EUROPÄISCHE PATENTANMELDUNG

12

(21) Anmeldenummer: 88810865.1

(22) Anmeldetag: 15.12.88

(s) Int. Ci.4: C 10 M 141/08

//(C10M141/08,133:12,135:20, 135:02),C10N30:10

(30) Priorität: 24.12.87 CH 5055/87

Veröffentlichungstag der Anmeldung: 05.07.89 Patentblatt 89/27

(84) Benannte Vertragsstaaten: BE DE FR GB IT

(7) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH)

② Erfinder: Evans, Samuel, Dr. Route des Charbonnières 17 CH-1723 Marly (CH)

(54) Schmierstoffzusammensetzung.

Tusammensetzung, enthaltend wenigstens einen Schmierstoff beispielsweise auf Basis von Mineralölen, synthetischen Oelen oder Gemischen davon oder eine Hydraulikflüssigkeit und eine Mischung aus einer oder mehrerer Verbindungen aus der Reihe A) und einer oder mehrerer Verbindungen aus der Reihe B), wobei die Verbindungen der Reihe A) die allgemeine Formel

$$(R^1)^{\frac{1}{n}} \stackrel{\text{if }}{\longrightarrow} (R^1)^n \qquad (1)$$

aufweisen, und die Verbindungen der Reihe B) die allgemeine

$$R^2$$
 SR^4
(II) oder
 R^3
 SR^4
(II) oder
 R^3
 SR^4
(IIa)

aufweisen, und die Reste R¹ und R¹′ beispielsweise -H oder Alkyl mit 1 bis 24 C-Atomen und n 0,1 oder 2 bedeuten, R² und R³ beispielsweise -H, Alkyl mit 1 bis 24 C-Atomen, Phenyl oder R² und R³ zusammen eine Alkylengruppe bedeuten und R⁴ z.B. eine Alkylgruppe mit 4-18 C-Atomen oder ein Rest -CH₂- C-OR⁵,

wobei R^5 eine Alkylgruppe sein kann, und $R^{4\prime}$ eine Alkylengruppe und Y gleich O oder S ist. Die Mischung verleiht Schmierstoffzusammensetzungen eine hohe Stabilität gegen oxidativen Abbau.

Beschreibung

5

10

15

20

40

50

55

Schmierstoffzusammensetzung

Die vorliegende Erfindung betrifft neue Schmierstoff- und Hydraulikflüssigkeitzusammensetzungen mit hoher Stabilität gegen oxidativen Abbau.

Es ist bekannt, Schmierstoffen, wie Mineralölen oder synthetischen und halbsynthetischen Oelen, Zusatzstoffe zur Verbesserung der Gebrauchseigenschaften zuzusetzen.

Von grosser Bedeutung sind Zusatzstoffe, welche den oxidativen Abbau der Schmierstoffe unterbinden und eine hohe Lager- und Wirkungsstabilität gewährleisten.

Hierfür werden heute beispielsweise den Schmierölen Zusatzstoffe aus der Reihe der Diphenylamine, wie sie in der EP-A-0 149 422 beschrieben werden, zugesetzt.

Weiters wurden aus der DE-OS 28 27 253 Thioketale bekannt, die als Hochdruck-Zusätze in Schmiermitteln Verwendung finden können.

Es wurden nun neue Schmierstoffzusammensetzungen gefunden, die weiter verbesserte Eigenschaften gegenüber den bisher bekannt gewordenen Produkten aufweisen und sich durch hohe Stabilität gegenüber oxidativer Degradation auszeichnen.

Die vorliegende Erfindung betrifft eine Zusammensetzung, enthaltend wenigstens einen Schmierstoff, insbesondere auf Basis von Mineralöl, synthetischen Oelen oder Gemischen davon, oder eine Hydraulikflüssigkeit, und eine Mischung aus einer oder mehreren Verbindungen aus der Reihe A) und einer oder mehreren Verbindungen aus der Reihe B), wobei die Verbindungen der Reihe A) die allgemeine Formel

 $(\mathbb{R}^{1}) \xrightarrow{n} \mathbb{I} \qquad (\mathbb{R}^{1})$ (1)

aufweisen, in der R¹ und R¹' gleich oder verschieden sind und -H, Alkyl mit 1 bis 24 C-Atomen, Cycloalkyl mit 5 bis 12 C-Atomen oder Phenyl-(C₁-C₄)-alkyl bedeuten und n eine Zahl von 0, 1 oder 2 bedeutet und die verbindungen der Reihe B) die allgemeine Formel

aufweisen, in denen R² -H, Alkyl mit 1 bis 24 C-Atomen, Phenyl, mit NO₂, Cl, Br, F, C₁-C₁₂-Alkyl und/oder C₁-C₁₂-Alkoxy substituiertes Phenyl, Phenyl-(C₁-C₄)alkyl, Phenyl der allgemeinen Formel

45 OH (R⁶) x

worin R⁶ -H, Alkyl mit 1 bis 20 C-Atomen oder Phenyl-(C₁-C₄)-alkyl und x gleich 1 oder 2 ist, bedeutet oder R₂ Furyl, Tetrahydrofuryl, 2-Methylfuryl, 2-Methyltetrahydrofuryl, Cyclohexyl oder unsubstituiertes oder mit -CH₃ substituiertes Cyclohexenyl bedeutet, oder R² für eine Gruppe der Formel

$$-C_{m}H_{\frac{2m}{2m}}\begin{bmatrix} H \\ C \\ \vdots \\ \vdots \\ D \end{bmatrix}_{p}SR$$

10

steht, wobei m=1 und p=0 oder 1 ist, oder m=2 und p=0 ist, und R^4 jeweils die nachstehend angegebene Bedeutung hat, und R^3 -H, Alkyl mit 1 bis 24 C-Atomen, Phenyl, mit NO₂, Cl, Br, F oder C_1 -Cl₂-Alkyl substituiertes Phenyl, Phenyl-(C_1 -C₄)-alkyl oder einen Phenylrest der allgemeinen Formel

15

25

20

bedeutet, worin R6 und x die angegebene Bedeutung hat oder R3

30

$$-C_{m}H_{\overline{2m}} \qquad \qquad C_{m}H_{\overline{2m}} \qquad C_{m}H_{\overline{2m}} \qquad \qquad C_{m}H_{\overline{2m$$

35

wobei m = 1 und p = 0 oder 1 ist, oder m = 2 und p = 0 ist, oder

40

45

bedeutet, wobei R⁴ jeweils die nachstehend angegebene Bedeutung hat, oder R₂ und R₃ zusammen eine -CH₂-(CH₂)₂₋₉-CH₂-Gruppe bedeuten und die Reste R⁴ gleich oder verschieden sind und Alkyl mit 4 bis 18 C-Atomen, Phenyl, Tolyl, Benzyl oder -(CH₂) \xrightarrow{s} C -OR⁵,

50

wohei

s=1 oder 2 ist und R^5 gleich Alkyl mit 1 bis 24 C-Atomen ist, darstellen und $R^{4\prime}$ unsubstituiertes oder C_1 - C_{12} -alkylsubstituiertes Alkylen mit 1 bis 18 C-Atomen bedeutet und Y gleich O oder S ist.

