzahl von die Ausnehmung ausfüllenden, im unbelasteten Zustand unter Bildung von Zwischenräumen sich nur bereichs- oder punktweise aneinander abstützenden Einzelkörpern (5) aus einem elastischen Werkstoff. Die Einzelkörper (5) können Kugelform haben und untereinander durch eine Matrix von kleinen Verbindungsstegen zur besseren Handhabung miteinander verbunden sein.

Xerox Copy Centre

Laufsohle für Sportschuhe

15

Die Erfindung betrifft eine Laufsohle aus nachgiebigem Kunststoff für Sportschuhe mit den Merkmalen gemäß dem Oberbegriff des Patentanspruches 1.

1

Das Problem, die Laufsohle von Sportschuhen so auszubilden, daß sie die durch das Aufsetzen praktisch schlagartig auftretenden hohen Belastungen auf den Bewegungsapparat des Läufers ausreichend abfängt (dämpft) und zugleich das natürliche Laufverhalten nicht beeinträchtigt, ist Gegenstand zahlreicher Vorschläge und praktischer Ausgestaltungen. Die Hauptbelastung beim Aufsetzen erfolgt naturgemäß im Fersenbereich, da zumindest der Durchschnittsläufer dort den Fuß zuerst aufsetzt, so daß während einer kurzen Zeitspanne in der Abrollphase die Ferse und das Bein des Läufers durch eine grosse Kraft belastet sind. Die Größe dieser Kraft hängt wesentlich davon ab, über welchen "Federweg" der Laufsohle die in der Hauptsache durch das Körpergewicht und durch den Laufstil des Läufers bestimmte Bewegungsenergie bis zum Stillstand der Ferse relativ zur Bahnoberfläche aufgenommen wird. Seit jeher muß bei der Sohlenausgestaltung bezüglich dieses Federweges ein Kompromiß geschlossen werden, da ein an sich aus Gründen der geringeren Belastung erwünschter langer Federweg dem Läufer ein Schwimmgefühl vermittelt, welches die Laufleistung beeinträchtigt und auch wegen der Unsicherheit bei der Fußführung die Verletzungsgefahr fördert. Dieser Kompromiß hat auch auf die unterschiedlichen Körpergewichte der Läufer Rücksicht zu nehmen, da einleuchtenderweise eine für einen schweren Läufer einen ausreichenden Federweg und damit eine hinreichende Dämpfung vermittelnde Laufsohle für einen leichten Läufer zu hart ist, während die dem leichten Läufer angepasste Laufsohle durch die von einem schweren Läufer ausgeübten Sohlenbelastungen zu sehr zusammengedrückt wird und daher das erwähnte Schwimmgefühl erzeugt oder "durchschlägt". Es gibt daher zahlreiche Laufsohlen der eingangs genannten Art, die zur individuellen Anpassung der Dämpfungsfähigkeit der Laufsohle an die unterschiedlichen Körpergewichte der Läufer in Ausnehmungen unter der Fersenaufstandsfläche austauschbar eingesetzte Stützkörper oder dgl. aufweisen (vgl. DE-AS 29 04 540; DE-OS 32 45 964). Diese bekannten Lösungen setzen jedoch voraus, daß der Läufer selbst in der Lage ist, die für ihn notwendige Dämpfung zu bestimmen, d.h. die Auswahl der hierzu erforderlichen Dämpfungskörper selbst zu treffen, was jedoch keineswegs stets der Fall ist.

