[0001] This invention relates to array antenna systems and particularly to such systems
wherein the antenna element pattern is modified by providing a lossless spatial filter
between the antenna input ports and the antenna elements so that the effective element
pattern associated with each input port is primarily within a selected angular region
of space.
[0002] An array antenna system may be designed to transmit a desired radiation pattern into
one of a plurality of angular directions in a selected region of space. In accordance
with the prior art designs of such array antennas, each of the antenna elements has
an associated input port. By variation of the amplitude and/or phase of the wave energy
signals supplied to the input ports, the antenna pattern can be electronically steered
in space to point in a desired radiation direction or otherwise controlled to radiate
a desired signal characteristic, such as a time reference beam scanning pattern. When
it is desired to have an array antenna radiate its beam over a selected limited region
of space, it is preferable that the radiation pattern of the individual antenna elements
also be primarily within the selected angular region. This permits maximum element
spacing while suppressing undesired grating lobes.
[0003] In certain systems, control of the element pattern by modification of the physical
shape of the antenna element may be impractical because of a desired element pattern
may require an element aperture size which exceeds the necessary element spacing in
the array. A practical approach to overcome the physical elements size limitation
is to provide networks for interconnecting each antenna input port with more than
one antenna element, so that the effective element pattern associated with each input
port is formed by the composite radiation of several elements. These networks can
be realized by printed circuit techniques using a single substrate layer.
[0004] One prior art approach to this problem has been described by Nemit in U.S. Patent
No. 3,803,625, incorporated herein by reference. Nemit achieves a larger effective
element size by providing intermediate antenna elements between the primary antenna
elements and coupling signals from the primary antenna element ports to the intermediate
element ports. This tapered multielement aperture excitation produces some measure
of control over the radiated antenna pattern.
[0005] A more effective prior art antenna coupling network is described by Frazita et al.
in U.S. Patent No. 4,041,501 incorporated herein by reference and assigned to the
same assignee as the present invention. According to the technique of Frazita, the
antenna elements are arranged in element modules, each module is provided with an
input port. Transmission lines are coupled to all of the antenna element modules in
the array. The transmission lines couple signals applied to any of the ports to selected
elements in all the antenna element modules of the array. This antenna, herein referred
to as a COMPACT antenna, provides an effective element aperture which is coextensive
with the array aperture.
[0006] Still another effective prior art antenna coupling network is described by Wheeler
in U.S. Patent No. 4,143,379, incorporated herein by reference and assigned to the
same assignee as the present invention. According to the technique of Wheeler, cross
coupling ports are employed to couple wave energy signals to modules which are contiguous
to each module.
[0007] Yet, another technique is shown in U.S. Patent No. 4,168,503 which describes an antenna
array with a printed circuit lens in a coupling network. A radiated signal, received
by each one of a plurality of spatially separated antennas forming a directive array,
is coherently recovered by the lens. The lens comprises a plurality of vertically
standing and circularly arranged printed circuit panels, each of which includes a
conductor strip connected at one end to each antenna. A plurality of semi-elliptical
circuit panels are affixed to the vertical panels at a predetermined angle. Metal
strips plated on the semi-elliptical panels provide the desired time delay to the
antenna signals. A combining strip couples the time delay strips and provides a combined
output signal at one end of the semi-elliptical pattern. The angle at which the semi-elliptical
boards are affixed to the vertical boards corrects for time delay distortion caused
by the placement of the combining strip. This configuration cannot be implemented
using printed circuit techniques on a single substrate layer.
[0008] U.S. Patent No. 4,321,605 describes an array antenna system having at least a 2:1
ratio of antenna elements to input terminals interconnected via primary transmission
lines. Secondary transmission lines are coupled to and intersecting a selected number
of the primary transmission lines. Signals supplied to any of the input terminals
are coupled primarily to the elements corresponding to the input terminal, and are
also coupled to other selected elements.
[0009] In time reference scanning beam systems such as microwave landing systems (MLS),
there may be a linearity requirement for the glide path guidance i.e., the difference
between the actual and indicated angle must be within a limited range. There is also
a requirement to minimize the field monitor distance for the glide path antenna. Particularly
in MLS, this invention provides a non-thinned or fully filled array which may be used
to achieve linearity and minimize the field monitor distance.
[0010] It is an object of the present invention to provide an alternative array system having
an antenna element pattern formed by a spatial filter between the antenna element
input ports and the antenna elements.
[0011] It is another object of this invention to provide a non-thinned antenna system i.e.,
an antenna system wherein the number of antenna input ports equals the number of antenna
element output ports so that there is no reduction ratio in the number of radiators
to the number of phase shifters.
[0012] It is another object of this invention to provide an antenna system which does not
generate grating lobes.
[0013] It is still another object of this invention to provide a lossless spatial filter
having a 1:1 input/output ratio which employs a minimum number of couplers and terminations.
[0014] It is another object of this invention to provide a lossless spatial filter having
flexibility in controlling the spatial filter radiation pattern, meeting linearity
requirements and minimizing field monitor distances.
[0015] The above-mentioned document US-A-4321605 describes an antenna system for radiating
wave energy signals into a selected angular region of space and in a desired radiation
pattern, comprising:
a signal generator connected to supply wave signals to a power divider having N
signal output ports;
a beam steering unit comprising N phase shifters and a control unit for controlling
the phase shifters to steer the radiated beam, each phase shifter having an output
port and an input port connected to only a respective one of said signal output ports;
transmission means having a plurality of output ports and N input ports each connected
to only a respective one of said phase shifter output ports; and
an aperture comprising a plurality of antenna elements arranged along a predetermined
path, said elements being connected to said transmission means output ports.
[0016] The present invention is characterized in that said transmission means comprises
a spatial filter having N output ports corresponding respectively one each to said
N input ports, N being an integer greater than five;
said spatial filter comprising a network of couplers arranged to couple signals
from each of said input ports to its corresponding output port and also to at least
two others of said output ports on each side of said corresponding output port other
than those at the end portions of the aperture, and with the same phase; and