55

Bedeuten die Substituenten R¹, R¹′, R², R³ oder R⁵ Alkyl mit 1 bis 24 C-Atomen, so sind das beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, 2-Butyl, t-Butyl, Pentyl, 1-Methylphenyl, Isopentyl, Hexyl, 1,3-Dimethylbutyl, Heptyl, 1,1,3,3-Tetramethylbutyl, 1-Methylhexyl, 3-Heptyl, Octyl, 2-Ethylhexyl, 1-Methylheptyl, Nonyl, 1,1,3-Trimethylhexyl, Decyl, Undecyl, Dodecyl, 1-Methylundecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Eicosyl usw.

60

Für die Alkylsubstituenten R⁴ mit 4 bis 18 C-Atomen und R⁶ mit 1 bis 20 C-Atomen gelten sinngemäss für die jeweilige C-Kettenlänge die oben genannten Beispiele.

65

Bedeutet R1 oder R1 Cycloalkyl mit 5 bis 12 C-Atomen, so handelt es sich etwa um eine Gruppe der Formel

$$-HC-(CH2) - CH2,$$

10

20

35

40

45

50

55

60

65

wobei a eine Zahl von 3 bis 9 ist. Diese Cycloalkylgruppe kann gegebenenfalls durch C₁-C₄-Alkyl substituiert sein. Beispiele sind Cyclopentyl, Cyclohexyl, Methylcyclohexyl, Dimethylcyclohexyl, Trimethylcyclohexyl, t-Butylcyclohexyl, Cyclooctyl und Cyclododecyl.

Der Substituent Phenyl-(C₁-C₄)-alkyl ist vorzugsweise Benzyl.

Schliesslich können R² oder R³ ein mit C₁-C₁₂-Alkyl substituiertes Phenyl darstellen. Die Beispiele für C₁-C₁₂-Alkyl lassen sich obiger Aufzählung sinngemäss entnehmen. Beispiele sind Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, t-Butylphenyl, Isopropylphenyl, Di-t-butylphenyl oder 2,6-Di-t-butyl-4-methylphenyl.

R^{4'} in Formel (IIa) kann unsubstituiertes oder C₁-C₁₈ Alkyl substituiertes Alkylen bedeuten. Beispiele dafür sind Methylen, Ethylen, Propylen, Trimethylen, Tetramethylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Decamethylen oder Dodecamethylen, weiters Di-1,1-dimethyl-2,2-dimethyldimethylen, 1,1,2-Trimethyl-2-n-propyltrimethylen, 2-Ethyl-2-n-butyltrimethylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-Methyltrimethylen, 2,2-Dimethyltrimethylen, 1,1,3-Trimethylen oder 2,2,4- oder 2,4,4-Trimethylen weiters Di-1,1-dimethylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-Methyltrimethylen, 2,2-Dimethyltrimethylen, 1,1,3-Trimethylen oder 2,2,4- oder 2,4,4-Trimethylen weiters Di-1,1-dimethylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen oder 2,2,4- oder 2,4,4-Trimethylen weiters Di-1,1-dimethylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen oder 2,2,4- oder 2,4,4-Trimethylen weiters Di-1,1-dimethylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-iso-Propyl-2,2-dimethyltrimethylen, 1-methylen, 1-meth

In einer zweckmässigen Ausführungsform sind in den Verbindungen mit der Formel I R¹ und R¹′ gleich oder verschieden und bedeuten -H, Alkyl mit 4 bis 12 C-Atomen, Cycloalkyl und dabei vorzugsweise Cyclohexyl, oder Phenyl-(C₁-C₄)-alkyl.

In einer vorzugsweisen Ausführungsform bedeuten R1 und R1, -H oder Alkyl mit 4 bis 8 C-Atomen.

Als Verbindungen der Reihe A) können insbesondere auch Gemische von zwei oder mehreren Verbindungen mit der Formel I zur Anwendung gelangen. Beispielsweise können als Verbindungen der Reihe A) die Reaktionsprodukte erhältlich nach dem Verfahren nach der EP-A-0 149 422 eingesetzt werden. Bevorzugt wird das nach dem genannten Verfahren erzeugte Reaktionsprodukt als solches eingesetzt. Nach dem Verfahren dieser letzteren Patentschrift wird Diphenylamin mit Diisobutylen in Anwesenheit eines Katalysators zu einer flüssigen Antioxidanszusammensetzung derart umgesetzt, dass die Reaktion von Diphenylamin mit einem Ueberschuss an Diisobutylen in Anwesenheit eines aktiven Tonerde-Katalysators durchgeführt wird, dass die Konzentration an Diisobutylen über die Reaktionsdauer im Wesentlichen konstant gehalten wird, dass die Reaktionstemperatur mindestens 160°C beträgt, dass die Reaktion solange durchgeführt wird bis der Gehalt an 4.4'-Di-tert.-octyldiphenylamin, bezogen auf die Reaktionsmasse ohne Katalysator, unter 30 Gew.-%, vorzugsweise unter 25 Gew.-% und der Gehalt an Diphenylamin unter 10 Gew.-%, vorzugsweise unter 5 Gew.-% liegen, dass der Katalysator und nicht umgesetztes Diisobutylen entfernt werden und dass das entstehende flüssige Produkt isoliert wird. Es resultiert aus diesem Verfahren ein flüssiges Reaktionsgemisch enthaltend 4.4'-Di-tert-ocytyldiphenylamin. Dieses Reaktionsgemisch, enthaltend die Verbindungen der Reihe A), wird bevorzugt für die Mischung zusammen mit den Verbindungen aus der Reihe B), wie erwähnt, angewendet.