Es ist weiterhin bekannt, daß die Federelastizi-

tät der Sohlenwerkstoffe der bekannten Laufsohlen einen sog. "Katapulteffekt" erzeugt, indem im Maße der örtlichen Belastungsverringerung während des Abrollvorganges die Sohle mit einer ihrer Zusammendrückung entsprechenden Kraft den Fuß nach oben beschleunigt. Obwohl dieser Katapulteffekt für die Laufleistung als fördernd angesehen wird, ist er in ausgeprägter Form gesundheitlich von Nachteil, da die Sohle bei vollelastischer Rückgabe der eingeprägten Belastung mit der gleichen Kraft auf den Fuß "zurückschlägt", mit der sie zuvor beim Aufsetzen belastet worden ist. Hierdurch entstehen insbesondere Schädigungen im Bereich der Achillessehne und der Kniegelenke.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Laufsohle der eingangs genannten Art zu schaffen, die auf einfachere Weise eine Anpassung der Dämpfungsfähigkeit der Laufsohle an unterschiedliche Körpergewichte der Läufer ermöglicht, ohne daß der Läufer hierzu selbst eingreifen muß. Darüber hinaus soll die Laufsohle einen Abbau der gesundheitsschädlichen Belastungsspitze aufgrund des Katapulteffekts bewirken.

Erfindungsgemäß wird diese Aufgabe gelöst durch die Ausgestaltung gemäß dem Kennzeichen des Patentanspruches 1.

Dadurch, daß der Dämpfungskörper aus einer Vielzahl von im unbelasteten Zustand sich nur bereichs- oder punktweise aneinander abstützenden Einzelkörpern aus einem elastischen Werkstoff besteht, die direkt aneinander anliegen können oder durch zwischengeschaltetes elastisches Material miteinander verbunden sind, ergibt sich ein progressives Federverhalten. Die Erfindung geht dabei von der im Prinzip bekannten Überlegung aus, daß durch ein progressive Federkennung des elastischen Dämpfungskörpers dieser selbsttätig eine Anpassung an unterschiedliche Körpergewichte der Läufer bewirkt. Denn bei niedriger Belastung kann durch die dort vorhandene weiche Federung ein ausreichender Federweg erzielt werden, während die Zunahme des Federweges mit steigender Belastung entsprechend der progressiv ansteigenden Federkennung immer geringer wird, so daß ein schwerer Läufer mit der Ferse relativ weniger in die Laufsohle einsackt. In diesem Sinn erweist sich ein aus einer Vielzahl von kleinen Einzelkörpern bestehender Dämpfungskörper als eine überraschend einfache Lösung für ein progressives Federverhalten. Denn die Einzelkörper, die vorzugsweise Kugeln sind, jedoch auch Würfel, Zylinder, Quader oder sonstige symmetrische oder asymmetrische Gebilde sein können, stützen sich im unbe lasteten Zustand, in welchem sie die Ausnehmung unter der Fersenaufstandsfläche normalerweise

25

ganz ausfüllen, aufgrund ihrer Gestalt nur punkt-, linien- oder bereichsweise aneinander ab. Sie erzeugen dadurch Zwischenräume in dem durch ihre Gesamtheit gebildeten Dämpfungskörper. Infolge dieser nur kleinflächigen Anlage aneinander wird die auf sie ausgeübte Belastung in eine entsprechende Vielzahl von Einzelkräften aufgeteilt, die zunächst eine örtlich hohe Verformung der Einzelkörper zur Folge haben. Mit zunehmender Verformung wächst jedoch die Kontakt- und Stützfläche zwischen den Einzelkörpern, so daß die Nachgiebigkeit immer geringer wird. Erst in dem Zeitpunkt, in dem durch die elastische Verformung der Einzelkörper sämtliche Zwischenräume aufgezehrt sind, d.h. die Einzelkörper "zu Block" stehen, verhält sich der Dämpfungskörper insgesamt wie ein kompakter elastischer Körper mit angenähert linearer Federkennung.

Die Progressivität der Federkennlinie des erfindungsgemässen Dämpfungskörpers lässt sich durch Wahl der Grösse der Einzelkörper bestimmen. Zweckmässigerweise liegen die Grenzen der Haupt-Querabmessung bzw. des Durchmessers der Einzelkörper bei 2 und 12 mm. Bevorzugt wird jedoch eine Grösse von 3 bis 8 mm.

