11 Veröffentlichungsnummer:

0 325 231 A2

2 EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 89100800.5

(51) Int. Cl.4: B41M 5/26

(22) Anmeldetag: 18.01.89

Priorität: 20.01.88 JP 10451/88 16.02.88 JP 33583/88

Veröffentlichungstag der Anmeldung: 26.07.89 Patentblatt 89/30

Benannte Vertragsstaaten:
BE DE FR GB IT SE

Anmelder: JUJO PAPER CO., LTD.
No. 4-1, Oji 1-chome
Kita-ku Tokyo(JP)

② Erfinder: Kaneko, Toshio

Central Research Laboratory Jujo Paper Co.

Ltd

21-1, Oji 5-chome Kita-ku Tokyo(JP)

Erfinder: Minami, Toshlaki

Central Research Laboratory Jujo Paper Co.

Ltd.

21-1, Oji 5-chome Kita-ku Tokyo(JP)

Erfinder: Fukuchi, Tadakazu

Central Research Laboratory Jujo Paper Co.

Ltd.

21-1, Oji 5-chome Kita-ku Tokyo(JP)

Erfinder: Der weitere Erfinder hat auf seine

Nennung verzichtet

Vertreter: Kinzebach, Werner, Dr. et al Patentanwälte Reitstötter, Kinzebach und Partner Sternwartstrasse 4 Postfach 86 06 49 D-8000 München 86(DE)

(54) Wärmeempfindliches Aufzeichnungsmaterial.

Es wird ein wärmeempfindliches Aufzeichnungsmaterial beschrieben, das in der Farbentwicklungsschicht, in der ein basischer farbloser oder schwach farbiger chromogener Farbstoff und ein organisches Farbentwicklungsmittel verwendet werden, einen Fluoranleukofarbstoff und eine Divinylverbindung und gegebenenfalls einen Fluorenleukofarbstoff enthält. Das erfindungsgemäße Aufzeichnungsmaterial weist eine überlegene optische Lesbarkeit im nahen ultraroten Bereich, eine bessere thermische Ansprechbarkeit und eine bessere Beständigkeit gegenüber Licht, Ölen und Klimaeinflüssen auf.

EP 0 325

WÄRMEEMPFINDLICHES AUFZEICHNUNGSMATERIAL

Diese Erfindung betrifft ein wärmeempfindliches Aufzeichnungsmaterial, das bessere thermische Ansprechbarkeit, überlegene Beständigkeit gegenüber den Einwirkungen von Licht, Klima und Ölen, aufweist sowie bessere optische Lesbarkeit im nahen infraroten Bereich besitzt.

Ein wärmeempfindliches Aufzeichnungsblatt wird im allgemeinen hergestellt, indem man auf die Oberfläche eines Trägers wie Papier, synthetisches Papier, Film, Kunststoff usw. eine Beschichtungsmasse aufbringt, die durch Feinvermahlen und Dispergieren eines farblosen chromogenen Stoffes und eines Farbentwicklungsmaterials, Vermischen der erhaltenen Dispersionen und Zugabe eines Bindemittels, Füllstoffs. Sensibilisators, Gleitmittels und anderer Hilfsmittel erhält. Unter der Wärmeeinwirkung von Thermofeder, Thermokopf, Thermostempel, Laserstrahl usw. erfolgt eine augenblickliche chemische Umsetzung, die zur Aufzeichnung führt.

Die vielfältigen praktischen Verwendungen dieser wärmeempfindlichen Aufzeichnungsblätter umfassen die Anwendung bei technischen Aufzeichnungsgeräten, Terminaldruckern von Computern, Druckern von Faksimilemaschinen, Fahrscheinautomaten, Druckern für Strichcode-Zettel und dgl. In letzter Zeit werden wesentliche höhere und vielfältigere Anforderungen an Aufzeichnungsvorrichtungen gestellt, deshalb ist eine hohe Qualität des Aufzeichnungsblattes erforderlich. Beispielsweise soll bei der raschen Aufzeichnung das wärmeempfindliche Aufzeichnungsblatt ein deutliches Aufzeichnungsbild mit hoher Dichte sogar bei geringer Wärmezufuhr haben, und es soll weiter überlegene Beständigkeit gegenüber der Einwirkung von Licht, Klima und Ölen, d. h. gute Haltbarkeit, haben.

Diese wärmeempfindlichen Aufzeichnungsblätter werden für wärmeempfindliche Blätter verwendet, bei denen die Farbbildung auf den sichtbaren Bereich beschränkt ist. Daher waren sie bei der Verwendung eines Halbleiter-Lasers als Strichcode-Scanners vom POS-System usw. ungeeignet für das Lesen im naher infrarot-Bereich. Dagegen sind in JO-LS 62-243652, JO-LS 62-243653, JO-LS 62-257970 und JO-LS 62-288078 wärmeempfindliche Aufzeichnungsblätter vorgeschlagen worden, bei denen ein bekanntes Farbentwicklungsmittel und eine Divinylverbindung mit überlegener Farbbildung im nahen IR kombiniert sind.

Weil diese wärmeempfindlichen Aufzeichnungsblätter jedoch zu Aufzeichnungen schlechter Haltbarkeit (schlechter Beständigkeit gegenüber Licht, Klima und Ölen) führen, verfärbt sich das Bild, die Bilddichte nimmt ab, oder das Bild verlöscht. Die optische Lesbarkeit im Infrarot-Bereich nimmt daher erheblich ab, wenn man die Blätter lange Zeit unter der Einwirkung von Licht, Hitze, Feuchtigkeit aufbewahrt.

Auch wenn Hautabsonderungen am Aufzeichnungsbild haften, oder Weichmacher (DOP; DOA usw.) aus einer Verpackungsfolie, wie einer Polyvinylchloridfolie, damit in Berührung kommen, wird die Bilddichte erheblich verringert, oder das Bild verlöscht. Daher wird die optische Lesbarkeit im nahen Infrarot-Bereich betrachtlich erniedrigt. Die obigen Nachteile machen die praktische Verwendung der wärmeempfindlichen Aufzeichnungsblätter schwierig.

Der Erfindung liegt die Aufgabe zugrunde, ein wärmeempfindliches Aufzeichnungsmaterial zu schaffen, das in der thermischen Ansprechbarkeit, in der Beständigkeit gegenüber der Einwirkung von Licht, Klima und Ölen, und in der optischen Lesbarkeit im nahen Infrarot-Bereich, insbesondere bei Strichcode-Aufzeichnungen, verbessert ist.

Diese Aufgabe wird erfidungsgemäß wie folgt gelöst. Ein wärmeempfindliches Aufzeichnungsmaterial wird zur Verfügung gestellt, bei dem die wärmeempfindliche Farbentwicklungsschicht als basischen farblosen chromogenen Farbstoff einen Fluoranleukofarbstoff der allgemeinen Formel (I) und eine Divinylverbindung der allgemeinen Formel (II) und gegebenenfalls einen Fluorenleukofarbstoff der allgemeinen Formel (III) enthält:

45

worin mindestens einer der Reste von R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ oder R₉ eine Verbindung der allgemeinen Formel

$$-\underset{T_{1}}{\mathsf{N}}-\underbrace{\left\langle \right\rangle }_{T_{2}}^{\mathsf{N}}-\underbrace{\left\langle \right\rangle }_{T_{4}}^{\mathsf{T}_{3}}$$

bedeutet;

5

10

15

20

25

die anderen Reste R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ und R₉ gleich oder verschieden sind, und jeweils ein Wasserstoffatom, Halogenatom, eine Alkyl-, Alkoxy- Cycloalkylgruppe, Nitro-, Hydroxy-, Amino-, substituierte Amino-, Aralkyl-, substituierte Aralkyl-, Aryl- oder substituierte Arylgruppe bedeuten (der Aminosubstituent ist vorzugsweise eine (oder zwei) C1-C6-Alkylgruppe(n); der Substituent der Aralkyl- oder Arylgruppe ist vorzugsweise eine C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, Halogen- oder Nitrogruppe); T₁, T₂ und T₃ gleich oder verschieden sind, und jeweils ein Wasserstoffatom, eine C₁-C₈-Alkyl-, C₃-C₉-

Alkenyl-oder C₃-C₉-Alkinylgruppe bedeuten; T₄ ein Wasserstoffatom, eine C₁-C₈ Alkyl-, C₃-C₉ Alkenyl-, C₃-C₉ Alkinyl- oder Phenylgruppe bedeutet; oder T₃ und T₄ mit einem benachbarten Stickstoffatom verbunden sein können und dabei eine Morpholino-, Pyrrolidino-, Piperidino-oder Hexamethyleniminogruppe bilden; und £ eine ganze Zahl von 0 bis 4 bedeutet;