Geeignete Gemische von Verbindungen mit der Formel I können beispielsweise in variierenden Mengenanteilen enthalten:

```
a) Diphenylamin.
```

- b) 4-Tert-butyldiphenylamin
- c) i) 4-Tert-octyldiphenylamin
- c) ii) 4,4'-Di-tert-butyldiphenylamin
- c) iii) 2.4.4'-Tris-tert-butyldiphenylamin
- d) i) 4-tert-butyl-4'-tert-octyldiphenylamin
- d) ii) 2,2'- oder 2,4'-Di-tert-octyldiphenylamin
- d) iii) 2,4-Di-tert-butyl-4'tert-octyldiphenylamin
- e) i) 4,4'-Di-tert-octyldiphenylamin
- e) ii) 2,4-Di-tert-octyl-4'-tert-butyldiphenylamin

In bevorzugter Weise enthält das Gemisch von verbindungen der Reihe A) der Formel I

- a) 1 bis 5 Gew.-% Diphenylamin
- b) 8 bis 18 Gew.-0/o 4-Tert-butyldiphenylamin
- c) 21 bis 31 Gew.-% einer oder mehrerer der verbindungen
 - i) 4-Tert-octyldiphenylamin
 - ii) 4,4'-Di-tert-butyldiphenylamin
 - iii) 2,4,4'-Tris-tert-butyldiphenylamin
- d) 20 bis 31 Gew.-% einer oder mehrerer der verbindungen
 - i) 4-Tert-butyl-4'-tert-octyldiphenylamin
 - ii) 2,2'- oder 2,4'-Di-tert-octyldiphenylamin
 - iii) 2,4-Di-tert-butyl-4'tert-octyldiphenylamin

und

- e) 15 bis 29 Gew.-% der Verbindungen
- i) 4,4'-Di-tert-octyldiphenylamin oder

i) 4,4'-Di-tert-octyldiphenylamin und

ii) 2,4-Di-tert-octyl-4'-tert-butyldiphenylamin.

Dieses Gemisch ist insbesondere nach dem erwähnten Verfahren erhältlich.

In weiteren zweckmässigen Ausführungsformen bedeutet in der Formel II der Substituent R₂ -H, Alkyl mit 1 bis 12 C-Atomen, Phenyl, o-Hydroxyphenyl, 3,5-Di-R⁶-4-Hydroxyphenyl, wobei R⁶ die oben angegebene Bedeutung hat, Furyl oder

10

5

15

20

35

40

45

60

bedeutet,

wobei m=1 und p=0 oder 1 ist, oder m=2 und p=0 ist, und R^4 die oben angegebene Bedeutung hat. R^3 in Formel II ist zweckmässig -H, Alkyl mit 1 bis 12 C-Atomen oder

 $-C_{m}H$ $-C_{m}H$ $-SR^{4}$,

wobei m=1 und p=0 oder 1 ist, oder m=2 und p=0 ist, und R^4 die oben angegebene Bedeutung hat. R^4 bedeutet in einer zweckmässigen Ausführungsform Alkyl mit 4 bis 12 C-Atomen, Phenyl oder -(CH₂) $\frac{-C}{s}$ $\frac{-C}{s}$ $\frac{-C}{s}$ $\frac{-C}{s}$

wobei R⁵ für Alkyl mit 1 bis 18 C-Atomen und vorzugsweise für Alkyl mit 8-13 C-Atomen und s für 1 oder 2 steht.

Die Substituenten R⁴ sind zweckmässig in Verbindungen der Formel II jeweils gleich.

Schliesslich gehören zu den ganz besonders bevorzugten Verbindungen nach Formel II solche, bei denen R² gleich -H, Alkyl mit 1 bis 8 C-Atomen, Furyl oder Phenyl ist, dann Verbindungen bei denen R³ -H, Alkyl mit 1 bis 8 C-Atomen oder

-C₂H₄-¢-SR⁴

wobei R⁴ die eingangs angegebene Bedeutung hat, darstellt. R⁴ hat bevorzugt die Bedeutung von Alkyl mit 8 55 bis 12 C-Atomen oder -CH₂- C -OR⁵,

wobei R⁵ verzweigtes Alkyl mit 8 bis 13 C-Atomen und insbesondere Tert.-butyl oder 2-Ethylhexyl darstellt, ist. Verbindungen aus der Reihe B) können als Einzelverbindungen oder als Gemisch verschiedener Verbindungen aus der Reihe B) untereinander jeweils im Gemisch mit einer Verbindung der Reihe A) oder einem Gemisch von Verbindungen der Reihe A) eingesetzt werden.

Wie erwähnt, enthält demnach die Schmierstoffzusammensetzung eine Mischung aus wenigstens einer verbindung aus der Reihe A) mit der Formel I und wenigstens einer verbindung aus der Reihe B) mit der Formel II.

Zweckmässig werden Gemische von 1 bis 9 Gewichtsteilen der verbindung oder den Verbindungen der 65

Reihe A) mit 9 bis 1 Gewichtsteilen der Verbindung oder den Verbindungen der Reihe B), und vorzugsweise von 2 bis 8 Gewichtsteile der Verbindung oder den Verbindungen der Reihe A) und 8 bis 2 Gewichtsteile der Verbindung oder den Verbindungen der Reihe B) angewendet.

Bevorzugt werden Gemische, enthaltend, als Verbindungen der Reihe A), 3 Gewichtsteile eines Reaktionsgemisches enthaltend 4,4'-Di-tert-octyldiphenylamin und, als Verbindung der Reihe B), 7 Gewichtsteile der Verbindung der Formel

$$-CH - [-SCH2G - OCH2 - CH - C4H9]2$$

eingesetzt.