Mit der hierdurch auf einfache Weise erzielbaren progressiven Federkennung des Dämpfungskörpers geht ein bedeutsamer weiterer Vorteil dieser Lösung einher. Da sich die Einzelkörper in der Ausnehmung bei auftretender Belastung relativ zueinander auch verschieben können, wird ein Teil der eingeprägten Bewegungsenergie in Reibung umgesetzt. Dies bewirkt, daß bei der Entlastung des Dämpfungskörpers dieser die auf ihn einwirkende Kraft nicht voll an die Ferse des Läufers zurückgibt, sondern nur in einem etwas geringeren Ausmaß. Hierdurch wird zwar der normalerweise erwünschte Katapulteffekt, der den Läufer bei weiterem Fortgang der Abrollphase wieder etwas nach oben beschleunigt, vermindert. Jedoch hat sich gezeigt, daß ein voll-elastisches Verhalten des Dämpfungskörpers, der bei der Entlastung die zuvor abgefangene Kraft wieder voll an die Ferse zurück-Beeinträchtigungen gibt, gesundheitliche Fersen- und Achillessehnenbereich zur Folge haben kann. Dadurch, daß sich bei dem erfindungsgemässen Dämpfungskörper dessen Einzelkörper bei und nach der Entlastung erst wieder - unter entsprechender Überwindung von Reibung - in ihre Ausgangslage zurückbewegen müssen, wird dem erwähnten Katapulteffekt mit positiver Auswirkung die Spitze genommen. Dies gilt auch, wenn aus Zweckmässigkeitsgründen die Einzelkörper untereinander zur besseren Handhabung beim Produktionsvorgang der Laufsohle durch ein Klebe- oder Bindemittel leicht aneinander gebunden oder sogar einstückig mit und in einer dünnen Membran gegenseitig fixiert sind. Denn dieses Klebe- oder Bindemittel, das z.B. ein Silikon-Kautschuk sein kann, bzw. die aus dem gleichen Werkstoff wie die Einzelkörper bestehende Membran ist selbst in erheblichem Ausmaß elastisch nachgiebig und verhindert im wesentlichen nur ein Auseinanderfallen der Einzelkörper, jedoch nicht deren Relativbeweglichkeit.

Wie bereits erwähnt, können zum Zweck der besseren Handhabung die Einzelkörper, z.B. Kugeln, einstückig mit einer dünnen Membran geformt sein, die sie in einem so geringen Abstand voneinander fixiert, daß zwischen den Einzelkörpern allenfalls winzige Brücken bestehen. Im Fall von Einzelkörpern mit allseitig gewölbter Oberfläche, z.B. Kugeln, ist jedoch auch bei der Fixierung mittels einer Membran eine direkte Anlage der Kugeln aneinander möglich, da die Membran sich nur durch die aufgrund der Form ohnehin bestehenden Zwischenräume zu erstrecken braucht. Um die erwünschte Relativbeweglichkeit der Einzelkörper und die von diesen gebildeten Zwischenräume nicht zu beeinträchtigen, sollte die Membran sehr dünn gehalten werden, beispielsweise mit einer Dicke von nur wenigen Zehntel Millimeter.

Anstelle einer Membran kann die gewünschte Bindung der Einzelkörper aneinander auch durch winzige stäbchen- oder ringförmige Brücken bewirkt werden, die ebenfalls beispielsweise im Spritzgießverfahren einstückig mit den Einzelkörpern hergestellt sein können. Sowohl die Membran als auch diese brückenförmige Matrix kann eben oder räumlich ausgebildet sein. Eine ebene Ausbildung, bei der auch entsprechend die Einzelkörper in einer Ebene liegen, ist insofern zweckmässig, als hierdurch der Dämpfungskörper insgesamt durch mehrere Schichten dieser so gebundenen Einzelkörper aufgebaut werden kann.