55

worin R₁₀ eine Alkylgruppe mit 8 oder weniger C-Atomen bedeutet; R₁₁ eine Alkylgruppe mit 8 oder weniger C-Atomen, eine C₅-C₇ Cycloalkylgruppe, oder eine Benzyl-oder

Phenylgruppe, die gegebenfalls durch ein Chlor-oder Bromatom oder eine C₁-C₄-Alkylgruppe substituiert sein kann, bedeutet;

X¹ und X² gleich oder verschieden sind und jeweils eine Alkylgruppe mit 8 oder weniger C-Atomen, eine Alkoxygruppe mit 8 oder weniger C-Atomen, ein Fluor-, Chlor- oder Bromatom bedeuten;

m und n gleich oder verschieden sind und jeweils eine ganze Zahl 0, 1, 2 oder 3 bedeuten; jedes X^1 in $(X^1)_m$ gleich oder verschieden ist jedes X^2 in $(X^2)_n$ gleich oder verschieden ist; und jedes X^3 in $(X^3)_4$ gleich oder verschieden ist, und ein Chlor-oder Bromatom bedeutet;

$$R_{12}$$
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
.... (IIII)

25

worin R₁₂, R₁₃, R₁₄, R₁₅, R₁₆ und R₁₇ gleich oder verschieden sind und jeweils ein Wasserstoffatom, eine C₁-C₈-Alkylgruppe; eine C₅-C₈ Cycloalkylgruppe, eine C₃-C₈-Alkoxyalkylgruppe; eine C₃-C₉-ungesättigte Alkylgruppe; eine Tetrahydrofurfurylgruppe; eine Tetrahydropyran-2-methylgruppe; eine Alkylgruppe, die durch ein Halogenatom, eine C₁-C₄-Alkylgruppe und/oder eine C₁-C₄-Alkoxygruppe substituiert sein kann; eine Arylgruppe, die durch ein Halogenatom, eine C₁-C₄-Alkylgruppe, ein

Alkylgruppe und/oder eine C_1 - C_4 -Alkoxygruppe substituiert sein kann, bedeuten, und wobei R_{12} und R_{13} , R_{14} und R_{15} , oder R_{16} und R_{17} gegebenenfalls miteinander oder mit einem benachbarten Benzolring einen heterocyclischen Ring bilden können.

Soweit nicht anders angegeben bedeuten die obigen Alkyleinheiten vorzugsweise gerade oder verzweigte C_1 - C_8 -Alkylgruppen, wobei C_1 - C_6 - und insbesondere C_1 - C_4 -Alkylgruppen besonders bevorzugt sind. Bevorzugte Arylreste sind Phenyl und Naphthyl; Aralkyl bedeutet insbesondere Benzyl. Die Cycloalkylgruppe ist vorzugsweise eine C_5 - C_8 -Cycloalkylgruppe.

Von Fluoranleukofarbstoffen der allgemeinen Formel (I) sind die Farbstoffe der folgenden allgemeinen Formel (IV) bevorzugt.

worin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , T_1 , T_2 , T_3 , T_4 und ℓ die vorstehend angegebene Bedeutung besitzen.

Die erfindungsgemäßen Fluoranleukofarbstoffe unterliegen keinen besonderen Einschränkungen; man kann z.B. folgende verwenden:

aminoanilinofluoran, 2-Methoxy-6-p-(p-dimethylaminophenyl)-2-Methyl-6-p-(p-dimethylaminophenyl) aminoanilinofluoran, 2-Chlor-6-p-(p-dimethylaminophenyl)aminoanilinofluoran, 2-Nitro-6-p-(p-diäthylaminophenyl)aminoanilinofluoran, 2-Amino-6-p-(p-diäthylaminophenyl)aminoanilinofluoran, 2-Diäthylamino-6-p-(pdiäthylaminophenyl)aminoanilinofluoran, 2-Phenyl-6-p-(p-phenylaminophenyl)aminoanilinofluoran, 2-Benzyl-6-p-(p-phenylaminophenyl)aminoanilinofluoran, 2-Hydroxy-6-p-(p-phenylaminophenyl)aminoanilinofluoran. 3-Methyl-6-p-(p-di-methylaminophenyl)aminoanilinofluoran, 3-Diäthylamino-6-p-(p-diäthylaminophenyl) aminoanilinofluoran, 3-Diäthylamino-6-p-(p-dibutylaminophenyl)aminoanilinofluoran, 3-Methyl-7-p-(p-dimethylaminophenyl)aminoanilinofluoran, 3-Methoxy-7-p-(p-dimethylaminophenyl)aminoanilinofluoran, 3-Chlor-7-p-(p-dimethylaminophenyl)aminoanilinofluoran, 3-Chlor-7-p-(p-dimethylaminophenyl)aminoanilino methylaminophenyl)aminoanilinofluoran, 3-Nitro-7-p-(p-diäthylaminophenyl)aminoanilinofluoran, 3-Amino-7p-(p-diäthylaminophenyl)aminoanilinofluoran, 3-Diäthylamino-7-p-(p-diäthylaminophenyl)aminoanilinofluoran, 3-Phenyl-7-p-(p-phenylaminophenyl)aminoanilinofluoran, 3-Benzyl-7-p-(p-phenylaminophenyl)aminoanilinofluoran, 3-Hydroxy-7-p-(p-phenylaminophenyl)aminoanilinofluoran, 2-Methyl-7-p-(p-dimethylaminophenyl)aminoanilinofluoran. 2-Diäthylamino-7-p-(p-diäthylaminophenyl)aminoanilinofluoran, Diäthylamino-7-p-(p-dibutylaminophenyl)aminoanilinofluoran, 2-p-(p-dimethylaminophenyl)aminoanilino-6methylfluoran, 2-p-(p-Dimethylaminophenyl)aminoanilino-6-methoxyfluoran, 2-p-(p-Dimethylaminophenyl)aminoanilino-6-chlorfluoran, 2-p-(p-diäthylaminophenyl)aminoanilino-6-nitrofluoran, 2-p-(p-diäthylaminophenyl)aminoanilino-6-aminofluoran, 2-p-(p-diäthylaminophenyl)aminoanilino-6-diäthylaminofluoran, 2-p-(p-Phenylaminophenyl)aminoanilino-6-phenylfluoran, 2-p-(p- Phenylaminophenyl)aminoanilino-6-benzylfluoran, 2-p-(p-Phenylaminophenyl)aminoanilino-6-hydroxyfluoran, 2-p-(p-Dimethylaminophenyl)aminoanilino-6-methyl-2-p-(p-Diäthylaminophenyl)aminoanilino-6-diäthylaminofluoran, 2-p-(p-Phenylaminophenyl)aminoanilino-6-diäthylaminofluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-7-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-methylfluoran, 3-p-(p-Dimethyl thylaminophenyl)aminoanilino-7-methoxyfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-7-chlorfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-chlorfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-8-chlorfluoran, 3-p-(p-Dimethylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylaminophenylamin p-(p-Diäthylaminophenyl)aminoanilino-7-nitrofluoran, 3-p-(p-Diäthylaminophenyl)aminoanilino-7-aminofluoran, 3-p-(p-Diäthylaminophenyl)aminoanilino-7-diäthylaminofluoran, 3-p-(p-Phenylaminophenyl)aminoanilino-7-3-p-(p-Phenylaminophenyl)-3-p-(p-Phenylaminophenyl)aminoanilino-7-benzylfluoran, aminoanilino-7-hydroxyfluoran, 3-p-(p-Dimethylaminophenyl)aminoanilino-7-methylfluoran, 3-p-(p-Diäthylaminophenyl)aminoanilino-7-diäthylaminofluoran, und 3-p-(p-Phenylaminophenyl)aminoanilino-7-diäthylaminofluoran.

Die erfindungsgemäßen Fluoranleukofarbstoffe der allgemeinen Formel (I) werden allein oder im Gemisch verwendet.

Unter Berücksichtigung der Produktivität, Kosten und Leistungsfähigkeit sind 2-Methyl-6-p-(p-dimethylaminophenyl)aminoanilinofluoran (Schmelzpunkt: 197-203°C) der folgenden Formel (V) und 2-Chlor-3-methyl-6p-(p-phenylaminophenyl)aminoanilinofluoran (Schmelzpunkt: 191.5-196°C) der folgenden Formel (VI) am stärksten bevorzugt.