15

30

40

Bevorzugt werden auch Gemische angewendet, enthaltend als Verbindungen der Reihe A) ein Reaktionsgemisch enthaltend 4,4'-Di-tert-octyldiphenylamin und als Verbindung der Reihe B), eine Verbindung der Formel

20
$$-CH-[-SCH_2-C-O-i-C_8H_{17}]_2$$
,

wobei i-C₈H₁₇ ein Gemisch von verzweigten Isomeren mit jeweils 8 C-Atomen bedeutet, in einem Mischungsverhältnis von A) zu B) von 9:1 bis 1:1 Gewichtsteilen. Insbesondere beträgt das Mischungsverhältnis von A) zu B) 9:1 oder 7:3 oder 1:1 Gewichtsteile.

Ein bevorzugtes Gemisch enthält als Verbindungen der Reihe A) ein Reaktionsgemisch enthaltend 4,4'-Di-tert-octyldiphenylamin und, als Verbindung der Reihe B), eine Verbindung der Formel

wobei i-C₈H₁₇ ein Gemisch von verzweigten Isomeren mit jeweils 8 C-Atomen bedeutet, in einem Mischungsverhältnis von A) zu B) von 9:1 bis 1:9 Gewichtsteilen. Insbesondere beträgt das Mischungsverhältnis von A) zu B) 9:1 oder 3:7 oder 1:9 Gewichtsteile.

Die Verbindungen nach der Formel II sind beispielsweise aus Reid, "Organic Chemistry of Bivalent Sulfur", vol. 3, pp. 320-341, Chemical Publishing Company, New York, 1960, bekannt und können auf an sich bekannte Weise synthetisiert werden. Es bieten sich beispielsweise folgende Reaktionswege an:

$$R^{2}$$
 C=0 + 2 R⁴ SH $\frac{\text{Katalysator}}{\text{(Mineralsäure,}}$ R^{2} C-(SR⁴)₂ saure Erden,

Lewis Säuren)

wobei dieses Verfahren ohne Lösungsmittel oder in einem Lösungsmittel, z.B. in Cyclohexan, Toluol, Xylol oder Nitro- oder Chlorbenzol durchgeführt werden kann.

65

ъ)

Das Verfahren lässt sich entweder ohne die Anwesenheit eines Lösungsmittels oder z.B. in Methanol, Ethanol, Hexan oder Toluol als Lösungsmittel durchführen.

Die erfindungsgemässe Mischung ist geeignet, Schmierstoffen, insbesondere auf Basis von Mineralölen, synthetischen Oelen oder halbsynthetischen Schmierölen und Hydraulikflüssigkeiten zugefügt zu werden.

So zeigen Mineralöle, synthetische und halbsynthetische Schmieröle, sowie deren Gemische und Hydraulikflüssigkeiten, welche zweckmässig 0,1 bis 10 Gew.-0/0, z.B. 0,1 bis 5 Gew.-0/0, und vorzugsweise 0,1 bis 1,0 Gew.-0/0, jeweils bezogen auf den Schmierstoff oder die Hydraulikflüssigkeit, einer Mischung aus wenigstens einer Verbindung A) und wenigstens einer Verbindung B) enthalten, die erwünschten Eigenschaften, besonders bezüglich der guten Oxidationsbeständigkeit.

Die in Frage kommenden Schmierstoffe sind z.B. in "Ullmanns Enzyklopädie der technischen Chemie", Bd. 13, Seiten 85-94 (Verlag Chemie, Weinheim, 1977), in D. Klamann, "Schmierstoffe und verwandte Produkte", Verlag Chemie, Weinheim (1982) oder in J.H. Schewe, W. Kobek, "Das Schmiermittel Taschenbuch", Hüthig Verlag, Heidelberg (1974), beschrieben und dem Fachmann geläufig.

Der Schmierstoff kann also beispielsweise ein Oel, basierend auf einem Mineralöl oder einem synthetischen Oel, oder ein Fett sein. Der Ausdruck Mineralöl umfasst alle Mineralöle für Schmierzwecke, wie Mineralöle auf Kohlenwasserstoffbasis. Synthetische Oele können beispielsweise aliphatische oder aromatische Carboxylester, polymere Ester, Polyalkylenoxide, Phosphorsäureester, Poly- α -olefine, Silicone, Glykole, Polyglykole oder Polyalkylenglykole sein.

Die Schmierstoffe können zusätzlich andere Additive enthalten, die zugegeben werden, um die Grundeigenschaften von Schmierstoffen noch weiter zu verbessern; dazu gehören: weitere Antioxidantien, Metallpassivatoren, Rostinhibitoren, Viskositätsindex-Verbesserer, Stockpunkterniedriger, Dispergiermittel, Detergentien, Verdicker, Biozide, Antischaummittel, De- und Emulgatoren, sowie Hochdruck-Zusätze und Reibungsverminderer.

Beispiele für phenolische Antioxidantien

1. Alkylierte Monophenole 2,6-Di-tert-butyl-4-methylphenol, 2,6-Di-tert-butylphenol, 2-tert-Butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butylphenol, 2,6-Di-tert-butylphenol, 2,6-Di-tert-butylphenol, 2,6-Di-cyclopentyl4-methylphenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Di-octadecyl-4-methylphenol, 2,4,6-Tri-cyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethylphenol, o-tert-Butylphenol.

2. Alkylierte Hydrochinone
2,6-Di-tert-butyl-4-methoxyphenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-amyl-hydrochinon, 2,6-Diphenyl-4-octadecyloxyphenol.

25

30

35

40

45

50

55

4. Alkyliden-Bisphenole

2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis-(6-tert-butyl-4-ethylphenol), 2,2'-Methylen-bis-[4-methyl-6-(α -methylcyclohexyl)-phenol], 2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(6-tert-butyl-4-iso-butylphenol), 2,2'-Methylen-bis-[6-(α -methylben-zyl)-4-nonylphenol], 2,2'-Methylen-bis-(6-di-tert-butylphenol), 4,4'-Methylen-bis-(6-tert-butyl-2-methylphenol), 1,1-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 2,6-Di-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-Tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutan, Ethylenglycol-bis-[3,3-bis-(3'-tert-butyl-4'-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-methyl-phenyl]-terephthalat.

5. Benzylverbindungen

1,3,5-Tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, Bis-(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid, 3,5-Di-tert-butyl-4-hydroxybenzyl-mercaptoessigsäure-isooctylester, Bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithiol-terephthalat, 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-isocyanurat, 1,3,5-Tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-dioctadecylester, 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-monoethylester, Calcium-salz.

20 6. Acylamiophenole

25

30

4-Hydroxy-laurinsäureanilid, 4-Hydroxy-stearinsäureanilid, 2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-s-triazin, N-(3,5-ditert-butyl-4-hydroxyphenyl)-carbaminsäureoctylester.

7. Ester der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit

Methanol, Diethylenglycol, Octadecanol, Triethylenglycol, 1,6-Hexandiol, Pentaerythrit, Neopentylglycol, Tris-hydroxyethyl-isocyanurat, Thiodiethylenglycol, Bis-hydroxyethyl-oxalsäurediamid.

8. Ester der β -(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit

Methanol, Diethylenglycol, Octadecanol, Triethylenglycol, 1,6-Hexandiol, Pentaerythrit, Neopentylglycol, Tris-hydroxyethyl-isocyanurat, Thiodiethylenglycol, Di-hydroxyethyl-oxalsäurediamid.

9. Amide der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie z.B.

N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-trimethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.

Beispiele für aminische Antioxidantien:

N,N'-Di-isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(1,4-dimethyl-pentyl)-p-phenylendiamin, N,N'-Bis(1-ethyl-3-methyl-pentyl)-p-phenylendiamin, N,N'-Bis(1-methyl-heptyl)-p-phenylendiamin, N,N'-Di-(naphthyl-2)-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-Cyclohexyl-N'-phenyl-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-Cyclohexyl-N'-phenyl-p-phenylendiamin, N-Isopropoxy-diphenylamin, N-Isopropoxy-diphenylamin, N-Phenyl-1-naphthylamin, N-Phenyl-2-naphthylamin, N-Allyldiphenylamin, 4-Isopropoxy-diphenylamin, N-Phenyl-1-naphthylamin, N-Phenyl-2-naphthylamin, 4-n-Butylaminophenol, 4-Butyrylamino-phenol, 4-Nonanoylamino-phenol, 4-Dodecanoylamino-phenol, 4-Octadecanoylamino-phenol, Di-(4-methoxy-phenyl)-amin, 2,6-Di-tert-butyl-4-dimethylamino-methyl-phenol, 2,4'-Diamino-diphenylmethan, 4,4'-Diamino-diphenylmethan, N,N,N',N'-Tetramethyl-4,4'-diamino-diphenylmathan, 1,2-Di-[(2-methyl-phenyl)-amino]-ethan, 1,2-Di-(phenylamino)-propan, (o-Tolyl)-biguanid, Di-[4-(1',3'-dimethyl-butyl)-phenyl)amin, tert-octyliertes N-Phenyl-naphthylamin, Gemisch aus mono- und dialkylierten tert-Butyl-/tert-Octyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-1,4-benzothiazin, Phenothiazin, N-Allylphenothiazin.

Beispiele für weitere Antioxidantien

Aliphatische oder aromatische Phosphite, Ester der Thiodipropionsäure oder der Thiodiessigsäure, oder Salze der Dithiocarbamid- oder Dithiophosphorsäure.

Beispiele für Metallpassivatoren sind:

für Kupfer, z.B.:

65

Triazole, Benztriazole und deren Derivate, 2-Mercaptobenzthiazol, 5,5'-Methylenbisbenztriazol, 4,5,6,7-Tetrahydrobenztriazol, 2,5-Di-mercaptothiadiazol, Salicyliden-propylendiamin, Salze von Salicylaminoguanidin.

Beispiele für Rost-Inhibitoren sind:

a) Organische Säuren, ihre Ester, Metallsalze und Anhydride, z.B.:

N-Oleoyl-sarcosin, Sorbitan-mono-oleat, Blei-naphthenat, Dodecenylbernsteinsäure-anhydrid, Alkenyl-

bernsteinsäure-Halbester, 4-Nonylphenoxy-essigsäure.

- b) Stickstoffhaltige verbindungen, z.B.:
 - I. Primäre, sekundäre oder tertiäre aliphatische oder cycloaliphatische Amine und Amin-Salze von organischen und anorganischen Säuren, z.B. öllösliche Alkylammoniumcarboxylate.
 - II. Heterocyclische Verbindungen, z.B.:

Substituierte Imidazoline und Oxazoline.

c) Phosphorhaltige Verbindungen, z.B.:

Aminsalze von Phosphorsäurepartialestern.

d) Schwefelhaltige Verbindungen, z.B.: Barium-dinonylnaphthalin-sulfonate, Calciumpetroleum-sulfonate.

10

5

Beispiele für Viskositätsindex-Verbesserer sind:

Polyacrylate, Polymethacrylate, Vinylpyrrolidon/Methacrylat-Copolymere, Polyvinylpyrrolidone, Polybutene, Olefin-Copolymere, Styrol/Acrylat-Copolymere, Polyether.

15

Beispiele für Stockpunkterniedrixer sind:

Polymethacrylat, alkylierte Naphthalinderivate.

Beispiele für Dispergiermittel/Tenside sind:

Polybutenylbernsteinsäure-imide, Polybutenylphosphonsäurederivate, basische Magnesium-, Calcium-, und Bariumsulfonate und -phenolate.

20

25

30

Beispiele für Verschleissschutz-Additive sind:

Schwefel und/oder Phosphor und/oder Halogen enthaltende Verbindungen, wie geschwefelte pflanzliche Oele, Zinkdialkyldithiophosphate, Tritolylphosphat, chlorierte Paraffine, Alkyl- und Aryldisulfide, Triphenylphosphorothionate, Diethanolaminomethyltolyltriazol und Di(2-isooctyl)aminomethyltolyltriazol.

Die Erfindung umfasst auch die Verwendung von Mischungen von Verbindungen der Reihe B) als Antioxidant in Schmierstoffen und Hydraulikflüssigkeiten.

Die erfindungsgemässen Zusätze sind ebenso wirksam in Schmiersystemen vorbeschriebener Art, die jedoch zusätzlich ein Co-Schmiersystem, enthaltend übliche Mengen an Festschmierstoffen, wie Graphit, Bornitrid, Molybdändisulfid oder Polytetrafluorethylen aufweisen.

Die Verbindungen der Reihe A) und die Verbindungen der Reihe B) können in den angegebenen Mengenverhältnissen untereinander gemischt und die Mischung anschliessend in den angeführten Mengen dem Schmierstoff oder der Hydraulikflüssigkeit zugemischt werden. Es ist auch zweckmässig, die Verbindungen der Reihe A) und die Verbindungen der Reihe B) separat dem Schmierstoff oder der Hydraulikflüssigkeit beizumischen, wobei auch in diesem Falle die angegebenen Mengenverhältnisse

sinngemäss eingehalten werden müssen. Auch die Herstellung von sogenannten Masterbatches ist möglich. Anhand der nachfolgenden Beispiele ist die Erfindung noch weiter erläutert.

Alle Angaben in Teilen und in Prozenten beziehen sich, sofern nicht anders angegeben, aufs Gewicht.

40

Beispiel 1:

a) Herstellen der Thioketalkomponente

45

$$\begin{bmatrix} CH - \begin{bmatrix} -SCH_2G - O - CH_2 - CH - C_4H_9 \\ C_2H_5 \end{bmatrix} \end{bmatrix}_2$$

55

50

106,1 g Benzaldehyd und 408,7 g Thioglykolsäure-2-äthylhexylester in 100 ml Toluol werden vorgelegt, 10 g Bleicherde (Tonsil L 80 S®) zugegeben und die graue Suspension am Wasserabscheider gekocht. Nach 45 Min. Kochen am Rückfluss spaltet sich Wasser ab und die Suspension verfärbt sich rosa. Nach 4 Stunden spalten sich ca. 17 ml Wasser (18 ml nach Theorie) ab. Den Ansatz lässt man auf ~80°C abkühlen und die rosa gefärbte Suspension wird abgesaugt und mit wenig Toluol gewaschen. Das klare gold-gelbe Filtrat wird am Rotationsverdampfer bei ca. 20 Torr. eingengt und anschliessend bei 70°C am Hochvakuum 0,02 Torr getrocknet.

60

Man erhält 487,6 g, gleich 98,15 % der Theorie, einer goldgelben öligen Flüssigkeit. $n_{\scriptscriptstyle D}^{20}=1,518.$

Analyse: gefunden: 65,22 % C, 9,01 % H, 12,81 % S

berechnet: 65,28 % C 8,93 % H, 12,91 % S, 12,88 % O

b) Herstellen des 4,4'-Di-tert-octyldiphenylamin enthaltenden Reaktionsgemisches:

169,2 g Diphenylamin und 33,8 g aktive Tonerde (Fulcat® 22B von Laporte Industries) werden in ein mit Rührer und Temperaturfühler versehenes Reaktionsgefäss eingefüllt und auf 165°C erhitzt. Sobald das Gemisch genügend leichtflüssig ist, wird gerührt. Danach werden 196.4 g Diisobutylen nach und nach zudosiert, so dass die Temperatur des Reaktionsgemisches nicht unter 165°C absinkt. Die Zugabe dauert 5 Stunden bis zur Beendigung der Reaktion. Der Rückfluss beginnt sogleich nach Reaktionsbeginn. Das Heizen und Rühren wird bei 165°C weitergeführt, unter häufiger Probenahme, bis die Gas/Flüssigchromatographische Analyse einen Gehalt an 4,4′-Di-tert.-octyldiphenylamin von unter 25 Gew.-% ergibt (ohne Katalysator).

Die Reaktionsmasse wird auf 60°C gekühlt und der Katalysator durch vakuumfiltration entfernt. Das Filtrat wird in eine Destillationsapparatur übergeführt und unter Heizen und Rühren wird der Druck auf 26 mbar reduziert.

Während der Destillation lässt man die Aussentemperatur langsam auf 165°C steigen und hält sie über 2 Stunden konstant auf dieser Temperatur, während die Destillation zum Stillstand kommt. Es werden 300 g einer viskosen, dunklen Flüssigkeit vom Flammpunkt von 210°C erhalten.

Die Flüssigkeit hat die ungefähre Zusammensetzung von 3,2 Gew.-% Diphenylamin, 13,2 Gew.-% 4-Tert-butyldiphenylamin, 25,3 Gew.-% von Verbindungen aus der Reihe 4-Tert-octyldiphenylamin, 4,4'-Ditert-butylamin und 2,4,4'-Tris-tert-butylamin, 24,2 Gew.-% von Verbindungen aus der Reihe 4-tert-butyl-4'-tert-octyldiphenylamin, 2,2'- oder 2,4'-Di-tert-octyldiphenylamin und 2,4-Di-tert-butyl-4'tert-octyldiphenylamin und 18,2 Gew.-% 4,4'-Di-tert-octyldiphenylamin und 6,0 Gew.-% 2,4-Di-tert-octyl-4'-tert-butyldiphenylamin, sowie weitere Anteile an anderen höher alkylierten Diphenylaminen mit modifizierten Seitenketten und Polymeren.

Die Thioketalverbindung nach a) und das Reaktionsgemisch nach b) werden in den aus Beispiel 4 ersichtlichen Mengen untereinander gemischt. Diese letzeren Gemische werden in einer Menge von 0,25 Gew.-0/0, bezogen auf das Oel, einem Mineralöl des Types Mobil 15 SS4 zugemischt.

Beispiel 2:

5

20

25

30

35

45

50

60

65

a) Eine Thioketalkomponente der allgemeinen Formel

wobei i-C₈H₁₇ für eine Mischung von verzweigten Isomeren steht, wird analog Beispiel 1a) hergestellt.

b) Das 4,4'-Di-tert-octyldiphenylamin enthaltende Reaktionsgemisch wird nach Beispiel 1b) hergestellt. Die Thioketalverbindung nach a) und das Reaktionsgemisch nach b) werden in den aus Beispiel 4 ersichtlichen Mengen untereinander gemischt. Diese letzeren Gemische werden in einer Menge von 0,25 Gew.-0/0, bezogen auf das Oel, einem Mineralöl des Types Mobil 15 SS4 zugemischt.

Beispiel 3:

a) Eine Thioketalkomponente der allgemeinen Formel

wird analog Beispiel la) hergestellt.

b) Das 4,4'-Di-tert-octyldiphenylamin enthaltende Reaktionsgemisch wird nach Beispiel 1b) hergestellt. Die Verbindungen gemäss a) und das Reaktionsgemisch gemäss b) werden in den Mengenverhältnissen von a) zu b) von 9:1, 7:3, 1:1, 3:7 und 1:9 Gewichtsteilen zusammengegeben und zu entsprechenden

Mischungen verarbeitet.

Beispiel 4:

Anwendung der Komponenten in einer Schmierstoffzusammensetzung

5

TOST-TEST, Oxidationscharakteristika von Mineralöl

(ASTM D934/DIN 51587/IP 157)

10

Das zu testende Oel (Mobil 15 SS4) wird in Gegenwart von Wasser, Sauerstoff, einem Eisen-Kupferkatalysator und dem Stabilisator während 1000 Stunden auf 95°C erwärmt. Danach wird der Säurewert TAN (in mg KOH-verbrauch pro g Testöl) sowie der Schlamm (SLUDGE) (in mg Rückstand pro Ansatz) bestimmt. Die Resultate sind in Tabelle 1 zusammengestellt. Die Konzentration der Stabilisatorengemische beträgt 0,25 Gew.%, bezogen auf das Oel.

15

Tabelle 1

Beispiel 4		nsgesamt 0,25 lischung von	1000 St	d. TOST	-	- 20
	Gew% gemäss Beispiel	Gew% gemäss Beispiel	TAN (mg KOH/g Oel)	SLUDGE (mg)		_
a) b)	30 1a) 70 1a)	70 1b) 30 1b)	0,21 0,21	61 49		25
c)	10 2a)	90 2b)	0,35	22		
d)	30 2a)	70 2b)	0,28	32		
e)	50 2a)	50 2b)	0,26	71		30
f)	ohne	ohne	> 2	> 1000	(Vergleich)	_

In nachfolgender Tabelle 2 sind die Messwerte aus dem TOST-Test für verschiedene Gemische von Verbindungen gemäss Beispiel 3 angeführt. Das Testverfahren und die Bedingungen sind oben angegeben, ausgenommen die Testdauer, die 500 Stunden beträgt und das Oel (Mineralöl BB).

35

40

Tabelle 2

Beispiel 4		samt 0,25 Gew%) ung von	500 Std. TOST	
-	Gew0/o gemäss Beispiel	Gew% gemäss Beispiel	TAN (mg KOH/g Oel)	SLUDGE (mg)
g)	10 3a)	90 3b)	0,24	58
h)	30 3a)	70 3b)	0,25	38
i)	50 3a)	50 3b)	0,11	14
, k)	70 3a)	30 3b)	0,08	27
l) [']	90 3a)	10 3b)	0,08	87

50

45

Patentansprüche

55

1. Zusammensetzung, enthaltend wenigstens einen Schmierstoff oder eine Hydraulikflüssigkeit und eine Mischung aus einer oder mehreren Verbindungen aus der Reihe A) und einer oder mehreren Verbindungen aus der Reihe B), wobei die Verbindungen der Reihe A) die allgemeine Formel

60

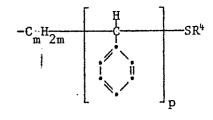
$$5 \qquad (\mathbb{R}^1)^{\frac{1}{n}} \stackrel{\text{if}}{\stackrel{\text{if}}}{\stackrel{\text{if}}}{\stackrel{\text{if}}}\stackrel{\text{if}}{\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel{\text{if}}}\stackrel{\text{if}}\stackrel$$

aufweisen, in der R¹ und R¹′ gleich oder verschieden sind und -H, Alkyl mit 1 bis 24 C-Atomen, Cycloalkyl mit 5 bis 12 C-Atomen oder Phenyl-(C₁-C₄)-alkyl bedeuten und n eine Zahl von 0, 1 oder 2 bedeutet und die Verbindungen der Reihe B) die allgemeine Formel

15
$$R^2$$
 SR^4 (II) oder R^3 SR^4 (IIa)

20 aufweisen, in denen R² -H, Alkyl mit 1 bis 24 C-Atomen, Phenyl, mit NO₂, Cl, Br, F, C₁-C₁₂-Alkyl und/oder C₁-C₁₂-Alkoxy substituiertes Phenyl, Phenyl-(C₁-C₄)alkyl, Phenyl der allgemeinen Formel

30


35

worin R⁶ -H, Alkyl mit 1 bis 20 C-Atomen oder Phenyl-(C₁-C₄)-alkyl bedeutet und x gleich 1 oder 2 ist, bedeutet, oder R₂ Furyl, Tetrahydrofuryl, 2-Methylfuryl, 2-Methyltetrahydrofuryl, Cyclohexyl oder unsubstituiertas oder mit Methyl substituiertes Cyclohexenyl bedeutet oder R² für eine Gruppe der Formel

steht, wobei m=1 und p=0 oder 1 ist, oder m=2 und p=0 ist, und R^4 jeweils nachstehend angegebene Bedeutung hat und R^3 -H, Alkyl mit 1 bis 24 C-Atomen, Phenyl, mit NO₂, Cl, Br, F oder C₁-C₁₂-Alkyl substituiertes Phenyl, Phenyl-(C₁-C₄)-alkyl oder einen Phenylrest der allgemeinen Formel

bedeutet, worin R⁶ und x die angegebene Bedeutung haben oder R³

65

10

wobei m = 1 und p = 0 oder 1 ist, oder m = 2 und p = 0 ist, oder

20

15

bedeutet, wobei R^4 jeweils die nachstehend angegebenen Bedeutung hat, oder R_2 und R_3 zusammen eine -CH₂-(CH₂)₂₋₉-CH₂-Gruppe bedeuten und die Reste R^4 gleich oder verschieden sind und Alkyl mit 4 bis 18 C-Atomen, Phenyi, Tolyl, Benzyl oder -(CH₂) R^5 -OR⁵,

25

30

wobei s=1 oder 2 und R^5 gleich Alkyl mit 1 bis 24 C-Atomen ist, darstellen, und $R^{4\prime}$ unsubstituiertes oder C_1 - C_{12} -alkylsubstituiertes Alkylen mit 1 bis 18 C-Atomen bedeutet und Y gleich O oder S ist.

- oder C₁-C₁₂-alkylsubstituiertes Alkylen mit 1 bis 18 C-Atomen bedeutet und Y gleich O oder S ist. 2. Zusammensetzung nach Anspruch 1, worin die Substituenten R¹ und R¹ in der Formel I gleich oder verschieden sind und -H, -Alkyl mit 4 bis 12 C-Atomen, Cycloalkyl mit 5 bis 8 C-Atomen bedeuten.
- 3. Zusammensetzung nach Anspruch 2, worin R¹ und R¹ Cyclohexyl oder Phenyl-(C₁-C₄)-alkyl bedeuten.
 - 4. Zusammensetzung nach Anspruch 2, worin \mathbb{R}^1 und $\mathbb{R}^{1\prime}$ -H oder Alkyl mit 4 bis 8 C-Atomen bedeuten.
- 5. Zusammensetzung nach Anspruch 1, worin die Verbindungen der Reihe A) mit der allgemeinen Formel I eine Mischung, enthaltend

35

40

45

50

- a) 1 bis 5 Gew.-% Diphenylamin
- b) 8 bis 18 Gew.-% 4-Tert-butyldiphenylamin
- c) 21 bis 31 Gew.-% einer oder mehrerer der Verbindungen
- i) 4-Tert-octyldiphenylamin
- ii) 4,4'-Di-tert-butyldiphenylamin
- iii) 2,4,4'-Tris-tert-butyldiphenylamin
- d) 20 bis 31 Gew.-% einer oder mehrerer der Verbindungen
- i) 4-Tert-butyl-4'-tert-octyldiphenylamin
- ii) 2,2'- oder 2,4'-Di-tert-octyldiphenylamin
- iii) 2,4-Di-tert-butyl-4'tert-octyldiphenylamin

- und
 e) 15 bis 29 Gew.-% der Verbindungen
- i) 4,4'-Di-tert-octyldiphenylamin

ode

- i) 4,4'-Di-tert-octyldiphenylamin und
- ii) 2,4-Di-tert-octyl-4'-tert-butyldiphenylamin,

darstellen

6. Zusammensetzung nach Anspruch 1, worin R² -H, Alkyl mit 1 bis 12 C-Atomen, Phenyl, o-Hydroxyphenyl, 3,5-Di-R⁶-4-hydroxyphenyl, wobei R⁶ die in Anspruch 1 angegebene Bedeutung hat, Furyl oder

55

60

$$-c_{m}H_{2m}$$

15

5

bedeutet,

wobei m=1 und p=1 ist oder m=2 und p=0 ist, und R^4 die in Anspruch 1 angegebene Bedeutung hat.

7. Zusammensetzung nach Anspruch 1, worin R³ -H, Alkyl mit 1 bis 12 C-Atomen,

30

wobei m = 1 und p = 0 oder 1 ist, oder m = 2 und p = 0 ist, und R^4 die in Anspruch 1 angegebene Bedeutung hat, bedeutet.

8. Zusammensetzung nach Anspruch 1, worin R^4 Alkyl mit 4 bis 12 C-Atomen, Phenyl oder -(CH₂) $\frac{1}{s}$ C -OR⁵,

35

40

wobei R5

für Alkyl mit 1 bis 18 C-Atomen und vorzugsweise für Alkyl mit 1-13 C-Atomen und s für 1 oder 2 steht, darstellen und die Substituenten R⁴ in der Formel II jeweils gleich sind.

9. Zusammensetzung nach Anspruch 1, worin der Substituent R² -H, Alkyl mit 1 bis 8 C-Atomen, Furyl oder Phenyl ist.

10. Zusammensetzung nach Anspruch 1, worin R3 -H, Alkyl mit 1 bis 8 C-Atomen oder

50

wobei R4 die in Anspruch 1 angegebene Bedeutung hat, bedeutet.

11. Zusammensetzung nach Anspruch 8, worin R⁴ Alkyl mit 8 bis 12 C-Atomen oder -CH₂- C-OR⁵ ist,

55

wobei ${\rm R}^5$ verzweigtes Alkyl mit 8 bis 13 C-Atomen darstellt.

12. Zusammensetzung nach Anspruch 11, wobei R⁵ tert.-Butyl oder 2-Ethylhexyl darstellt.

13. Zusammensetzung nach Anspruch 1, enthaltend eine Mischung von 1 bis 9 Gewichtsteilen wenigstens einer der Verbindungen aus der Reihe A) und 9 bis 1 Gewichtsteilen wenigstens einer der Verbindungen aus der Reihe B).

60

14. Zusammensetzung nach Anspruch 1, enthaltend eine Mischung aus, als Verbindungen aus der Reihe A), einem Reaktionsgemisch enthaltend 4,4'-Di-tert-octyldiphenylamin und, als Verbindung der Reihe B), eine Verbindung der Formel

$$\begin{array}{c} C_2H_5 \\ -CH-[-SCH_2C-OCH_2-CH-C_4H_9]_2 \end{array}$$

das Mischungsverhältnis von A) zu B) 3:7 oder 7:3 Gewichtsteile beträgt.

15. Zusammensetzung nach Anspruch 1, enthaltend eine Mischung aus, als Verbindungen der Reihe A), einem Reaktionsgemisch enthaltend 4,4'-Ditert-octyl-diphenylamin und, als Verbindungen der Reihe B), eine Verbindung der Formel

10

wobei i-C₈H₁₇ ein Gemisch von verzweigten Isomeren mit jeweils 8 C-Atomen bedeutet und das Mischungsverhältnis von A) zu B) 9:1 bis 1:1 Gewichtsteile beträgt.

16. Zusammensetzung nach Anspruch 1, enthaltend eine Mischung aus, als Verbindung der Reihe A), einem Reaktionsgemisch enthaltend 4,4'-Di-tert-octyl-diphenylamin und, als Verbindung der Reihe B) eine Verbindung der Formel

20

25

wobei i-C₈H₁₇ ein Gemisch von verzweigten Isomeren mit jeweils 8 C-Atomen bedeutet, in einem Mischungsverhältnis von A) zu B) von 9:1 bis 1:9 Gewichtsteilen.

30

17. Zusammensetzung nach Anspruch 1, enthaltend 0,1 bis 10 Gew.-%, bezogen auf den Schmierstoff oder die Hydraulikflüssigkeit, einer Mischung aus wenigstens einer Verbindung der Reihe A) und wenigstens einer Verbindung der Reihe B).

18. Verwendung von Mischungen von Verbindungen der Reihe A) und Verbindungen der Reihe B) nach 35

Anspruch 1 als Antioxidans in Schmierstoffen und Hydraulikflüssigkeiten.

40

45

50

55

60