Ein Ausführungsbeispiel der Erfindung ist nachfolgend anhand der beiliegenden Zeichnungen näher erläutert. In den Zeichnungen zeigen:

Fig. 1 eine im Fersenbereich teilweise nach der Linie I-I in Fig. 2 längsgeschnittene erfindungsgemässe Laufsohle;

Fig. 2 eine Draufsicht auf die Laufsohle gemäß Fig. 1, im Fersenbereich geschnitten längs der Linie II-II in Fig. 1, und

Fig. 3 eine Einzeldarstellung eines erfindungsgemässen Dämpfungskörpers, gemäß der die Einzelkörper aneinandergebunden sind.

Die in den Zeichnungen gezeigte Laufsohle besteht aus einer Zwischensohle 1 aus elastischem Kunststoff, z.B. Polyurethan mit einer Shore-A-Härte von 25 bis 65 (entsprechend Shore-C von 40 bis 80), einer damit laufseitig verbundenen Verschleißsohle 2 beispielsweise aus Gummi, die eine nicht näher gezeigte Profilierung aufweisen kann, sowie aus einer Fersenbettschale 3, die mit der Fußseite der Zwischensohle 1 im Fersenbereich verbunden

ist und eine Shore-Härte in gleicher Grössenordnung wie die Zwischensohle oder etwas darüber haben kann.

Unterhalb der Fersenaufstandsfläche, d.h. dem in Fig. 1 mit A angedeuteten Bereich, in welchem das Fersenbein des Läufers die Fersenbettschale 3 belastet, ist eine Ausnehmung 4 in der Zwischensohle 1 eingeformt, die sich von der Trennfläche zwischen der Verschleißsohle 2 und der Zwischensohle 1 ausgehend nach oben erstreckt. Die Ausnehmung 4

endet in einem Abstand von nur etwa 0 bis 2 mm vor der Trennfläche zwischen der Fersenbettschale 3 und der Zwischensohle 1. Der Durchmesser der Ausnehmung 4 beträgt in dem gezeigten Ausführungsbeispiel etwa 3,5 bis 4 cm; ihre Höhe etwa 12,5 bis 13 mm.

Die Ausnehmung 4 ist mit einer Vielzahl von kleinen Kugeln 5 aus einem elastomeren Material von hoher Elastizität, z.B. Polyurethan oder Gummi, gefüllt. Die Kugeln 5 haben eine weitgehend glatte Außenfläche, damit sie sich bei der auftretenden Belastung nicht ineinander verhaken können, sondern auch unter Belastung sich lediglich aufeinander abstützen oder sogar eine gewisse Relativbeweglichkeit haben.

Die Kugeln 5 können, ohne daß dies näher aus der zeichnerischen Darstellung hervorgeht, vor ihrer Zusammenfassung zu einem der Form der Ausnehmung 4 entsprechenden Dämpfungskörper mit einem Klebe- oder Bindemittel, z.B. mit einer Silikon-Kautschuklösung, besprüht sein, damit sie aneinander haften und beim Herstellungsvorgang der Laufsohle, d.h. vor dem Aufbringen der Verschleißsohle 2 auf die Zwischensohle 1, als geschlossener Dämpfungskörper in die Ausnehmung 4 eingesetzt werden können.

Die Ausnehmung 4 ist auf ihrer Unterseite durch die Verschleißsohle 2 verschlossen. In dieser kann im Bereich der Ausnehmung 4 eine Öffnung 6 vorgesehen sein, die durch eine transparente Platte 7 - ggf. aus härterem Material als die Verschleißsohle 2 - verschlossen ist.