said couplers in said spatial filter being adapted such that said spatial filter
is substantially lossless and in operation said aperture can radiate said desired
radiation pattern primarily within said selected region of space substantially without
grating lobes.
[0017] Embodiments of the invention will now be described, by way of example, with reference
to the accompanying drawings, in which:-
Figure 1 is a conceptual diagram of an antenna system including a three level spatial
filter wherein signals applied to an antenna input port are provided to the antenna
element associated with the port and to the antenna elements adjacent to the associated
element.
Figure 2 is a plan view of a printed circuit coupling network of the three level spatial
filter illustrated in Figure 1.
Figure 3 is a conceptual diagram of an antenna system in accordance with the present
invention including a three level spatial filter cascaded with a four level spatial
filter
Figure 4 is a plan view of a printed circuit coupling network of the cascaded spatial
filters illustrated in Figure 3.
Figures 5a, 5b, and 5c are antenna patterns for antennas according to the invention
employing spatial filters having two level, three level and four level coupling, respectively.
Figure 6a illustrates a schematic diagram of a coupler and its relative inputs and
outputs.
Figure 6b is a listing of the formulas which define the coupler values and the termination
values.
Figure 6c illustrates a schematic diagram of a series coupler network.
Figure 6d is a generalized schematic representation of a five level spatial filter.
Figure 7 illustrates a prototype network for an infinite spatial filter antenna to
be employed with the invention.
Figure 8a is a schematic diagram of an antenna system of two cascaded 8-coupler spatial
filters according to the invention.
Figure 8B is a table of the optimum excitations for an 8-port spatial filter according
to the invention.
Figure 8C is a schematic diagram of a unit cell of a modular antenna system of two
cascaded 4-coupler spatial filters according to the invention.
Figures 9 and 10 illustrate a computed antenna pattern for the zero-thinned spatial
filter shown in Figure 8A.
Figure 11 is a graph illustrating the linearity requirements which limits the deviation
from the ideal linear relationship of the MLS guidance angle and the actual angle.
Figure 12 illustrates the geometry and formulas of a model of a flat horizontal surface
used to quantify the effects of sidelobe radiation on the performance of an automatic
flight control system.
Figures 13, 14, and 15 summarize the simulation results of vertical acceleration,
vertical velocity, and vertical attitude, respectively, with regard to the peak MLS
guidance error for 10 feet and 20 feet elevation antenna phase center heights when
passenger comfort is considered.
[0018] Figure 1 is a schematic diagram illustrating an antenna system in accordance with
the present invention. The diagram of Figure 1 includes a plurality of antenna elements
1-8 arranged in a predetermined path which, in this case, is a straight line. Each
antenna element is connected to one and only one output port 9-16 of spatial filter
17. The spatial filter is comprised of a plurality of modules A through H, one module
for each antenna element. Spatial filters 17 includes 8 input ports, 18-25 each connected
to the output of one and only one phase shifter 26-33. The array of phase shifters
26-33 form beam steering unit 34. The inputs 35-42 of the phase shifters are connected
to one and only one output of power divider 43 which is fed by signal generator 44.
The power divider and signal generator form a supply means for supplying wave energy
signals. Although filter 17 has been illustrated as symmetrical, it is contemplated
that spatial filters according to the invention may be unsymmetrical.
[0019] Referring to the signal path of wave energy signal supplied by signal generator 44,
the original signal is provided via line 45 to power divider 43 which divides the
signal into eight equal components. Each component is provided via lines 46-53 to
only one input of beam steering unit 34. For example, referring to the left-most portion
of the antenna system, line 46 provides the signal component to input 35 of beam steering
unit 34. The component then passes through phase shifter 26 which may shift the phase
of the component according to instructions received from control unit 54 via control
line 55. The output of phase shifter 26 is provided to input port 18 of spatial filter
17. The signal component provided to input port 18 is provided to output port 9 which
is connected to antenna element 1 and is also provided by a coupling arrangement to
element 2 which is adjacent to antenna element 1.
[0020] Spatial filter 17 couples component signals which are provided to any input to the
antenna element associated with the input and to elements adjacent to the associated
element. Couplers 56-62 couple signals which are provided to an associated antenna
element to the antenna element which is to the left of the associated antenna element.
The component signal provided to an input is transmitted to the antenna element associated
with the input by transmission lines 64-71. For example, the component signal provided
by branch 39 of the power divider 43 is fed through phase shifter 30 and provided
to input 22 of spatial filter 17. Input 22 is connected by transmission line 68 to
its associated output 13 and antenna element 5. The component signal is also coupled
by coupler 59 to antenna element 4 which is to the left of and adjacent to antenna
element 5. Similarly, component signals provided to an input are also coupled to antenna
elements adjacent and right of the associated antenna element by couplers 72-80. For
example, the component signal provided by branch 49 of the power divider to input
38 of phase shifter 29 passes through phase shifter 29 and is provided to input 21
of the spatial filter 17. The component signal is then provided to output 12 by transmission
line 67. Output 12 is directly connected to antenna element 4. Element 5 is adjacent
to and to the right of antenna element 4 and receives a portion of the component signal
via coupler 76. Element 3 is adjacent to and to the left of antenna element 4 and
receives a portion of the component signal via coupler 58.
[0021] Spatial filter 17 is shown in modular form. As a result, the input to coupler 72
is terminated by termination 81 because there is no antenna element to the left of
antenna element 1. Similarly, the output from coupler 56 is terminated by termination
82 because there is no antenna element to the left of antenna element 1 to receive
the component signal provided to input 18. On the right side of spatial filter 17,
coupler 80 is terminated by termination 83 and coupler 63 is terminated by termination
84 because there is no antenna element to the right of antenna element 8 to receive
the coupled signal from coupler 80 or to provide a coupled signal via coupler 63.
[0022] Figure 2 illustrates a plan view of a printed circuit coupling network useful as
the spatial filter 17 of Figure 1. Network 17 includes input ports 18-25 connected
to the outputs of beam steering unit 34. These input ports are connected to a first
series of couplers C₁ shown in detail in Figure 2a. Coupler C₁ as well as all other
couplers may be standard microstrip network couplers having a predetermined coupling
ratio. The specific coupling ratio depends on the width, length and on the thickness
of the transmission lines within the coupler. By convention, signals provided to the
inputs 101 and 102 of coupler C₁ are coupled to the outputs 103 and 104 according
to a predetermined ratio. In the case of coupler C₁, input 102 is terminated by a
termination resulting in any component signal which is supplied to input 101 being
distributed to outputs 103 and 104 such that