40

45

50

CH₅

$$C_{\ell}$$
 C_{ℓ}
 C_{ℓ}

Die Wahl der erfindungsgemäßen Divinylverbindungen unterliegt keinen besonderen Einschränkungen, man kann z.B. folgende verwenden:

			_			
5	Nr.	R,	R ₂	(X ¹) _m	(X ²) _n	(X ³) ₄
J	1	CH ₅	СН ₃	н	р-ОСЙ ₃	(Br) ₄
10	2	•	,	•		5-CL (Br)5
	3	,	ø	•	p-OC ₄ H ₉	5,6-(CL) ₂ (Br) ₂
15	4	٠. ه	,	•	p-OC ₆ H ₁₅	(Br) ₄
	5	•	,	,	н	•
20	6	,	e	e	p-CH ₃	,
25	7		ø	•	,	5-CL (Br) ₅
	8	e	,	•	p-tert-C ₄ H ₉	(Br) ₄
30	9		,		m,p- (OCH ₅) ₂	
	10	C ₂ H ₅	C ₂ H ₅	ø	p-OCH ₅	,
35	11		8	,	p-CH ₅	•
40	12	8	•	m-CH ₅	p-OCH ₅	8
	13	C ₄ H ₉	C ₄ H ₉	н	p-OC ₂ H ₅	,
45	14	C ₂ H ₅	iso-C ₅ H ₁₁	•	p-tert-C ₄ H ₉	•
	15	C ₂ H ₅	H)-	•	p-OCH ₃	•
50	16	CH ₃ .	(H)-		•	,
55	17	C ₂ H ₅	Сн ₅ -О-Сн ₂ -	m-OCH ₃	m,p- (CH ₅) ₂	5-CL (Br) ₅

Unter Berücksichtigung der Produktivität, Kosten und Leistungsfähigkeit sind von den Divinylverbindungen der allgemeinen Formel (II) 3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl-4,5,6,7-tetrabromphthalid (Schmelzpunkt: 133-135 °C) und 3,3-Bis-[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl]-4,5,6,7-tetrachlorphthalid (Schmelzpunkt: 133-135 °C) am stärksten bevorzugt.

Von den Fluorenleukofarbstoffen der allgemeinen Formel (III) ist unter Berücksichtigung der Produktivität, Kosten und Leistungsfähigkeit 3,6-Bis(dimethylamino)fluoren-9-spiro-3 -(6 dimethylamino)phthalid am stärsten bevorzugt. In Bezug auf das Mischungsverhältnis von Divinylverbindung, Fluorenleukofarbstoff und Fluoranleukofarbstoff, die erfindungsgemäß verwendet werden, ist es vorteilhaft, 0,1-25 Gew.-Teile des Fluorenleukofarbstoffs und 0,05-3 Gew.-Teile Fluoranleukofarbstoffs, bezogen auf 1 Teil der Divinylverbindung, zu verwenden.

Bevorzugte Beispiele für das erfindungsgemäße organische Farbentwicklungsmittel sind Bisphenol-A-Typen, 4-Hydroxybenzoesäureester, 4-Hydroxyphtalsäurediester, Phtalsäuremonoester, Bis(hydroxyphenyl)-sulfide, 4-Hydroxyphenylarylsulfone, 4-Hydroxyphenylarylsulfonate, 1,3-Di-[2-(hydroxyphenyl)-2-propyl]-benzole, 4-Hydroxybenzoesäureester, Bisphenolsulfone usw. Beispiele für geeignete Verbindungen dieser Art sind folgende:

Bisphenol A-Typ

20

- 4,4 -lsopropylidendiphenol
- 4,4 -Cyclohexylidendiphenol
- p.p -(1-Methyl-normalhexyliden)diphenol
- 1,7-Di(4-hydroxyphenylthio)-3,5-Dioxaheptan

25

4-Hydroxybenzoesäureester

- 4-Hydroxybenzoesäurebenzylester
- 4-Hydroxybenzoesäureäthylester
- 4-Hydroxybenzoesäurepropylester
- 4-Hydroxybenzoesäureisopropylester
- 4-Hydroxybenzoesäurebutylester
- 4-Hydroxybenzoesäureisobutylester
- 4-Hydroxybenzoesäuremethylbenzylester

4-Hydroxyphthalsäurediester

- 40 4-Hydroxyphthalsäuredimethylester
 - 4-Hydroxyphthalsäurediisopropylester
 - 4-Hydroxyphthalsäuredibenzylester
 - 4-Hydroxyphthalsäuredihexylester

45

Phtalsäuremonoester

Phthalsäuremonobenzylester
Phthalsäuremonocyclohexylester
Phthalsäuremonophenylester
Phthalsäuremonomethylphenylester
Phthalsäuremonoäthylphenylester
Phthalsäuremonoalkylbenzylester
Phthalsäuremonohalogenbenzylester
Phthalsäuremonoalkoxybenzylester

Bis-(hydroxyphenyl)sulfide

5	Bis-(4-hydroxy-3-tertbutyl-6-methylphenyl)sulfid Bis-(4-hydroxy-2,5-dimethylphenyl)sulfid Bis-(4-hydroxy-2-methyl-5-äthylphenyl)sulfid Bis-(4-hydroxy-2-methyl-5-isopropylphenyl)sulfid Bis-(4-hydroxy-2,3-dimethylphenyl)sulfid
	Bis-(4-hydroxy-2,5-diäthylphenyl)sulfid Bis-(4-hydroxy-2,5-diisopropylphenyl)sulfid Bis-(4-hydroxy-2,3,6-trimethylphenyl)sulfid
10	Bis-(2,4,5-trihydroxyphenyl)sulfid Bis-(4-hydroxy-2-cyclohexyl-5-methylphenyl)sulfid Bis-(2,3,4-trihydroxyphenyl)sulfid Bis-(4,5-dihydroxy-2-tert-butylphenyl)sulfid
15	Bis-(4-hydroxy-2,5-diphenylphenyl)sulfid Bis-(4-hydroxy-2-tert-octyl-5-methylphenyl)sulfid
	4-Hydroxyphenylarylsulfone
20	4-Hydroxy-4 ['] -isopropoxydiphenylsulfon 4-Hydroxy-4 ['] -methyldiphenylsulfon 4-Hydroxy-4 ['] -n-butyloxydipehnylsulfon
25	4-Hydroxyphenylarylsulfonate
	4-Hydroxyphenylbenzolsulfonat 4-Hydroxyphenyl-p-tolylsulfonat 4-Hydroxyphenylmethylensulfonat
30	4-Hydroxyphenyl-p-chlorbenzolsulfonat 4-Hydroxyphenyl-p-tert-butylbenzolsulfonat 4-Hydroxyphenyl-p-isopropoxybenzolsulfonat 4-Hydroxyphenyl-1 -naphthalinsulfonat
	4-Hydroxyphenyl-2 -naphthalinsulfonat
35	1,3-Di(2-(hydroxyohenyl)-2-propyl)-benzole
40	1,3-Di(2-(4-hydroxyphenyl)-2-propyl)-benzol 1,3-Di(2-(4-hydroxy-3-alkylphenyl)-2-propyl)-benzol 1,3-Di(2-(2,4 -dihydroxyphenyl)-2-propyl)-benzol 1,3-Di(2-(2-hydroxy-5-methylphenyl)-2-propyl)-benzol
45	Resorcinole
	1,3-Dihydroxy-6(α , α -dimethylbenzyl)-benzol
50	4-Hydroxybenzoyloxybenzoesäureester
	4-Hydroxybenzoyloxybenzoesäure-Benzylester 4-Hydroxybenzoyloxybenzoesäure-Methylester 4-Hydroxybenzoyloxybenzoesäure-Äthylester
55	4-Hydroxybenzoyloxybenzoesäure-Propylester 4-Hydroxybenzoyloxybenzoesäure-Butylester 4-Hydroxybenzoyloxybenzoesäure-Isopropylester 4-Hydroxybenzoyloxybenzoesäure-tert-Butylester 4-Hydroxybenzoyloxybenzoesäure-Hexylester

EP 0 325 231 A2 4-Hydroxybenzoyloxybenzoesäure-Octylester 4-Hydroxybenzoyloxybenzoesäure-Nonylester 4-Hydroxybenzoyloxybenzoesäure-Cyclohexylester 4-Hydroxybenzovloxybenzoesäure-β-Phenäthylester 4-Hydroxybenzoyloxybenzoesäure-Phenylester 4-Hydroxybenzoyloxybenzoesäure-α-Naphtylester 4-Hydroxybenzovloxybenzoesäure-β-Naphtylester 4-Hydroxybenzoyloxybenzoesäure-sec-Butylester 10 Bisphenolsulfone (I) Bis-(3-1-butyl-4-hydroxy-6-mehtylphenyl)sulfon Bis-(3-äthyl-4-hydroxyphenyl)sulfon Bis-(3-propyl-4-hydroxyphenyl)sulfon Bis-(3-methyl-4-hydroxyphenyl)sulfon Bis-(2-isopropyl-4-hydroxyphenyl)sulfon Bis-(2-äthyl-4-hydroxyphenyl)sulfon Bis-(3-chlor-4-hydroxyphenyl)sulfon Bis-(2,3-dimethyl-4-hydroxyphenyl)sulfon Bis-(2,5-dimethyl-4-hydroxyphenyl)sulfon Bis-(3-methoxy-4-hydroxyphenyl)sulfon 4-Hydroxyphenyl-2´-äthyl-4´-hydroxyphenylsulfon 4-Hydroxyphenyl-2'-isopropyl-4'-hydroxyphenylsulfon 4-Hydroxyphenyl-3'-isopropyl-4'-hydroxyphenylsulfon 4-Hydroxyphenyl-3 -sec-butyl-4 -hydroxyphenylsulfon 3-Chlor-4-hydroxyphenyl-3'-isopropyl-hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-aminophenyl-4 -hydroxyphenylsulfon 30 2-Hydroxy-5-t-isopropylphenyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-octylphenyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3´-chlor-4´-hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3 -methyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3 -isopropyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3 -chlor-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3 -methyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-3 -isopropyl-4 -hydroxyphenylsulfon 2-Hydroxy-5-t-butylphenyl-2 -methyl-4 -hydroxyphenylsulfon 40 Bisphenolsulfone (II) 4,4 -Sulfonyldiphenol 2,4 - Sulfonyldiphenol 3,3'-Dichlor-4,4'-sulfonyldiphenol 3,3 -Dibromo-4,4 -sulfonyldiphenol 3,3 ;5,5 -Tetrabromo-4,4 -sulfonyldiphenol 3,3'-Diamino-4,4'-sulfonyldiphenol 50

Andere

p-tert-Butylphenol 2,4-Dihydroxybenzophenon 55 Novolak-Phenolharz 4-Hydroxyaphenylacetat p-Phenylphenol Benzyl-4-hydroxyphenylacetat

p-Benzylphenol

Die vorstehenden Farbentwicklungsmittel können entweder allein oder in Kombination verwendet werden.

Eine weitere Verbesserung der optischen Lesbarkeit in nahen infraroten Bereich kann erfindungsgemäß in Kombination mit mindestens einer Substanz aus der Gruppe Fluoranleukofarbstoffe, Divinyl-Phthalidderivate, Sulfonylmethanderivate usw. erreicht werden.

Zur weiteren Verbesserung der Stabilität, wie der Beständigkeit gegenüber der Einwirkung von Licht, Klima, Ölen usw. können zu der Farbentwicklungsschicht verschiedene mehrwertige Metallsalze von organischen Säuren als Stabilisator zugegeben werden.

Unter diesen Stabilisatoren sind die halogensubstituierten Zinkbenzoatderivate der allgemeinen Formel (VI) am stärksten bevorzugt.

$$\begin{array}{c}
(X) \\
CO_2 \\
(A)_m
\end{array}$$
Z n (VI)

25

worin X ein Halogenatom bedeutet;

A ein Wasserstoffatom, eine Nitro-, C₁-C₁₂-Alkyl-, C₁-C₁₂-Alkoxy-, C₃-C₁₀ Cycloalkyl-, Cyano- oder Hydroxygruppe bedeutet;

£ eine ganze Zahl 1 oder 2 bedeutet; und m eine ganze Zahl von 0 bis 5 bedeutet.

In der allgemeinen Formel (VI) können eine C₁-C₁₂ Alkyl-und eine C₁-C₁₂ Alkoxygruppe ein gerader oder verzweigter Rest sein. Typische Beispiele für eine C₁-C₁₂ Alkyl- und C₁-C₁₂ Alkoxygruppe sind eine Methyl-, Äthyl-, n-Propyl-, Isopropyl-, n-Butyl-, Isobutyl-, sek.-Butyl-, Hexyl-, Octyl-, Nonyl-, Dodecyl-, Methoxy-, Äthoxy-, tert.-Butoxygruppe und dergleichen. Typische Beispiele für eine C₃-C₁₀ Cycloalkylgruppe sind eine Cyclohexyl-, 2-Äthylcyclohexyl, p-tert.-Butylcyclohexylgruppe und dergleichen.

Der erfindungsgemäß anwendbare Stabilisator ist eine Verbindung mit einer besonderen Struktur, die aus vielen organischen Carbonsäuremetallsalzen gewählt wird. Die Verwendung von Benzoesäurezinksalzen, die als Substituent 1-2 Halogenatome am Benzolring haben, führt verglichen mit den entsprechenden organischen Carbonsäuren und anderen mehrwertigen Metallsalzen zu Aufzeichnungsmaterialien mit überlegener Beständigkeit gegenüber Licht, Ölen und Klimaeinflüssen.

Erfindungsgemäß anwendbare halogensubstituierte Zinkbenzoatderivate unterliegen keinen Beschränkungen, geeignete Beispiele sind:

45

40

50

$$(1) \qquad (C \mathcal{L} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(2) \qquad (\bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(3) \qquad (\bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(4) \qquad (\operatorname{Br} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(5) \qquad (\operatorname{Br} - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(6) \qquad (\operatorname{Br} - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(7) \qquad (\operatorname{CL} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(8) \qquad (\operatorname{CL} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(8) \qquad (\operatorname{CL} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

$$(9) \qquad (\operatorname{CL} - \bigcirc - \operatorname{CO}_2)_2 \operatorname{Zn}$$

(17)

45

Weiter kann ein Sensibilisator zur erfindungsgemäßen Farbentwicklungsschicht zugegeben werden. Typische Beispiele für solche sensibilisatoren sind Fettsäureamide wie Stearinsäureamid, Palmitinsäureamid, usw.; Äthylenbisamid; Montanwachs; Polyäthylenwachs; Terephthalsäuredibenzylester; p-Benzyloxybenzoesäurebenzylester; Di-p-tolylcarbonat; p-Benzylbiphenyl; Phenyl-α-naphthylcarbonat; 1,4-Diäthoxynaphthalin; 1-Hydroxy-2-naphthoesäure-phenylester; 1,2-Di(3-methylphenoxy)äthylen; usw.

Erfindungsgemäß anwendbare Bindemittel sind z. B. vollstandig verseifter Polyvinylalkohol (Polymerisationsgrad: 200-1900), teilweise verseifter Polyvinylalkohol, carboxylierter Polyvinylalkohol, amidmodifizierter Polyvinylalkohol, sulfonsäuremodifizierter Polyvinylalkohol, butyralmodifizierter Polyvinylalkohol, andere modifizierte Polyvinylalkohole, Hydroxyäthylcellulose, Methylcellulose, Carboxymethylcellulose, Styrol-Maleinsäureanhydrid-Copolymere, Styrol-Butadien-Copolymere, Cellulosederivate wie Äthylzellulose und Acetylcellulose, Polyvinylchlorid, Polyvinylazetat, Polyacrylamid, Polyacrylsäureester, Polyvinylbutyral, Polystyrol, Copolymere von obigen Verbindungen, Polyamidharz, Siliconharz, Petroleumkunstharz, Terpenharz, Ketonharz und Cumaronharz. Diese hochmolekularen Bindemittel können verwendet werden, nachdem

sie in einem Lösungsmittel wie Wasser, Alkohol, Keton, Ester, Kohlenwasserstoff usw. gelöst oder in Wasser oder Lösungsmittel emulgiert oder dispergiert wurden.

Die Art und Menge des erfindungsgemäßen organischen Farbentwicklungsmittels, des basischen farblosen chromogenen Farbstoffs, der anderen Additive, die je nach dem gewünschten Effekt und der Eignung für Aufzeichnungszwecke bestimmt werden, sind nicht beschränkt. Im allgemeinen ist es vorteilhaft, 1 bis 8 Gew.-Teile des erfindungsgemäßen organischen Farbentwicklungsmittels, und 1 bis 20 Gew.-Teile Füllstoff, bezogen auf 1 Teil des basischen farblosen chromogenen Farbstoffs, und 10 bis 25 Gew.-Teile Bindemittel, bezogen auf den Gesamtfeststoffgehalt, zu verwenden.

Das erfindungsgemäße wärmeempfindliche Material wird hergestellt, indem man die Beschichtungsmasse auf ein Basismaterial wie Papier, synthetisches Papier, Film, Kunststoff usw. aufträgt.

Das obige erfindungsgemäße organische Farbentwicklungsmittel, der basische farblose chromogene Farbstoff und gegebenenfalls die anderen Additive werden mittels einer Mahlvorrichtung, wie Kugelmühle, Reibmühle, Sandschleifmaschine usw., oder mittels einer geeigneten Emulgiermaschine bis zu einer Teilchengröße von mehreren Mikron oder kleiner zermahlen. Hierzu gibt man verschiedene Additive, um die erfindungsgemäße Beschichtungsmasse herzustellen. Die erfindungsgemäß anwendbaren Additive sind z. B. folgende:

Füilstoff; Trennmittel für die Verhütung des Anhaftens eines Blattes wie Metallsalze von Fettsäuren; Gleitmittel zur Mottling-Verhinderung, wie Fettsäureamid, Äthylenbisamid, Montanwachs, Polyäthylenwachs usw.; Dispergiermittel, wie Dioctylsulfobernsteinsäurenatriumsalz, Natriumdodecylbenzolsulfonat, Natriumlaurylalkoholsulfat, Natrumalginat usw.; UV-Absorptionsmittel der Benzophenon- und Triazolreihe; Antischaummittel; Fluoreszenzfarbstoffe; wasserabweisende Mittel usw.

Als erfindungsgemäße Füllstoffe können sowohl anorganische wie organische Füllstoffe, die in der Papierverarbeitungsindustie angewendet werden, verwendet werden. Beispiele für die erfindungsgemäßen Füller sind Tonerde, Talkum, Siliciumdioxid, Magnesiumcarbonat, Aluminiumhydroxid, Magnesiumhydroxid, Bariumsulfat, Kaolin, Titandioxid, Zinkoxid, Calciumcarbonat, Aluminiumoxid, Harnstoff-Formaldehydharz, Polystyrolharz, Phenolharz usw.

Zur weiteren Verbesserung der Haltbarkeit kann eine Deckschicht z. B. aus einem Polymerisat aufgebracht werden.

30

(Funktion)

Die Ursache für die überlegene optische Lesbarkeit des erfindungsgemäßen wärmeempfindlichen Aufzeichnungsblattes im nahen Infrarot-Bereich ist vielleicht folgende:

Das gefärbte Bild des Aufzeichnungsblattes nimmt bei Verwendung der bisherigen elektronenabgebenden Farbentwicklungsmittel, z. B. Fluoranfarbstoffe kein Licht im nahen Infrarot-Bereich auf. Die erfindungsgemäßen besonderen Divinylverbindungen, die erfindungsgemäßen besonderen Fluoranleukofarbstoffe, die erfindungsgemäßen besonderen Fluorenleukofarbstoffe nehmen jedoch bei der Farbentwicklung in der Hitzeschmelzreaktion mit einem Elektronenakzeptor (Farbentwicklungsmittel) das Licht im nahen Infrarot-Bereich (besonders Bereich von 700 - 1500 nm) effektiv auf.

Die Ursache für die überlegene Beständigkeit gegenüber Licht, ÖI und Klimaeinflüssen ist wahrscheinlich folgende:

Im allgemeinen besteht ein wärmeempfindliches Aufzeichnungsblatt aus einem basischen farblosen Farbstoff als Elektronendonator und einer organischen sauren Substanz, z. B. einer phenolischen Verbindung, aromatischen Carbonsäure, organischen Sulfonsäure, usw. als Elektronenakzeptor. Die Hitzeschmelzreaktion ist eine Art von Säure-Base-Reaktion, die unter Elektronenabgabe und-aufnahme verläuft, wodurch ein metastabiler Charge-Transfer-Komplex gebildet wird, was zum gefärbten Bild führt.

Andererseits ist die chemische Bindung bei der obigen chemischen Reaktion zwischen einem organischen Farbentwicklungsmittel und einem Farbstoff aus der erfindungsgemäßen Divinylverbindung, dem erfindungsgemäßen Fluoranleukofarbstoff sehr schwach. Die kombinierte Verwendung der Divinylverbindung und des Fluoranleukofarbstoffs und gegebenenfalls des Fluorenleukofarbstoffs ergibt einen synergistischen Effekt bei der Hitzereaktion. Daher wird die chemische Bindung zwischen dem organischen Farbentwicklungsmittel und der Divinylverbindung, diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen dem organischen Farbentwicklungsmittel und dem Fluoranleukofarbstoff, und diejenige zwischen

sich darauf, daß durch die Schmelzpunktserniedrigung bei der Hitzeschmelzreaktion zwischen der Divinylverbindung und dem Fluoranleukofarbstoff die Bilddichte erhöht wird.

5 (Beispiele)

10

15

20

25

35

40

45

Die Erfindung wird durch folgende Beispiele erklärt. Als Abkürzung für Gewichtsteile wird "Teile" verwendet.

[Beispiel1(Test Nrn. 1-6)]

Lösung A (Farbentwicklungsmitteldispersion)

Farbentwicklungsmittel (Siehe Tabelle 1)

6,0 Teile

10%-ige wässerige Lösung von Polyvinylalkohol

18,8 Teile

Wasser

11,2 Teile

30		

Lösung B (Farbstoffdispersion 1)	
Divinylverbindung (Siehe Tabelle 1)	1,0 Teil
10%-ige wässrige Lösung von Polyvinylalkohol	2,3 Teile
Wasser	1,3 Teile

Lösung C (Farbstoffdispersion 2)	
Fluoranleukofarbstoff	1,0 Teil
10%-ige wässrige Lösung von Polyvinylalkohol	2,3 Teile
Wasser	1,3 Teile

Die Lösungen der obigen Zusammensetzungen wurden in einer Reibmühle einzeln bis zur Teilchengröße von 1 Mikron vermahlen. Die Lösungen wurden im folgenden Verhältnis miteinander vermischt, man erhält dabei eine wärmeempfindliche Beschichtungsmasse.

Diese Beschichtungsmasse wurde in einer Beschichtungsmenge von 6,0 g/m² auf ein Basispapier mit einem Gewicht von 50 g/m² aufgetragen, getrocknet und superkalandriert, um eine Glätte von 200-600 Sekunden einzustellen. Man erhielt ein wärmeempfindliches Aufzeichnungsblatt.

	(Lõsung A (Farbentwick	lungs-
		mitteldispersion)	36 Teile
5		Lösung B (Farbstoffdi	spersion
		1)	4,6 Teile
10	Beschichtungsmasse	Lösung C (Farbstoffdi	spersion
		2)	4,6 Teile
15		Kaolinton	12 Teile
15		(50%-ige wässrige Dis	persion)
	`		
20			
	[Vergleichsbeispiel1(Test Nrn. 7-8)]		
25	Man erhielt in der gleichen Weise wie im man jedoch Lösung C (Farbstoffdispersion 2)		fzeichnungsblatt, wobei
	[Vergleichsbeispiel2(Test Nr. 9)]	Deinsiel de sie vieren en afindlichen Aus	funisha waablatt wabai
3 0	Man erhielt in der gleichen Weise wie im man jedoch Lösung B (Farbstoffdispersion 1) Die in dem Beispiel und Vergleichsbeis Qualität geprüft, die Ergebnisse sind in Tabel	nicht verwendet. spiel erhaltenen Aufzeichnungsblätter v	
	Guantat gepruit, die Etgebinsse sind in Tabel	ion i una 2 zusammengerassa.	
35			
40			
45			
50			

Tabelle 1 Prüfungsergebnisse

					Bild	Bilddichte
	Test Nr.	Farbentwicklungsmittel	Divinylverbindung	Fluorenleukofarbstoff	Statisch (1)	Dynamisch (2)
	Ħ	4,4'-Isopropylidendiphenol	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)&thenyll- 4,5,6,7-tetrachlorphthalid	2-Chlor-3-methyl-6-p-(p-phenylaminophenyl)	1.50	1.18
	2	4,4'-Isopropylidendiphenol	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)äthenyl]- 4,5,6,7-tetrabromophthalid	2-Chlor-3-methyl-6-p-(p- phenylaminophenyl) aminoanilinofluoran	1.48	1.19
Beispielf	တ	1,7-Di(4- hydroxyphenylthio)-3,5- dioxaheptan	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)āthenyl]- 4,5,6,7-tetrachlorphthalid	2-Methyl-6-p-(p-dimethylaminophenyl) aminoanilinofluoran	1.50	1.18
	4	1,8-Di(4- hydroxyphenylthio)-3,6- dioxaoctan	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)&thenyl)- 4,5,6,7-tetrabromophthalid	2-Methyl-6-p-(p- dimethylaminophenyl) aminoanilinofluoran	1.49	1.19
	лO	4-Hydroxy-4'- isopropoxydiphenylsulfon	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)&thenyl]- 4,5,6,7-tetrachlorphthalid	2-Chlor-3-methyl-6-p-(p- phenylaminophenyl) aminoanilinofluoran	1.48	1.18
	9	4-Hydroxy-4'- isopropoxydiphenylsulfon	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)äthenyl]- 4,5,6,7-tetrabromophthalid	2-Chlor-3-methyl-6-p-(p-phenylaminophenyl) aminoanilinofluoran	1.50	1.19
Vergleichs- beispiel 1	7	4,4'-Isopropylidendiphenol	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)&thenyl}- 4,5,6,7-tetrachlorphthalid	1	1.11	1.03
	&	1,7-Di(4- hydroxyphenylthio)-3,5- dioxaheptan	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)&thenyl}- 4,5,6,7-tetrachlorphthalid	t .	1.10	1.01
Vergleichs- beispiel 2	O	4-Hydroxy-4'- Isopropoxydiphenylsulfon	l	2-Chlor-3-methyl-6-p-(p-phenylaminophenyl) aminoanilinofluoran	1.11	1.00

ત
<u>@</u>
ᇹ
ڥ
-

						Prüfi	Prüfungsergebnisse	se						
	Versuch Nr.	Versuch Reflexions- Nr. grad des infraroten Lichtes (%)	Beständ	Beständigkeit gegenül	iber Licht (4)	cht (4)	Beständ	Beständigkeit gegenüber Ölen (5)	über Öl	en (5)	Beständigk	Beständigkeit gegenüber Klimaeinflüssen (6)	r Klima	sinflüssen
			Vor Nach Behandlung Behandlung	Nach Behandlung	Rest- proz- ent (%)	Reflexion- sgrad des infraroten Lichtes (%)	Reflexion- Vor Nach sgrad des Behandlung infraroten Lichtes (%)		Rest- proz- ent (%)	Reflexion- sgrad des infraroten Lichtes (%)	Vor Behandlung	Reflexion- Vor Nach sgrad des Behandlung infraroten Lichtes (%)	Rest- proz- ent (%)	Reflexion- sgrad des infraroten Lichtes(- %)
Beispiel	-	1.1	1.18	1.07	91	24	1.18	1.16	98	14	1.18	1.00	85	27
· -	2	12	1.19	1.09	92	27	1.19	1.16	97	15	1.19	1.02	98	29
	က	11	1.18	1.08	92	24	1.18	1.14	97	15	1.18	1.02	98	27
	4	12	1.19	1.08	91	56	1.19	1.17	98	15	1.19	1.02	98	28
	2	=	1.18	1.06	90	25	1.18	1.16	98	15	1.18	1.00	82	27
	9	-	1.19	1.09	92	25	1.19	1.15	97	13	1.19	1.03	87	28
Vergleich- sbeispiel	7	17	1.03	0.62	60	71	1.03	0:20	49	80	1.03	0.41	40	91
-	8	18	1.01	0.61	90	72	1.01	0.49	49	81	1.01	0.39	39	90
Vergleich-	6	20	1.00	09:0	09	7.1	1.00	0.48	48	98	1.00	0.38	38	92
sbeispiel 2														

Anmerkungen

5

15

20

35

- (1) Statische Bilddichte: Ein wärmeempfindliches Aufzeichnungsblatt wird 5 Sekunden unter einem Druck von 10 g/cm² gegen eine auf 135° C erhitzte Platte gepreßt. Die statische Bilddichte wird mit einem Macbeth-Dichtemesser (RD-914, Verwendung des Amber-Filters, unten gelten die gleichen Bedingungen) bestimmt.
- (2) Dynamische Bilddichte: Ein wärmeempfindliches Aufzeichnungsblatt wird bei einer angelegten
 50 Spannung von 18,03 V und einer Pulsbreite von 3,2 Millisekunden unter Verwendung einer Faksimilierma50 schine KB-4800 (von TOSHIBA CORPORATION) aufgezeichnet und mit einem Macbeth-Dichtemesser
 50 bestimmt.
 - (3) Reflexionsgrad des infraroten Lichtes (%): Der Reflexionsgrad des durch die obige Anmerkung (2) aufgezeichneten Teils wird mit einem Spektrophotometer bei einer Wellenlänge von 1000 nm gemessen.
 - (4) Beständigkeit gegenüber Licht: Das gemäß obiger Anmerkung (2) aufgezeichnete Bild wird als Bilddichte vor der Behandlung bezeichnet. Die Aufzeichnung wird 4 Stunden mit dem Licht eines Fade-O-Meters bestrahlt.

Der Reflexionsgrad des infraroten Lichtes wird in bezug auf das aufgezeichnete Bild nach der Belichtung gemessen.

(5) Beständigkeit gegenüber Ölen: Die gemäß obiger Anmerkung (2) aufgezeichnete Bilddichte wird als Bilddichte vor der Behandlung definiert. Ein Tropfen Rizinusöl wird auf die Aufzeichnung getröpfelt, nach 10 Sekunden mit einem Filtrierpapier abgewischt und 24 Stunden stehengelassen. Danach wird die Bilddichte (nach der Ölbehandlung) gemessen. Der Restprozentsatz wird nach folgender Formel berechnet.

Der Reflexionsgrad des infraroten Lichtes wird in bezug auf den aufgezeichneten Teil nach der Ölbehandlung gemessen.

(6) Beständigkeit gegenüber Klimaeinflüssen: Das gemäß obiger Anmerkung (2) behandelte wärmeempfindliche Blatt wird 24 Stunden bei 40°C and 90% relativer Luftfeuchtigkeit stehengelassen und dann mit einem Macbeth-Dichtemesser gemessen. Der Restprozentsatz wird nach folgender Formel berechnet.

Der Reflexionsgrad des aufgezeichneten Teils nach Behandlung wird mit dem Spektrophotometer bei einer Wellenlänge von 1000 nm gemessen.

[Beispiel 3 (Test Nrn.:11-13)]

Lösung A (Farbentwicklungsmitteldispersion)	
Farbentwicklungsmittel (Siehe Tabelle 3)	6,0 Teile
10%-ige wässrige Lösung von Polyvinylalkohol	18,8 Teile
Wasser	11,2 Teile

Lösung B (Farbstoffdispersion Nr. 1)

Fluoranleukofarbstoff (Siehe Tabelle 3.)

0,3 Teile

5

10

20

25

30

35

45

50

55

10%-ige wässrige Lösung von Polyvinylalkohol

0,7 Teile

Wasser 0,4 Teile

Lösung C (Farbstoffdispersion Nr. 2)

Divinylverbindung (Siehe Tabelle 3)
10%-ige wässrige Lösung von Polyvinylalkohol
Wasser

1,0 Teil
2,3 Teile
1,3 Teile

Lösung D (Farbstoffdispersion Nr. 3)

Fluorenleukofarbstoff (Siehe Tabelle 3)
1,0 Teil
10%-ige wässrige Lösung von Polyvinylalkohol
Wasser
1,3 Teile

Die Lösungen der obigen Zusammensetzungen wurden in einer Reibmühle einzeln bis zur Teilchengrö-40 ße von 1 Mikron vermahlen. Die Lösungen wurden im folgenden Verhältnis miteinander vermischt, man erhält dabei eine wärmeempfindliche Beschichtungsmasse.

	· / Lösung A	
	(Farbentwicklungsmitte	ldispersion)
5		36 Teile
	Lõsung B (Farbstoffdis	persion Nr. 1)
10		1,4 Teile
	Beschichtungsmasse Lõsung C (Farbstoffdis	persion Nr. 2)
		4,6 Teile
15	Lösung D (Farbstoffdis	persion Nr. 3)
		4,6 Teile
20	Kaolinton	12 Teile
20	(50%-ige wässrige Disp	ersion)
25	Diese Beschichtungsmasse wurde in einer Beschichtungsmenge von 6,0	g/m² auf ein Basispapier mit
	einem Gewicht von $50~{\rm g/m^2}$ aufgetragen, getrocknet und superkalandriert, un Sekunden einzustellen. Man erhielt ein wärmeempfindliches Aufzeichnungsblat	t.
30	mr	
	[Vergleichsbeispiel3(Test Nrn.14-16]	
	Lösung A (Farbentwicklungsmitteldisper	sion)
35	Farbentwicklungsmittel (Siehe Tab	elle 3)
		6,0 Teile
40	10%-ige wässrige Lösung von Polyv	inylalkohol
	18	,8 Teile
45	Wasser 11	,2 Teile
50	Lösung D (Farbstoffdispersion)	
	Basischer farbloser chromogener Farbstoff (Siehe Tabelle 3)	2,0 Teile
	10%-ige wässrige Lösung von Polyvinylalkohol Wasser	4,6 Teile 2,6 Teile
55		

Die Lösungen der obigen Zusammensetzungen wurden in einer Reibmühle einzeln bis zur Teilchengröße von 1 Mikron vermahlen. Die Lösungen wurden im folgenden Verhältnis miteinander vermischt, man erhält dabei eine wärmeempfindliche Beschichtungsmasse.

	+	Lösung A	
5		(Farbentwicklungsmitteldispers:	ion)
		36	Teile
10	Beschichtungsmasse	Lösung D (Farbstoffdispersion)	
	,	9,2	Teile
			Teile
15		(50%-ige wässrige Dispersion)	

Diese Beschichtungsmasse wurde in einer Beschichtungsmenge von 6,0 g/m² auf ein Basispapier mit einem Gewicht von 50 g/m² aufgetragen, getrocknet und superkalandriert, um eine Glätte von 200 - 600 Sekunden einzustellen. Man erhielt ein wärmeempfindliches Aufzeichnungsblatt.

[Vergleichsbeispiel4(Test Nrn. 17-19]

25

30

Lösung A (Farbentwicklungsmitteldispersion)	
Farbentwicklungsmittel (Siehe Tabelle 3)	6,0 Teile
10%-ige wässrige Lösung von Polyvinylalkohol	18,8 Teile
Wasser	11,2 Teile

35

Lösung E (Farbstoffdispersion 1)	
Basischer farbloser chromogener Farbstoff (Siehe Tabelle 3)	1,0 Teil
10%-ige wässrige Lösung von Polyvinylalkohol	2,3 Teile
Wasser	1,3 Teile

40

Lösung F (Farbstoffdispersion 2)

45

Basischer farbloser chromogener Farbstoff

(Siehe Tabelle 3)

1,0 Teil

10%-ige wässrige Lösung von Polyvinylalkohol

50

2,3 Teile

Wasser

1,3 Teile

55

Diese Lösungen der obigen Zusammensetzungen wurden in einer Reibmühle einzeln bis zur Teilchengröße von 1 Mikron vermahlen. Die Lösungen wurden im folgenden Verhältnis miteinander vermischt, man erhält dabei eine wärmeempfindliche Beschichtungsmasse.

		(Lösung A			
		1		itteldispers	·ion\
5		(Farbent	wickindem		
J					Teile
	Beschichtungsmasse	∤Lösung E	(Farbstof	fdispersion	1)
10				4,6	Teile
		Lõsung F	(Farbstof	fdispersion	2)
					Teile
15		Kaolinto	n	12 Dispersion)	? Teile
	\	\(50%-ige	wässrige	Dispersion)	
00		16266 m3e			
20	Diese Beschichtungsmasse wurde einem Gewicht von 50 g/m² aufgetra Sekunden einzustellen. Man erhielt ein	gen, getrocknet wärmeempfindl	und superkalandı iches Aufzeichnu	riert, um eine Glätte ngsblatt.	von 200 - 600
25	Die in den Beispielen und Vergleid Qualität geprüft, die Ergebnisse sind in	chsbeispielen ert n Tabellen 3 und	naitenen Aufzeich 4 zusammengef	nungsblatter wurden aßt.	ninsichtlich der
30					
35					
40					
45					
_					
50					

15	
20	0000
25	rifingsordehn
30	(A)
35	[Code®

			Tabelle 3 Prūfur	Prüfungsergebnisse	
	Test Nr.	Farbentwick- lungsmittel	Fluoranleukofarbstoff	Divinylverbindung	Fluorenleukofarbstoff
	7	4,4'-Isopropyliden- diphenol	2-Chlor-3-methyl-6-p-(p-phenylsminophenyl)	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)āthenyl]-4,5,6,7- tetrabromphthalid	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
Beispiel 2	12	4,4'-Isopropyliden- diphenol	2-Chlor-3-methyl-6-p-(p- phenylaminophenyl) aminoanilinofluoran	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)āthenyl]-4,5,6,7- tetrachlorphthalid	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
	13	1,7-Di(4-hydroxy- phenylthio)-3,5- dioxaheptan	2-Methyl-6-p-(p- dimethylaminophenyl) aminoanilinofluoran	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)åthenyl]-4,5,6,7- tetrachlorphthalid	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
Verglei	14	4,4'-Isopropyliden- diphenol	2-Chlor-3-methyl-6-p-(p- phenylaminophenyl) aminoanilinofluoran	1	q
Vergleichs beispiel: 3	5:1	4,4'-Isopropyliden- diphenol		3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)äthenyl]-4,5,6,7- tetrachlorphthalid	1
	16	4,4'-Isopropyliden- diphenol	ı	ı	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
Vergleichs-	17	4,4'-Isopropyliden- diphenol	t	3,3-Bis[2-(p-dimethylaminophenyl)- 2-(p-methoxyphenyl)åthenyl]-4,5,6,7- tetrachlorphthalid	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
beispiel 4	18	4,4°-Isopropyliden- diphenol	2-Chlor-3-methyl-6-p-(p-phenylaminophenyl) aminoanilinofluoran	ţ	3,6-Bis(dimethylamino) fluoren-9-spiro-3'-(6'- dimethylamino)phthalid
	19	4,4'-Isopropyliden- diphenol	2-Chlor-3-methyl-6-p-(p-phenylaminophenyl) aminoanilinofluoran	3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)åthenyl]-4,5,6,7-tetrachlorphthalid	l

Tabelle 4 Prüfungsergebnisse

-		Bildd	Bilddichte		Beat	Beståndigkeit gegenûber Licht (4)	gegenûber (4)	- Licht	Besti	Bestandigkeit gegenüber Ölen (6)	. gegenûber (6)	Ôlen	æ	Bostandigkeit gegenüber Klimaeinflüssen (6)	standigkeit gegenüb Klimaeinflüssen (6)	ber)
				Reflexions-								Reflexions-			í	Reflexions-
	Nr.	Stati- sch (1)	Dyna- misch (2)	infraroten Lichtes (%)	Vor Behand- lung	Nach Behand- lung	Rest- prozent (%)	Ketlexions- grad des infraroten Lichtes (%)	Vor Behand- lung	Nach Behand- lung	Rest- prozent (%)	grad des infraroten Lichtes (%)	Vor Behand- lung	Nach Behand- lung	Kest. prozent (%)	grad dos infraroten Lichtes (%)
	11	1.48	1.19	11	1.19	1.09	85	27	1.19	1.16	26	15	1.19	1.02	98	29
Beispiel	12	1.60	1.18	12	1.18	1.07	16	22	1.18	1.16	86	14	1.18	1.00	88	27
74	13	1.50	1.18	11	1.18	1.08	92	24	1.18	1.16	86	16	1.18	1.02	98	27
	7.	1.11	1.10	18	1.00	09.0	09	11	1.00	0.48	84	98	1.00	0.38	38	85
Vergleiche-	15	1.11	1.03	18	1.03	0.62	09	11	1.03	0.50	49	Т9	1.03	0.41	40	92
beispiel S	91	1.08	1.00	20	3.00	09.0	09	70	1.00	0.47	47	85	1.00	0.37	37	16
	17	1.36	1.12	16	1.12	0.84	75	90	1.12	0.79	71	20	1.12	0.78	20	36
Vergleichs-	18	1.34	E	17	11.1	0.85	11	62	1.11	0.79	n	22	1.11	0.80	72	37
Delaptor -	61	1.36	1.13	16	1.13	0.90	08	56	1.13	0.84	14	56	1.13	0.80	n	36

Anmerkungen

5

10

- (1) Statische Bilddichte: Ein wärmeempfindliches Aufzeichnungsblatt wird 5 Sekunden unter einem Druck von 10 g/cm² gegen eine auf 135° C erhitzte Platte gepreßt. Die statische Bilddichte wird mit einem Macbeth-Dichtemesser (RD-914, Verwendung des Amber-Filters, unten gelten die gleichen Bedingungen) bestimmt.
- (2) Dynamische Bilddichte: Ein wärmeempfindliches Aufzeichnungsblatt wird bei einer angelegten Spannung von 16,00 V und einer Pulsbreite von 3,0 Millisekunden unter Verwendung einer Faksimiliermaschine KB-4800 (von TOSHIBA CORPORATION) aufgezeichnet und mit einem Macbeth-Dichtemesser bestimmt.
- (3) Reflexionsgrad des infraroten Lichtes (%): Der Reflexionsgrad des durch die obige Anmerkung (2) aufgezeichneten Teils wird mit einem Spektrophotometer bei einer Wellenlänge von 1000 nm gemessen.
 - (4) Beständigkeit gegenüber Licht: Das gemäß obiger Anmerkung (2) aufgezeichnete Bild wird als Bilddichte vor der Behandlung bezeichnet. Die Aufzeichnung wird 6 Stunden mit dem Licht eines Fade-O-Meters bestrahlt.

- Der Reflexionsgrad des infraroten Lichtes wird in bezug auf das aufgezeichnete Bild nach der Belichtung gemessen.
 - (5) Beständigkeit gegenüber Ölen: Die gemäß obiger Anmerkung (2) aufgezeichnete Bilddichte wird als Bilddichte vor der Behandlung definiert. Ein Tropfen Rizinusöl wird auf die Aufzeichnung getröpfelt, nach 10 Sekunden mit einem Filtrierpapier abgewischt und 72 Stunden stehengelassen. Danach wird die Bilddichte (nach der Ölbehandlung) gemessen. Der Restprozentsatz wird nach folgender Formel berechnet.

und der Reflexionsgrad des infraroten Lichtes wird in bezug auf den aufgezeichneten Teil nach der Ölbehandlung gemessen.

(6) Beständigkeit gegenüber Klimaeinflüssen: Das gemäß obiger Anmerkung (2) behandelte wärmeempfindliche Blatt wird 48 Stunden bei 40°C and 90% relativer Luftfeuchtigkeit stehengelassen und dann mit einem Macbeth-Dichtemesser gemessen. Der Restprozentsatz wird nach folgender Formel berechnet.

Und der Reflexionsgrad des aufgezeichneten Teils nach Behandlung wird mit dem Spektrophotometer bei einer Wellenlänge von 1000 nm gemessen.

Vorteile der Erfindung:

55

35

45

Das erfindungsgemäße Aufzeichnngsmaterial weist folgende Vorteile auf:

- (1) bessere thermische Ansprechbarkeit
- (2) überlegene optische Lesbarkeit im nahen infrarot-Bereich,

- (3) überlegene Beständigkeit gegenüber Licht, Ölen und Klimaeinflüssen, und dadurch gute Haltbarkeit, und
- (4) Verwendbarkeit unter schwierigen Bedingungen bei Strichcode-Zettel usw. wegen des obigen Effektes (3).

Ansprüche

5

10

15

20

25

30

35

40

(1) Wärmeempfindliches Aufzeichnungsmaterial mit einer wärmeempfindlichen Farbentwicklungsschicht auf einem Träger, wobei die wärmeempfindliche Farbentwicklungsschicht einen basischen farblosen oder schwach farbigen chromogenen Farbstoff und ein organisches Farbentwicklungsmittel enthält, dadurch gekennzeichnet, daß die wärmeempfindliche Farbentwicklungsschicht als basischen farblosen chromogenen Farbstoff einen Fluoranleukofarbstoff der allgemeinen Formel (I):

worin mindestens einer der Reste R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ oder R₉ eine Verbindung der allgemeinen Formel

$$-N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow T_{4}$$

bedeutet;

die anderen Reste R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 und R_9 gleich oder verschieden sind, und jeweils ein Wasserstoffatom oder Halogenatom, eine Alkyl-, Alkoxy-, Cycloalkylgruppe, Nitro-, Hydroxy-, Amino-, substituierte Amino-, Aralkyl-, substituierte Aralkyl-, Aryl- oder substituierte Arylgruppe bedeuten; T_1 , T_2 und T_3 gleich oder verschieden sind, und jeweils ein Wasserstoffatom, eine C_1 - C_8 Alkyl-, C_3 - C_9 Alkenyl-oder C_3 - C_9 -Alkinylgruppe bedeuten; T_4 ein Wasserstoffatom, eine C_1 - C_8 -Alkylgruppe, C_3 - C_9 -Alkinylgruppe oder Phenylgruppe bedeutet; oder T_3 und T_4 zusammen mit dem Stickstoffatom, an das sie gebunden sind, eine Morpholino-, Pyrrolidino- oder Hexamethyleniminogruppe bilden; und 1 eine ganze Zahl von 0 bis 4 bedeutet, und eine Divinylverbindung der allgemeinen Formel (II) enthält:

$$(X^{1})_{m}$$

$$C = C - C - C - C$$

$$(X^{2})_{n}$$

$$(X^{2})_{n}$$

$$(X^{3})_{4}$$

$$R_{10} R_{11}$$

$$R_{10} R_{11}$$

$$(X^{1})_{m}$$

$$(X^{1})_{m}$$

$$(X^{2})_{n}$$

$$(X^{2})_{n}$$

$$(X^{3})_{4}$$

worin R₁₀ eine Alkylgruppe mit 8 oder weniger C-Atomen bedeutet;

R₁ eine Alkylgruppe mit 8 oder weniger C-Atomen, eine C₅-C₇ Cycloalkylgruppe, oder eine Benzyl-oder Phenylgruppe, die gegebenfalls durch ein Chlor- oder Bromatom oder eine C₁-C₄-Alkylgruppe substituiert sein kann, bedeutet;

 X^{τ} and X^{2} gleich oder verschieden sind und jeweils eine Alkylgruppe mit 8 oder weniger C-Atomen, eine Alkoxygruppe mit 8 oder weniger C-Atomen, ein Fluor-, Chlor- oder Bromatom bedeuten;

m und n gleich oder verschieden sind und jeweils eine ganze Zahl 0, 1, 2 oder 3 bedeuten;

jedes X^1 in $(X^1)_m$ gleich oder verschieden ist, jedes X^2 in $(X^2)_n$ gleich oder verschieden ist, und ein Chlor- oder Bromatom bedeutet.

(2) Wärmeempfindliches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß der Fluoranleukofarbstoff der allgemeinen Formel (I) 2-Chlor-3-methyl-6-p-(p-phenylaminophenyl) aminoanilinofluoran oder 2-Methyl-6-p-(p-dimethylaminophenyl)aminoanilinofluoran ist, und die Divinylverbindung der allgemeinen Formel (II) 3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl]-4,5,6,7-tetrabromphthalid oder 3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl]-4,5,6,7-tetrachlorphthalid ist

(3) Wärmeempfindliches Aufzeichnungsmaterial nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

35

daß die Farbentwicklungsschicht weiter als basischen farblosen chromogenen Farbstoff einen Fluorenleukofarbstoff der allgemeinen Formel (III) enthält:

$$R_{12}$$
 R_{15}
 R_{15}
 R_{17}
 R_{16}
 R_{17}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}

worin R₁₂, R₁₃, R₁₄, R₁₅, R₁₆ und R₁₇ gleich oder verschieden sind und jeweils ein Wasserstoffatom; eine C₁-C₈ Alkylgruppe; eine C₅-C₈-Cycloalkylgruppe; eine C₃-C₈ Alkoxyalkylgruppe; eine C₃-C₉-ungesättigte

Alkylgruppe; eine Tetrahydrofurfurylgruppe; eine Tetrahydropyran-2-methylgruppe; eine Alkylgruppe, die durch ein Halogenatom, eine C_1 - C_4 -Alkylgruppe und/oder eine C_1 - C_4 -Alkoxygruppe substituiert sein kann; eine Arylgruppe, die durch ein Halogenatom, eine C_1 - C_4 Alkylgruppe und/oder eine C_1 - C_4 Alkoxygruppe substituiert sein kann; oder eine Phenoxy- C_2 - C_8 -Alkylgruppe, die durch ein Halogenatom, eine C_1 - C_4 -Alkylgruppe und/oder eine C_1 - C_4 -Alkoxygruppe substituiert sein kann, bedeuten, und wobei R_{12} und R_{13} , R_{14} und R_{15} , oder R_{16} und R_{17} gegebenfalls miteinander oder mit einem benachbarten Benzolring einen heterocyclischen Ring bilden können.

- (4) Wärmeempfindliches Aufzeichnungsmaterial nach Anspruch 3, dadurch gekennzeichnet, daß der Fluoranleukofarbstoff der allgemeinen Formel (I) 2-Chlor-3-methyl-6-p-(p-phenylaminophenyl)-aminoanilinofluoran oder 2-Methyl-6-p-(p-dimethylaminophenyl)aminoanilinofluoran ist, die Divinylverbindung der allgemeinen Formel (II) 3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl]-4,5,6,7-tetrabromphthalid oder 3,3-Bis[2-(p-dimethylaminophenyl)-2-(p-methoxyphenyl)äthenyl]-4,5,6,7-tetrachlorphthalid ist, und der Fluorenleukofarbstoff der allgemeinen Formel (III) 3,6-Bis(dimethylamino)fluoren-9-spiro-3 -(6 dimethylamino)phthalid ist.
- (5) Wärmeempfindliches Aufzeichnungsmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Farbentwicklungsschicht weiter mindestens ein mehrwertiges Metallsalz einer organischen Säure als Stabilisator enthält.
- (6) Wärmeempfindliches Aufzeichnungsamterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Farbentwicklungsmittel mindestens eine Substanz ist aus der Gruppe Bisphenol-A-Verbindunge, 4-Hydroxybenzoesäureester, 4-Hydroxyphthalsäurediester, Phthalsäuremonoester, Bis-(hydroxyphenyl)sulfide, 4-Hydroxyphenylarylsulfone, 4-Hydroxyphenylarylsulfonate, 1,3-Di-[2-(hydroxyphenyl)-2-propyl]-benzole, 4-Hydroxybenzoyloxybenzoesäureester und Bisphenolsulfone.
- (7) Wärmeempfindliches Aufzeichnungsmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Farbentwicklungsschicht 1 bis 8 Gew.-Teile des organischen Farbentwicklungsmittels und 1 bis 20 Gew.-Teile Füllstoff, bezogen auf 1 Gew.-Teil des basischen farblosen chromogenen Farbstoffs, und 10 bis 25 Gew.-Teile Bindemittel, bezogen auf den Gesamtfeststoffgehalt enthält.
- (8) Wärmeempfindliches Aufzeichnungsmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Träger ein Papier, synthetisches Papier, Film oder Plastik ist.

30

15

35

40

45

50