Fig. 3 zeigt einen Dämpfungskörper, der aus zwei Kugelschichten 51 und 52 besteht. Jede der beiden Kugelschichten 51, 52 ist dadurch gebildet, daß in einer Ebene angeordnete Kugeln 5 durch sehr kleine Verbindungsstege 53 aneinandergebunden sind, die einstückig mit den Kugeln geformt, z.B. spritz gegossen sind. Durch diese Matrix von Verbindungsstegen 53 sind die Kugeln so gehalten, daß jede Kugelschicht 52 leicht handhabbar ist. In dem gezeigten Ausführungsbeispiel haben beide Kugelschichten 51, 52 einen im wesentlichen kreisförmigen Umriß von einer Grösse, daß sie in die entsprechend ausgebildete Ausnehmung 4 passen und diese weitgehend ausfüllen (Fig.1). Dabei weist die obere Kugelschicht 51 im Kreismittel-

punkt eine Kugel auf, währen der Mittelpunkt der unteren Kugelschicht 52 unbesetzt ist. Auf diese Weise stehen die Kugeln der beiden Schichten "auf Lücke" zueinander, da die Kugelgrösse gleich ist, so daß sich der aus den Fig. 1 und 3 ersichtliche kegelstumpfförmige Aufbau des Dämpfungskörpers ergibt. Diesem Aufbau ist die Form der Ausnehmung 4 angepasst.

Im Ausführungsbeispiel haben die Kugeln einen Durchmesser von etwa 7 mm, woraus sich eine Gesamtanzahl von etwa 40 Kugeln des Dämpfungskörpers ergibt.

Bei der Belastung während des Laufes wird über den über der Ausnehmung 4 befindlichen Teil der Fersenbettschale 3 und ggf. der verbleibenden Wandung der Zwischensohle 1 eine Druckkraft auf die Ansammlung von Kugeln 5 ausgeübt. Diese Druckkraft führt, ausgehend vom Zentrum der Belastung, d.h. normalerweise des unteren Scheitelpunktes des Fersenbeins, zu einer zunehmenden Aneinanderdrückung der Kugeln 5 nach unten und in radialer Richtung. Hierdurch wird ein Federweg erzeugt, während aufgrund der Elastizität der Kugeln 5 eine der Belastung entsprechende Rückstellkraft wirkt. Mit zunehmender Belastung wird die Reaktionskraft der Kugeln, wie eingangs geschildert, progressiv grösser, so daß der Federweg nicht linear zur Belastung ist, sondern die Federwegzunahme mit steigender Belastung abnimmt.

Im Rahmen der Erfindung können Abweichungen von den vorstehend beschriebenen Ausführungsbeispielen getroffen werden. So kann beispielsweise die Form der Ausnehmung, in der der Dämpfungskörper angeordnet ist, beliebig sein und anstelle einer Kreisfläche eine ovale oder polygonal berandete Grundfläche haben. Weiterhin kann die zwischen den Einzelkörpern, hier Kugeln, bestehende Reibung gezielt beeinflusst werden, indem deren Oberfläche bewusst rauh oder weniger rauh gehalten wird. Bei grösserer Rauhigkeit und dadurch erhöhter Reibung nehmen die Kugeln mehr Energie auf und verringern dadurch die Kraftspitze des Katapulteffekts in stärkerem Ausmaß. Es versteht sich weiterhin, daß auch bei Anordnung der Kugeln in einer Matrix der Dämpfungskörper nicht auf die in Fig. 3 gezeigte Gestaltung beschränkt ist.

Ansprüche

1. Laufsohle aus nachgiebigem Kunststoff für Sportschuhe, mit einer unter der Fersenauftrittsfläche vorgesehenen Ausnehmung (4) zur Aufnahme eines elastisch nachgiebigen Dämpfungskörpers, dadurch gekennzeichnet,

daß der Dämpfungskörper aus zumindest zwei getrennten Schichten (51, 52) von in ihrer Gesamtheit die Ausnehmung (4) weitgehend ausfüllenden, im

4

50

30

t.