.
[0023] Following the first array of couplers C₁ is a second array of couplers C₂ illustrated
in more detail in Figure 2b. Signals provided to inputs 105 and 106 are combined and
transmitted to output 108 at a ratio T₂ and coupled to output 107 at a ratio C₂ such
that

. Completing the three level spatial filter 17 is a third series of couplers 109-116.
According to the invention, these couplers have the same configuration as coupler
C₁. Couplers 109-116 work in the same manner as coupler C₁ as shown in Figure 2a by
combining signals provided to their inputs to the outputs 9-16 of spatial filter 17.
[0024] As specified by the invention, spatial filter 17 is ideally lossless (except for
dissipative losses) and for that reason the relationships
must apply to the power (voltage) passing through each coupler C₁ and T₁, respectively.
The following relationship ensures the lossless condition for the network:
This relationship can be derived by setting the inputs at 18-25 equal to unity
and the inputs to the terminations 117-124 equal to zero.
[0025] As used in regard to the invention, a non-thinned spatial filter is a filter formed
by an array of couplers. The array is essentially lossless in that the power dissipated
within terminations is minimized.
[0026] Figure 3 is a schematic diagram of an antenna system in accordance with the invention
including a three/four level cascaded spatial filter 300. In general, this spatial
filter may be used in combination with the antenna system as shown in Figure 1 by
replacing spatial filter 17 with spatial filter 300. Each antenna element 1-8 would
then be connected to one and only one output port 301 of the spatial filter 300. Spatial
filter 300 is comprised of a plurality of modules A through H, one module for each
antenna element. Spatial filter 300 includes input ports 302 each connected to one
and only one of the outputs of a phase shift network.
[0027] Figure 4 is a plan view of a printed circuit coupling network of the cascaded spatial
filter 300 illustrated in Figure 3. Network 300 includes input ports 302 connected
to the output ports of a beam steering unit. These input ports are connected to a
first series of couplers C₁ shown in detail in Figure 2a. Following the first array
of couplers C₁ is a second array of couplers C₂ illustrated in more detail in Figure
2b. Following the second array of couplers C₂ is a third array of couplers C₂. Completing
the four level spatial filter 300 is a fourth series of couplers C₁. According to
the invention, for symmetrical excitations, couplers C₁ at the beginning and end of
the array and intermediate couplers C₂ have the same configuration. The following
relationship ensures the lossless condition for the networks
Figure 5a illustrates an ideal antenna pattern for an antenna according to the
invention employing spatial filters having a two level coupling. Essentially this
coupling creates lobes 501, 502 and 503. Figure 5b illustrates a typical antenna pattern
employing a three level spatial filter which forms a single lobe 504. Figure 5c illustrates
a typical antenna pattern for a four level spatial filter generating a more well defined
single lobe 505.
Synthesis Procedure For Five Level Non-Thinned Spatial Filter
[0028]
- Step 1:
- Referring to Figures 6a, 6b, 6c, and 6d, determine initial values C1-C5 for couplers
C₁-C₅
(a) specify desired excitations A1-A5
(b) specify C1
(c) compute C2-C5 Using Figure 6c
- Step 2:
- Compute actual excitations A1'-A5' according to the following formulas:
(a) A1' = T5C4C3C2C1
(b) A2' = C5T4C3C2C1 - T5T4T3C2C1 - T5C4T3T2T1 - T5C4C3T2T1
(c) A3' = C5C4T3C2C1 - T5C4T3C2T1 - T5T4T3T2T1 - T5T4C3T2C1 - C5T4C3T2T1 - C5T4T3T2C1
(d) A4' = C5C4C3T2C1 - T5T4C3C2T1 - C5T4T3C2T1 - C5C4T3T2T1
(e) A5' = C5C4C3C2T1
- Step 3:
- Adjust values for couplers C₂-C₅
(a) adjust C5 such that

(b) adjust C4 such that

(c) adjust C3 such that

(d) adjust C2 such that

- Step 4:
- Recompute actual excitations A1' - A5' (see Step 2 for formulas for A1' - A5')
- Step 5:
- Normalize actual excitations by computing A1'' - A5''
(a) Let A1'' = 1 . Then,
(b)

(c)

(d)

(e)

- Step 6:
- Compute deviation S between normalized actual excitations A1'' - A5'' and desired
excitations A1 - A5

N = 1,2,...,5
- Step 7:
- Repeat steps 3-6 until deviation S is within an acceptable limit
- Step 8:
- Repeat steps 1-7 until ratio of power in terminations PT to radiated power PR is a minimum i.e., minimize


N = 1,2,...,5
For example, consider the case of a five element aperture as illustrated in Figure
6c. Assuming the desired excitation (from step 1a) is:
- A1 =
- 1.0000
- A2 =
- 1.6086
- A3 =
- 1.93156
- A4 =
- 1.6086
- A5 =
- 1.0000
Let C1 = 0.979 (from step 1b); then, the values of the other couplers (from step
1c) are:
- C2 =
- 0.9502
- C3 =
- 0.9366
- C4 =
- 0.9600
- C5 =
- 0.9852
The normalized actual excitations (steps 2-5) result in:
- A1 =
- 1
- A2 =
- 1.3755
- A3 =
- 1.6478
- A4 =
- 1.5449
- A5 =
- 1.1957
The db loss (from step 8) between the normalized actual excitations (from step
5) and the desired excitations (from step 1a) is:
- LOSS =
- 7.12db
Table 1 below continues the synthesis procedure.

[0029] As shown in table 1, trial 5 illustrates an optimum arrangement with minimum power
loss. As shown in table 2, trial 4 illustrates an optimum arrangement for a five coupler
structure where the symmetry of the excitation is invoked to set C5 = C1 and C4 =
C2.

[0030] Although the above procedure has been applied to develop a symmetrical filter, the
procedure is general in nature and can also be used to develop non-symmetrical filters.
Symmetry is generally preferred to maintain simplicity and reduce complexity. Symmetrical
filters usually employ redundant couplers and other structures which minimizes design
efforts.
[0031] The design of a spatial filter involves the determination of coupler values for a
multilayer circuit. No closed form solution is readily apparent to the synthesis of
a network that produces a specified output voltage distribution. However, analysis
of any network is possible. Therefore, synthesis involves the iterative trial and
error procedure described above in which coupler values are gradually adjusted until
the desired outputs are achieved.
[0032] Since the analysis of a complex network requires significant computer time, it is
desirable to formulate an iterative algorithm that converges to the desired solution
within a reasonable time. Analysis of every possible combination of coupler values
could take weeks or months to evaluate on the computer. Furthermore, an infinite number
of solutions exist that produce the desired amplitude distribution. The difference
in solutions is the insertion loss of the resulting network. Therefore, it is necessary
to determine by theoretical means the minimum possible loss, so that it will be known
when an optimum solution has been achieved.
[0033] The theoretical loss of a spatial filter network is determined by conservation of
power considerations. The network prototype is shown in Figure 7. The network is symmetrical
and continues to infinity in both directions. Each input excites a sub array with
N outputs. The sub array outputs, resulting from adjacent inputs, overlap. The network
shown in Figure 7 has an equal number of inputs and outputs. Therefore, the input
and output spacings are equal and, when all inputs are excited, each output port will
be the sum of contributions from N input ports. There must be an internal termination
for each output port.
[0034] The output excitation that results from input 1 is designated A1(N), whereas the
output excitation resulting from input 0 is designated A0(N). Because the network
is symmetrical,

. Similarly, the power terminated, designated as Bj(N), must also be equal.
[0035] The network is realized with N layers of directional couplers. To achieve the desired
symmetry, all coupler values in a given layer must be equal. Furthermore, a symmetrical
output excitation

,

, etc.), requires that the coupler values in the first layer be equal to those in
the N
th layer, etc. Therefore, as an example, an 8-output network has 8 layers of couplers.
If the 8-element excitation is symmetrical, C1 (coupling value for all couplers in
first layer) must equal C8, C2 = C7, C3 = C6, and C4 = C5. Therefore, there are only
4 different coupler values or unknowns that must be determined for an 8-output network.
[0036] When input power is delivered to port one, conservation of power dictates the sum
of powers in A1(N) added to that internally terminated (B1(N)) must equal the input
power. A normalization to an input power of 1 watt yields the equation:

The A's and B's are voltage coefficients. The power at each output port is equal
to the square of the voltage coefficient when the system impedance is normalized to
one ohm.
[0037] When all input ports are excited with equal power and in phase, the output at each
port is the sum of N voltages. From symmetry and conservation of power, the sum of
the power at one output port and its internal termination must equal one watt. All
output ports will be equal.

A combination of equations (3) and (4) gives:

If the network is to be lossless when a single input port is excited, no power
can be delivered to the internal terminations (all B's = 0). If that condition exists,

There are few output excitations that satisfy equation 6. The least loss occurs
for an excitation that does not satisfy equation 6 when

When that condition is met, the network will be lossless when all input ports are
excited with equal amplitude and phase. The loss, when a single input port is excited
and the sub array pattern has a maximum in the in-phase direction, is given by:

When the sub array pattern has a maximum in a direction other than the in-phase
direction, the lower bound on the loss is increased by the difference in the sub array
gain in the two directions. The optimum network is one that provides the least loss.
The loss that can be expected is the difference between the computed network loss
and the theoretical value. Thus, if one computes the theoretical minimum loss to be
3.1 dB when a single input port is excited using equation 8, and the least loss that
can actually be achieved with a realizable network is 4.6 dB, it will be found that
the loss, when all inputs are excited in phase, is 1.5dB. This 1.5 dB loss results
from the consideration of the center of the sub array pattern. When the array is scanned
to the sub array peak the theoretical loss is reduced to zero.
[0038] The basic spatial filter network topologies are well-known. A preferred implementation
requires 17 layers and is nearly impossible to synthesize. A practical network, that
closely approximates the performance of a 17-layer network, uses two cascaded 8-layer
networks as illustrated in Figure 8. The pattern characteristics for this network
are shown in Figures 9 and 10 for a radiating element spacing of 0.79 wavelengths.
[0039] Figure 11 describes the linearity requirement for MLS glide path guidance. The discussion
of linearity concentrates on the elevation guidance performance, however, linearity
is also a requirement for the azimuth guidance. Linearity is a subject that has generated
much discussion in the MLS community. The invention provides a phased array antenna
which meets the elevation linearity requirement. The spatial filter network is a practical
way to satisfy the low effective sidelobe requirement which is directly related to
the linearity requirement.
[0040] The linearity (autopilot) requirement limits the deviation from the ideal linear
relationship of the MLS guidance angle and the actual angle (see Figure 11). It specifies
the transverse accuracy characteristic of the angle guidance signal as opposed to
the longitudinal characteristics of PFN and CMN. The longitudinal characteristic causes
the aircraft to deviate from the glide path (bends) or generates noise-like action
of the controls. The transverse characteristic is capable of causing instability in
an automatic flight control system.
[0041] After several years of discussion within the MLS community it is now generally accepted
that PFN, CMN and linearity for the EL guidance equipment are all dependent on the
effective sidelobe level of the antenna. The issue has been which one of the three
characteristics (PFN, CMN or linearity) is the driver with respect to the specification
of the effective sidelobe level. The Path Following Noise (PFN) relates to the path
following mean course error and is caused by any frequency component that an aircraft
can follow. The Control Motion Noise exists in situations where there is no PFN but
the scanned MLS signal indicates a bounce or deviation which an aircraft cannot follow.
initially it was argued that PFN was the driver. The effective sidelobe level required
to ensure that the PFN for a 1.5° beamwidth antenna does not exceed 0.083° is -25
dB (a 0 dB ground reflection coefficient is assumed, the 0.083° PFN limit is derived
from the ICAO standard that the PFN shall not be greater than plus or minus 1.3 feet).
After some analysis by the FAA, it was recognized that with the antenna phase center
20 feet. above the reflecting ground, CMN could be generated when the aircraft was
within 2000 feet. of the runway threshold. Consequently, in the draft specifications
for the FAA second MLS procurement, the effective sidelobe level is specified such
that the CMN does not exceed 0.045°. This requires an effective sidelobe level of
-30 dB for a 1.5° beamwidth antenna.
[0042] Based on the results of simulations of an actual automatic flight control system
in service it has been concluded that linearity is the most stringent requirement
with respect to the specification of the effective sidelobe level. The results of
the simulations indicate that the angle error limit must not exceed 0.024° to ensure
performance of an automatic flight control system within passenger comfort levels.
This error limit corresponds to a -36 dB effective sidelobe level for a 1.5° beamwidth
antenna.
[0043] The discussion on the linearity requirement has raised the issue of the measurement
methodology for determining compliance with specifications. With regard to this issue
it should be recognized that effective sidelobes can be measured on an antenna range
and that design approval by an authority can be based on these antenna range measurements.
[0044] The sidelobes radiated by the elevation antenna in the direction of the ground are
folded back on the main beam because of specular reflection. The sidelobe radiation
distorts the beam and causes PFN, CMN and linearity errors. The specification of PFN
and CMN limits the magnitude of the angle guidance error. The linearity error, however,
depends on the product of the maximum angle guidance error and the height of the antenna
phase center above the reflecting ground surface. A large error-height product is
capable of causing substantial degradation of the guidance loop gain of an automatic
flight control system to the point where the automatic flight control system becomes
unstable. For example, a maximum error of 0.045° and a phase center height of 20 feet
can cause the loop gain to vary between +6 dB and less than -40 dB (at the "max gain
spot" and the "dead spot", see Figure 11).
[0045] The model of a flat horizontal surface is used to quantify the effects of sidelobe
radiation on the performance of an automatic flight control system. The geometry and
formulas are presented in Figure 12. For the case of a constant glide path, the magnitude
of the error remains essentially constant and the phase variation is that attributed
to the path difference between the direct signal and the indirect signal emanating
from the ground image of the EL antenna.
[0046] The model was used as a perturbation input to a simulation of an automatic glide
slope control system for a small jet aircraft. The criteria for the acceptability
of the automatic flight control system is passenger comfort. Figures 13, 14 and 15
provide a summary of the simulation results with respect to the allowable peak MLS
guidance error, elevation antenna phase center height and passenger comfort. The simulations
start at a distance of 3 NM from the elevation antenna.
[0047] Figure 13 shows that for a 20 feet phase center height and a peak error of 0.083°
the automatic control system is unstable. The vertical accelerations exceed the passenger
comfort level by a factor of 2.4:1. For peak error of 0.045°, the system is marginally
stable; for larger phase center heights, say 37 feet, it is expected that the system
would be unstable (the error-height product, 0.045° X 37′, is equal to that of the
0.083° maximum error and 20 feet height case). Figures 14 and 15 exhibit the same
trends; they show that for a 20 feet phase center height and a peak error of 0.083°
the vertical velocity and attitude exceed the passenger comfort levels by factors
of 4:1 and 2:1 respectively.
[0048] The following conclusions are based on a study of the available information, with
respect to the specification of the effective sidelobe level and autopilot performance
within passenger comfort levels:
1. the present PFN error limit (0.083°) is not acceptable;
2. the present CMN error limit (0.045°) is marginal (especially if higher than 20
feet antenna phase center heights are contemplated);
3. a limit of 0.024° appears to be acceptable for the case studied;
4. linearity is the dominant system requirement with respect to the specification
of the effective sidelobe level; and
5. the error-height product should not exceed 0.45 degrees-feet.
1. An antenna system for radiating wave energy signals into a selected angular region
of space and in a desired radiation pattern, comprising:
a signal generator (44) connected to supply wave signals to a power divider (43)
having N signal output ports (46 to 53);
a beam steering unit (34) comprising N phase shifters (26 to 33) and a control
unit (54) for controlling the phase shifters to steer the radiated beam, each phase
shifter having an output port and an input port (35 to 42) connected to only a respective
one of said signal output ports (46 to 53);
transmission means (17) having a plurality of output ports and N input ports (18
to 25) each connected to only a respective one of said phase shifter output ports;
and
an aperture comprising a plurality of antenna elements (1 to 8) arranged along
a predetermined path, said elements being connected to said transmission means output
ports;
characterized in that:
said transmission means comprises a spatial filter (17) having N output ports (9
to 16) corresponding respectively one each to said N input ports (18 to 25), N being
an integer greater than five;
said spatial filter (17) comprising a network of couplers arranged to couple signals
from each of said input ports (18 to 25) to its corresponding output port (9 to 16)
and also to at least two others of said output ports (9 to 16) on each side of said
corresponding output port other than those at the end portions of the aperture, and
with the same phase; and
said couplers in said spatial filter (17) being adapted such that said spatial
filter is substantially lossless and in operation said aperture can radiate said desired
radiation pattern primarily within said selected region of space substantially without
grating lobes.
2. A system according to claim 1 characterised in that said spatial filter (17) comprises:
a plurality of N first coupling means (C₁) each having a first input port, a first
coupled output port and a first transmitted output port, said first coupling means
for distributing substantially without loss wave energy signals applied to the first
input port, such applied signals being distributed to the first coupled output port
and to the first transmitted output port according to a first predetermined ratio,
said N first input ports being the N input ports of the spatial filter;
a plurality of N second coupling means (C₂) interspersed between said N first coupling
means each having a second left input port associated with the first coupled output
port of the right adjacent first coupling means and a second right input port associated
with the first transmitted output port of the left adjacent first coupling means,
said second means having a second coupled output port and a second transmitted output
port, said second coupling means for combining and distributing substantially without
loss wave energy signals applied to the second left and second right input ports,
such applied signals being distributed to the second coupled output port and the second
transmitted output port according to a second predetermined ratio; and
a plurality of N third coupling means (109-116) interspersed between said N second
coupling means, each having a third left input port associated with the second coupled
output port of the right adjacent second coupling means and a third right input port
associated with the second transmitted output port of the left adjacent second coupling
means, said third coupling means having a third output port, said third coupling means
for combining substantially without loss wave energy signals supplied to the third
left input port and to the third right input port, such applied signals being combined
and provided by the third combining output port according to a third predetermined
ratio, said N third output ports being the N output ports of the spatial filter.
3. A system according to claim 2 characterised in that said first predetermined ratio
equals said third predetermined ratio.
4. A system according to claim 3 characterised in that said second predetermined ratio
(C₂) is associated to said first predetermined ratio (C₁) according to the following:
5. A system according to claim 2, characterised by said spatial filter (17) further comprising
a plurality of N fourth coupling means located between said second means and said
third means, each of said N said fourth means interspersed between said N second coupling
means, each having a fourth left input port associated with the second coupled output
port of the right adjacent first coupling means and a fourth right input port associated
with the second transmission output port of the left adjacent first coupling means,
said fourth means having a fourth coupled output port associated with the third right
input port and having a fourth transmitted output port associated with the third left
input port, said fourth coupling means for combining and distributing substantially
without loss wave energy signals applied to the fourth left and fourth right input
ports, such applied signals being distributed to the fourth coupled output port and
the fourth transmitted output port according to a fourth predetermined ratio.
6. A system according to claim 5 characterised in that said first predetermined ratio
equals said third predetermined ratio and said second predetermined ratio equals said
fourth predetermined ratio.
7. A system according to claim 6 characterised in that said second predetermined ratio
(C₂) is associated to said first predetermined ratio (C₁) according to the following:
8. A system according to claim 1 characterised in that said spatial filter comprises:
distribution means having N distribution input ports and 2N distribution output
ports for distributing substantially without loss wave energy signals applied to said
distribution input ports, to such applied signals being distributed to the distribution
output ports according to a first predetermined ratio, said N distribution input ports
being the N input ports of the spatial filter;
first transmission means having 2N first transmission input ports, each associated
with only one of the 2N distribution output ports, and having 2N first transmission
output ports, said first transmission means for combining and distributing substantially
without loss wave energy signals applied to said first transmission input ports, such
applied signals being combined and distributed to the first transmission ports according
to a second predetermined ratio;
combining means having 2N combining input ports, each associated with only one
of the 2N first transmission output ports, and having N combining output ports, said
combining means for combining substantially without loss wave energy signals applied
to said 2N combining input ports, such applied signals being combined at the combining
output ports according to a third predetermined ratio, said N combining output ports
being the N input ports of the spatial filter.
9. A system according to claim 8 characterised in that said first predetermined ratio
equals said third predetermined ratio.
10. A system according to claim 9 characterised in that said second predetermined ratio
(C₂) is associated to said first predetermined ratio (C₂) according to the following:
11. A system according to claim 8, characterised by said spatial filter further comprising
a second transmission means located between said first transmission means and said
combining means, said second transmission means having 2N second transmission input
ports, each associated with only one of the 2N first transmission output ports, and
having 2N second transmission output ports, each associated with only one of the 2N
combining input ports, said second transmission means for combining and distributing
substantially without loss wave energy signals applied to said second transmission
input ports, such applied signals being combined and distributed to the second transmission
output ports according to a fourth predetermined ratio.
12. A system according to claim 11 characterised in that said first predetermined ratio
equals said third predetermined ratio and said second predetermined ratio equals said
fourth predetermined ratio.
13. A system according to claim 12 characterised in that said second predetermined ratio
(C₂) is associated to said first predetermined ratio (C₁) according to the following:
14. A system according to claim 1 characterised in that said filter comprises first and
second cascaded lossless spatial filters having N input ports and N output ports.
15. A system according to any one of claims 2 to 14 characterised in that said spatial
filter comprises a printed circuit located on a single substrate.
1. Antennensystem, das elektromagnetische Wellen in einen ausgewählten Winkelbereich
des Raumes und mit einem gewünschten Strahlungsdiagramm strahlt, mit:
einem Signalgenerator (44), der an einen Leistungsteiler (43), der N Ausgangssignalanschlüsse
(46 bis 53) aufweist, angeschlossen ist und in diesen elektromagnetische Signale einspeist;
einer Strahlsteuereinheit (34), die N Phasenschieber (26 bis 33) sowie eine Steuereinheit
(54) zum Steuern der Phasenschieber aufweist, um den ausgesendeten Strahl richtungszusteuern,
wobei jeder Phasenschieber jeweils einen Ausgangsanschluß sowie jeweils einen Eingangsanschluß
(35 bis 42) aufweist, der lediglich mit einem zugehörigen Ausgangssignalanschluß (46
bis 53) verbunden ist;
Übertragungsmittel (17) mit einer Vielzahl von Ausgangsanschlüssen und N Eingangseinschlüssen
(18 bis 25), von denen jeder mit lediglich einem zugehörigen Phasenschieberausgangsanschluß
verbunden ist; und
einer Apertur mit einer Vielzahl von Antennenelementen (1 bis 8), die entlang einer
vorbestimmten Strekke angeordnet sind, wobei die Elemente mit den Ausgangsanschlüssen
der Übertragungsmittel verbunden sind;
dadurch gekennzeichnet, daß:
das Übertragungsmittel ein räumliches Filter (spatial filter)(17) aufweist, das N
Ausgangsanschlüsse (9 bis 16) hat, von denen jeweils einer einem der N Eingangsanschlüsse
(18 bis 25) zugeordnet ist, wobei N eine ganze Zahl größer als 5 ist;
das räumliche Filter (17) ein Netzwerk aus Kopplern aufweist, die dazu eingerichtet
sind, Signale von jedem der Eingangsanschlüsse (18 bis 25) in den zugehörigen Ausgangsanschluß
(9 bis 16) und, abgesehen von den an den Endabschnitten der Apertur gelegenen Ausgangsanschlüssen,
darüberhinaus mit der gleichen Phase jeweils in wenigstens zwei andere Ausgangsanschlüsse
(9 bis 16) zu jeder Seite des betreffenden Ausgangsanschlusses einzukoppeln; und
die Koppler in dem räumlichen Filter (17) derart gestaltet sind, daß das räumliche
Filter im wesentlichen verlustfrei ist und daß die Apertur im Betrieb das gewünschte
Strahlungsdiagramm hauptsächlich innerhalb des ausgewählten Bereiches des Raumes im
wesentlichen ohne Nebenzipfel ausstrahlen kann.
2. System nach Anspruch 1, dadurch gekennzeichnet, daß das räumliche Filter (17) folgendes
aufweist:
eine Vielzahl von N ersten Koppelmitteln (C1), von denen jedes einen ersten Eingangsanschluß,
einen ersten angekoppelten Ausgangsanschluß und einen ersten Übertragungsausgangsanschluß
aufweist, wobei die ersten Kopplungsmittel zum im wesentlichen verlustfreien Verteilen
der dem ersten Eingangsanschluß zugeführten elektromagnetischen Signale vorgesehen
sind, die derart zugeführten Signale auf den ersten angekoppelten Ausgangsanschluß
und den ersten Übertragungsausgangsanschluß entsprechend einem ersten vorbestimmten
Verhältnis verteilt werden und N erste Eingangsanschlüsse die N Eingangsanschlüsse
des räumlichen Filters sind;
eine Vielzahl von N zweiten Koppelmitteln (C2), die mit den N ersten Koppelmitteln
verschachtelt sind und von denen jedes einen mit dem ersten angekoppelten Ausgangsanschluß
des rechts benachbarten ersten Koppelmittels verbundenen zweiten linken Eingangsanschluß
sowie einen mit dem ersten Übertragungsausgangsanschluß des links benachbarten ersten
Koppelmittels verbundenen zweiten rechten Eingangsanschluß aufweist, wobei die zweiten
Koppelmittel jeweils einen zweiten angekoppelten Ausgangsanschluß und einen zweiten
Übertragungsausgangsanschluß aufweisen, die zweiten Koppelmittel zum Kombinieren und
im wesentlichen verlustfreien Verteilen der auf die zweiten linken und zweiten rechten
Eingangsanschlüsse angelegten elektromagnetischen Signale vorgesehen sind und die
derart angelegten Signale auf den zweiten angeschlossenen Ausgangsanschluß und den
zweiten Übertragungsausgangsanschluß entsprechend einem zweiten vorbestimmten Verhältnis
verteilt werden; und
eine Vielzahl von N dritten Koppelmitteln (109 bis 116), die mit N zweiten Koppelmitteln
verschachtelt sind und von denen jedes einen dritten linken, mit dem zweiten gekoppelten
Ausgangsanschluß des rechts benachbarten zweiten Koppelmittels verbundenen Eingangsanschluß
sowie einen dritten rechten mit dem zweiten Übertragungsausgangsanschluß des links
benachbarten zweiten Koppelmittels verbundenen Eingangsanschluß aufweist, wobei das
dritte Koppelmittel einen dritten Ausgangsanschluß aufweist das dritte Koppelmittel
zum im wesentlichen verlustfreien Kombinieren von an den dritten linken Eingangsanschluß
und den dritten rechten Eingangsanschluß gelieferten elektromagnetischen Signalen
vorgesehen ist, die derart angelegte Signale von dem dritten kombinierenden Ausgangsanschluß
entsprechend einem dritten vorbestimmten Verhältnis kombiniert und abgegeben werden,
und die N dritten Ausgangsanschlüsse, die N Ausgangsanschlüsse des räumlichen Filters
sind.
3. System nach Anspruch 2, dadurch gekennzeichnet, daß das erste vorbestimmte Verhältnis
mit dem dritten vorbestimmten Verhältnis übereinstimmt.
4. System nach Anspruch 3, dadurch gekennzeichnet, daß das zweite vorbestimmte Verhältnis
(C2) mit dem ersten vorbestimmten Verhältnis (C1) in der folgenden Beziehung steht:
5. System nach Anspruch 2, dadurch gekennzeichnet, daß das räumliche Feld (17) darüberhinaus
eine Vielzahl von N vierten Koppelmitteln aufweist, die zwischen den zweiten Koppelmitteln
und den dritten Koppelmitteln angeordnet sind, wobei jedes der N vierten Koppelmitteln
mit den N zweiten Koppelmitteln verschachtelt angeordnet ist, jedes der vierten Koppelmittel
einen vierten linken mit dem zweiten angekoppelten Ausgangsanschluß des rechts benachbarten
ersten Koppelmittles verbundenen Eingangsanschluß sowie einen vierten rechten mit
dem zweiten Übertragungsausgangsanschluß des links benachbarten ersten Koppelmittels
verbundenen Eingangsanschluß aufweist, das vierte Koppelmittel einen vierten angekoppelten,
mit dem dritten rechten Eingangsanschluß verbundenen Ausgangsanschluß sowie einen
vierten mit dem dritten linken Eingangsanschluß verbundenen Übertragungsausgangsanschluß
aufweist, das vierte Koppelmittel zum Kombinieren und zum wesentlichen verlustfreien
Verteilen der an die vierten linken und vierten rechten Eingangsanschlüsse angelegten
elektromagnetischen Signale vorgesehen ist und die derart angelegten Signale auf den
vierten angekoppelten Ausgangsanschluß und den vierten Übertragungsausgangsanschluß
entsprechend einem vierten vorbestimmten Verhältnis verteilt werden.
6. System nach Anspruch 5, dadurch gekennzeichnet, daß das erste vorbestimmte Verhältnis
mit dem dritten vorbestimmten Verhältnis und das zweite vorbestimmte Verhältnis mit
dem vierten vorbestimmten Verhältnis übereinstimmen.
7. System nach Anspruch 6, dadurch gekennzeichnet, daß das zweite vorbestimmte Verhältnis
(C2) über die folgende Beziehung mit dem ersten vorbestimmten Verhältnis (C1) verbunden
ist:
8. System nach Anspruch 1, dadurch gekennzeichnet, daß das räumliche Filter folgendes
aufweist:
Verteilungsmittel mit N Verteilungseingangsanschlüssen und 2N Verteilungsausgangsanschlüssen
zum im wesentlichen verlustfreien Verteilen von an die Verteilungseingangsanschlüsse
angelegten elektromagnetischen Signalen, damit die derart angelegte Signale entsprechend
einem ersten vorbestimmten Verhältnis auf die Verteilungsausgangsanschlüsse verteilt
werden, wobei die N Verteilungseingangsanschlüsse die N Eingangsanschlüsse des räumlichen
Filters sind;
- erste Übertragungsmittel mit 2N ersten Übertragungseingangsanschlüssen, von denen
jeder mit lediglich einem der 2N Verteilungsausgangsanschlüssen verbunden ist, und
mit 2N ersten Übertragungsausgangsanschlüssen, wobei die ersten Übertragungsmittel
zum Kombinieren und im wesentlichen verlustfreien verteilen von an die ersten Übertragungseingangsanschlüsse
angelegten elektromagnetischen Signalen vorgesehen sind und die derart angelegten
Signale entsprechend einem zweiten vorbestimmten Verhältnis kombiniert und auf die
ersten Übertragungsanschlüsse verteilt werden;
- Kombiniermittel mit 2N Kombiniereingangsanschlüssen, von denen jeder mit lediglich
einem der 2N ersten Übertragungsausgangsanschlüssen verbunden ist, und mit N Kombinierausgangsanschlüssen,
wobei die Kombiniermittel zum im wesentlichen verlustfreien Kombinieren der an die
2N Kombiniereingangsanschlüsse angelegten elektromagnetischen Signale vorgesehen sind,
die derart angelegten Signale an den Kombinierausgangsanschlüssen entsprechend einem
dritten vorbestimmten Verhältnis kombiniert anstehen und die N Kombinierausgangsanschlüsse,
die N Eingangsanschlüsse des räumlichen Filter sind.
9. System nach Anspruch 8, dadurch gekennzeichnet daß das erste vorbestimmte Verhältnis
gleich dem dritten vorbestimmten Verhältnis ist.
10. System nach Anspruch 9, dadurch gekennzeichnet daß das zweite vorbestimmte Verhältnis
C2 mit dem ersten vorbestimmten Verhältnis C1 in der folgenden Beziehung steht:
11. System nach Anspruch 8, dadurch gekennzeichnet daß das räumliche Filter außerdem ein
zwischen dem ersten Übertragungsmittel und dem Kombiniermittel angeordnetes zweites
Übertragungsmittel aufweist, wobei das zweite Übertragungsmittel 2N zweite Übertragungseingangsanschlüsse,
von denenjeder mit lediglich einem der 2N ersten Übertragungsausgangsanschlusse verbunden
ist, sowie 2N zweite Übertragungsausgangsanschlüsse aufweist, von denen jeder mit
lediglich einem der 2N Kombiniereingangsanschlüsse verbunden ist, das zweite Übertragungsmittel
zum Kombinieren und im wesentlichen verlustfreien Verteilen von an die zweiten Übertragungseingangsanschlüsse
angelegten elektromagnetischen Signalen vorgesehen ist und die derart angelegten Signale
entsprechend einem vierten vorbestimmten Verhältnis kombiniert und auf die zweiten
Übertragungsausgangsanschlüsse verteilt werden.
12. System nach Anspruch 11, dadurch gekennezeichnet, daß das erste vorbestimmte Verhältnis
gleich dem dritten vorbestimmten Verhältnis und das zweite vorbestimmte Verhältnis
gleich dem vierten vorbestimmten Verhältnis ist.
13. System nach Anspruch 12, dadurch gekennzeichnet daß das zweite vorbestimmte Verhältnis
(C2) mit dem ersten vorbestimmten Verhältnis (C1) in der folgenden Beziehung steht:
14. System nach Anspruch 1, dadurch gekennzeichnet, daß das Filter erste und zweite kaskadierte
verlustfreie räumliche Filter mit N Eingangsanschlüssen und N Ausgangsanschlüssen
aufweist.
15. System nach einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, daß das räumliche
Filter eine auf einem einzigen Substrat angeordnete gedruckte Schaltung aufweist.
1. Un système d'antenne destiné à rayonner des signaux d'énergie ondulatoire dans une
région angulaire sélectionnée de l'espace, et selon un diagramme de rayonnement désiré,
comprenant :
un générateur de signaux (44) connecté de façon à fournir des signaux d'ondes à
un diviseur de puissance (43) ayant N accès de sortie de signal (46 à 53);
une unité de pointage de faisceau (34) comprenant N déphaseurs (26 à 33) et une
unité de commande (54) pour commander les déphaseurs de façon à pointer le faisceau
rayonné, chaque déphaseur ayant un accès de sortie et un accès d'entrée (35 à 42)
connectés seulement à l'un respectif des accès de sortie de signal (46 à 53);
des moyens de transmission (17) ayant un ensemble d'accès de sortie et N accès
d'entrée (18 à 25), chacun d'eux étant connecté seulement à l'un respectif des accès
de sortie des déphaseurs; et
une ouverture comprenant un ensemble d'éléments d'antenne (1 à 8), disposés le
long d'un chemin prédéterminé , ces éléments étant connectés aux accès de sortie des
moyens de transmission;
caractérisé en ce que :
les moyens de transmission comprennent un filtre spatial (17) ayant N accès de
sortie (9 à 16) correspondant respectivement à l'un de chacun des N accès d'entrée
(18 à 25), N étant un entier supérieur à cinq;
le filtre spatial (17) comprenant un réseau de coupleurs disposés de façon à coupler
des signaux à partir de chacun des accès d'entrée (18 à 25), vers son accès de sortie
correspondant (9 à 16), et également vers au moins deux autres des accès de sortie
(9 à 16) de chaque côté de l'accès de sortie correspondant, autres que ceux se trouvant
dans les parties d'extrémités de l'ouverture, et avec la même phase; et
les coupleurs dans le filtre spatial (17) étant conçus de façon que ce filtre spatial
n'ait pratiquement pas de pertes, et que pendant le fonctionnement l'ouverture puisse
rayonner le diagramme de rayonnement désiré essentiellement dans la région sélectionnée
de l'espace, pratiquement sans lobes dûs à la structure discontinue de l'ouverture.
2. Un système selon la revendication 1, caractérisé en ce que le filtre spatial (17)
comprend :
un ensemble de N premiers moyens de couplage (C₁) ayant chacun un premier accès
d'entrée, un premier accès de sortie de couplage et un premier accès de sortie de
transmission, les premiers moyens de couplage étant destinés à distribuer pratiquement
sans pertes des signaux d'énergie ondulatoire qui sont appliqués au premier accès
d'entrée, ces signaux appliqués étant distribués au premier accès de sortie de couplage
et au premier accès de sortie de transmission conformément à un premier rapport prédéterminé,
les N premiers accès d'entrée étant les N accès d'entrée du filtre spatial;
un ensemble de N seconds moyens de couplage (C₂) dispersés parmi les N premiers
moyens de couplage, ayant chacun un second accès d'entrée gauche associé au premier
accès de sortie de couplage des premiers moyens de couplage adjacents droits, et un
second accès d'entrée droit associé au premier accès de sortie de transmission des
premiers moyens de couplage adjacents gauches, ces seconds moyens ayant un second
accès de sortie de couplage et un second accès de sortie de transmission, les seconds
moyens de couplage étant destinés à combiner et à distribuer pratiquement sans pertes
des signaux d'énergie ondulatoire qui sont appliqués au second accès d'entrée gauche
et au second accès d'entrée droit, ces signaux appliqués étant distribués au second
accès de sortie de couplage et au second accès de sortie de transmission conformément
à un second rapport prédéterminé; et
un ensemble de N troisièmes moyens de couplage (109-116) dispersés parmi les N
seconds moyens de couplage, ayant chacun un troisième accès d'entrée gauche associé
au second accès de sortie de couplage des seconds moyens de couplage adjacents droits,
et un troisième accès d'entrée droit associé au second accès de sortie de transmission
des seconds moyens de couplage adjacents gauches, les troisièmes moyens de couplage
ayant un troisième accès de sortie, les troisièmes moyens de couplage étant destinés
à combiner pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués
au troisième accès d'entrée gauche et au troisième accès d'entrée droit, ces signaux
appliqués étant combinés et fournis par le troisième accès de sortie de combinaison
conformément à un troisième rapport prédéterminé, et les N troisièmes accès de sortie
étant les N accès de sortie du filtre spatial.
3. Un système selon la revendication 2, caractérisé en ce que le premier rapport prédéterminé
est égal au troisième rapport prédéterminé.
4. Un système selon la revendication 3, caractérisé en ce que le second rapport prédéterminé
(C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante
:
5. Un système selon la revendication 2, caractérisé en ce que le filtre spatial (17)
comprend en outre un ensemble de N quatrièmes moyens de couplage qui sont placés entre
les seconds moyens et les troisièmes moyens, ces N quatrièmes moyens étant respectivement
dispersés parmi les N seconds moyens de couplage, chacun d'eux ayant un quatrième
accès d'entrée gauche associé au second accès de sortie de couplage des premiers moyens
de couplage adjacents droits, et un quatrième accès d'entrée droit associé au second
accès de sortie de transmission des premiers moyens de couplage adjacents gauches,
les quatrièmes moyens ayant un quatrième accès de sortie de couplage associé au troisième
accès d'entrée droit, et ayant un quatrième accès de sortie de transmission associé
au troisième accès d'entrée gauche, les quatrièmes moyens de couplage étant destinés
à combiner et à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire
qui sont appliqués au quatrième accès d'entrée gauche et au quatrième accès d'entrée
droit, ces signaux appliqués étant distribués au quatrième accès de sortie de couplage
et au quatrième accès de sortie de transmission conformément à un quatrième rapport
prédéterminé.
6. Un système selon la revendication 5, caractérisé en ce que le premier rapport prédéterminé
est égal au troisième rapport prédéterminé, et le second rapport prédéterminé est
égal au quatrième rapport prédéterminé.
7. Un système selon la revendication 6, caractérisé en ce que le second rapport prédéterminé
(C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante
:
8. Un système selon la revendication 1, caractérisé en ce que le filtre spatial comprend
:
des moyens de distribution ayant N accès d'entrée de distribution et 2N accès de
sortie de distribution, pour distribuer pratiquement sans pertes des signaux d'énergie
ondulatoire qui sont appliqués aux accès d'entrée de distribution, ces signaux appliqués
étant distribués aux accès de sortie de distribution conformément à un premier rapport
prédéterminé, les N accès d'entrée de distribution étant les N accès d'entrée du filtre
spatial;
des premiers moyens de transmission ayant 2N premiers accès d'entrée de transmission,
chacun d'eux étant associé à un seul des 2N accès de sortie de distribution, et ayant
2N premiers accès de sortie de transmission, ces premiers moyens de transmission étant
destinés à combiner et à distribuer pratiquement sans pertes des signaux d'énergie
ondulatoire qui sont appliqués aux premiers accès d'entrée de transmission, ces signaux
appliqués étant combinés et distribués aux premiers accès de transmission conformément
à un second rapport prédéterminé;
des moyens de combinaison ayant 2N accès d'entrée de combinaison, chacun d'eux
étant associé à un seul des 2N premiers accès de sortie de transmission, et ayant
N accès de sortie de combinaison, les moyens de combinaison étant destinés à combiner
pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux
2N accès d'entrée de combinaison, ces signaux appliqués étant combinés aux accès de
sortie de combinaison conformément à un troisième rapport prédéterminé, et les N accès
de sortie de combinaison étant les N accès d'entrée du filtre spatial.
9. Un système selon la revendication 8, caractérisé en ce que le premier rapport prédéterminé
est égal au troisième rapport prédéterminé.
10. Un système selon la revendication 9, caractérisé en ce que le second rapport prédéterminé
(C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante
:
11. Un système selon la revendication 8, caractérisé en ce que le filtre spatial comprend
en outre des seconds moyens de transmission qui sont placés entre les premiers moyens
de transmission et les moyens de combinaison, ces seconds moyens de transmission ayant
2N seconds accès d'entrée de transmission, chacun d'eux étant associé à un seul des
2N premiers accès de sortie de transmission, et ayant 2N seconds accès de sortie de
transmission, chacun d'eux étant associé à un seul des 2N accès d'entrée de combinaison,
les seconds moyens de transmission étant destinés à combiner et à distribuer pratiquement
sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux seconds accès
d'entrée de transmission, ces signaux appliqués étant combinés et distribués aux seconds
accès de sortie de transmission conformément à un quatrième rapport prédéterminé.
12. Un système selon la revendication 11, caractérisé en ce que le premier rapport prédéterminé
est égal au troisième rapport prédéterminé, et le second rapport prédéterminé est
égal au quatrième rapport prédéterminé.
13. Un système selon la revendication 12, caractérisé en ce que le second rapport prédéterminé
(C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante
:
14. Un système selon la revendication 1, caractérisé en ce que le filtre comprend des
premier et second filtres spatiaux sans pertes connectés en cascade, ayant N accès
d'entrée et N accès de sortie.
15. Un système selon l'une quelconque des revendications 2 à 14, caractérisé en ce que
le filtre spatial comprend un circuit imprimé qui se trouve sur un seul substrat.