(S

5

10

15

30

unbelasteten Zustand unter Bildung von Zwischen-
räumen nur bereichs-oder punktweise sich anein-
ander abstützenden Einzelkörpern (5) aus einem
elastischen Werkstoff besteht, und daß die Einzel-
körper (5) innerhalb der jeweiligen Schicht (51 bzw.
52) miteinander verbunden sind und die Schichten
(51, 52) derartig übereinander angeordnet sind, daß
die Einzelkörper (5) der einen Schicht (51 bzw. 52)
gegenüber den Einzelkörpern (5) der anderen
Schicht (52 bzw. 51) versetzt sind.

2. Laufsohle nach Anspruch 1, dadurch gekennzeichnet, daß die Einzelkörper (5) Kugeln sind.

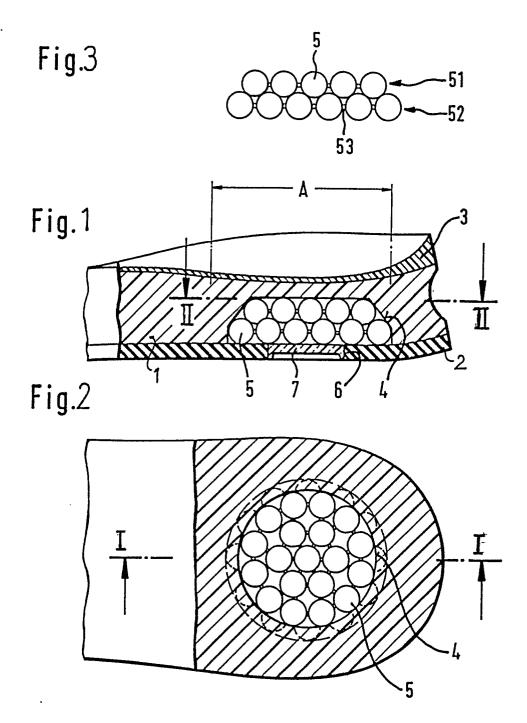
3. Laufsohle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Haupt-Querabmessung bzw. der Durchmesser der Einzelkörper (5) 2 bis 12, vorzugsweise 3 bis 8 mm beträgt.

4. Laufsohle nach einem der Ansprüche 1 bis
3, 20
dadurch gekennzeichnet,
daß die Einzelkörper (5) untereinander durch eine
Binde-oder Klebemittel aneinander gebunden sind.

5. Laufsohle nach einem der Ansprüche 1 bis 3, 25 dadurch gekennzeichnet, daß die Einzelkörper (5) untereinander durch kleine Stege oder Brücken (53) verbunden sind.

6. Laufsohle nach Anspruch 5, dadurch gekennzeichnet, daß die Stege oder Brücken (53) mit den Einzelkörpern (5) einstückig sind.

7. Laufsohle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, 35 daß die Ausnehmung (4) die Form eines Kreiszylinders mit zur Laufseite der Laufsohle senkrechter


Achse hat.

8. Laufsohle nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß der Dämpfungskörper im wesentlichen eine kegelstumpfförmige Gestalt hat und die Ausnehmung (4) der Gestalt des Dämpfungskörpers angepasst ist.

50

40

45

88 12 1166 ΕP

EINSCHLÄGIGE DOKUMENTE				
Kategorie			Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	FR-A- 800 207 (A	. SCHÜTZ)	1	A 43 B 21/26
A	GB-A- 223 748 (A	. McMICKEN)	1	A 43 B 13/18
A	DE-A-3 619 387 (A	SICS)	1	
A	DE-U-8 626 991 (T	. LÖDING)	1	
A	US-A-4 316 332 (E	. GIESE)	1	
A	US-A-2 885 797 (E	. CHRENCIK)	1	
				RECHERCHIERTE
				SACHGEBIETE (Int. Cl.4)
				A 43 B
Der voi	rliegende Recherchenbericht wur	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüfer
DE	N HAAG	23-02-1989	DECL	ERCK J.T.

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument