
Europaisches Patentamt

European Patent Office

Office europeen des brevets

0 3 2 5 4 0 9

A 2
(n) Publication number:

EUROPEAN PATENT APPLICATION

IntCI.4: G 09 G 1 / 1 4
G 09 G 1 /16

® Application number: 89300406.9

@ Date of filing: 17.01.89

® Applicant: DU PONT PIXEL SYSTEMS LIMITED
79 Knightsbridge
London SW1X 7KB (GB)

@ Inventor: Trevett, Neil Francis
16 Manorgafe Road
Kingston upon Thames KT2 7AL (GB)

Wilson, Malcolm Eric
16 Salwayash Drive Salwayash
Bridport Dorset (GB)

Lloyd, Sarah Jane
16 Manorgate Road
Kingston upon Thames KT2 7AL (GB)

@ Representative: Beresford, Keith Denis Lewis et al
BERESFORD & Co. 2-5 Warwick Court High Holborn
London WC1R5DJ (GB)

Priority: 19.01.88 GB 8801125

Date of publication of application:
26.07.89 Bulletin 89/30

Designated Contracting States: DE FR GB IT NL

FIG.1.
I00,

@ Character generation.
(57) A system and method stores fonts and generates
characters. Instead of the fonts containing bit maps, the
storage area (116) for each character contains the addresses
(GPCR Addresses) of instructions to be used to form the
character, and the required parameters for those instructions.
In a preferred embodiment, a lookup table (114) for the font
contains, for each character, the address of the code to start
executing and details of how much more information is stored
for this character and where to find it. For each character, the
stored information includes addresses of microcode instruc-
tions (126) followed by the required number of parameters to
define the actions necessary for character generation.

MAPPEO DISPLAY
106̂

INPUT, OUTPUT 8 I/O DEVICES (AND CONTROLLERS)
CENTRAL PROCESSING UNIT

GRAPHICS PROCESSOR
4 / *a>

-no I iw
GLOBAL MEMORY |

PROGRAM MEMORY \ 'GLOBAL MEMORY
CURRENT FONTSTORE

TEXT COLOR CURSOR XPOS. CURSOR YPOS.
TXT. ADDRESS FLUT ADDRESS FONT LENGTH

FONT LOOK UP TABLE
EXECUTIVE PROGRAM CURSOR X INCREMENT 00 CURSOR Y INCREMENT BASE OFFSET CHAR. TABLE LENGTH
J 1 CHAR. TABLE ADDRESS DRAW PROGRAM ADDRESS I CURSOR X INCREMENT CM

<

o

10
CM
CO

1 CURSORY INCREMENT \ GLOBAL MEMORY DRAW PROGRAM CHARACTER TABLES
GPCR ADDRESS PARAMETER 1 *s f \ GPCR ADDRESS
PARAMETER I

EXISTING GRAPHICAL: PRIMITIVE
EXISTING GRAPHICAL PRIMITIVE

EXISTING GRAPHICAL PRIMITIVE GPCR ADDRESS
GPCR ADDRESS GLOBAL MEMORY GLOBAL MEMORY PARAMETER I TEXT TRANSFORM- ATION TABLE PARAMETER N

POINTERS AND SCRATCHPAD ELEMENTS FOR 3X3 MATRIX FOR CHAR CODES 03- END
LU L.1IB M2O

Bundesdruckerei Berlin

EP 0 325 409 A2

Description

CHARACTER GENERATION

memory.
Another method for transferring bit map informa-

tion includes using the display driver to directly
retrieve character bit maps from memory. Using this
method, the CPU passes a character output instruc-
tion and the starting address of the characters bit
map to the display driver. The display driver then
directly retrieves the bit map and writes it to the
display memory.

A further method of transferring bit map informa-
tion is though the use of a "pixel data manager" and
"macro instructions". This method, as well as several
other methods, are described in United States
Patent 4,622,546 to Sfarti et al.

All of the above-described methods share the fact
that they use character bit maps as a necessary
component of font generation. Generally, systems
using character bit maps are burdened with several
problems. One problem often encountered in char-
acter bit map devices is that the CPU may be
required to perform a large number of memory
access instructions in order to draw a given
character. This burden may reduce system perfor-
mance. The bit map method may also run into
memory space limitations due to the fact that
memory locations must be allocated for each font
desired. Bit map methods also have an impediment
to their flexibility in that, in many cases, any
variations in a given character or in an entire font
must be tediously created on a pixel-by-pixel basis.

The inherent limitations of bit mapped characters
may also make it difficult or costly to perform
operations such as scaling (changing the size of a
character) and rotation (drawing a word, character
string or character at an angle relative to the
baseline). For example, when a bit map character is
enlarged, the enlargement operation (typically the
copying of pixels) may result in the character
appearing with jagged edges. The storing of another
font with larger bit maps circumvents this problem,
but requires the use of more memory space. Further,
the rotation of a bit mapped character may be made
difficult due to the block copy operation and may
require a significant number of calculations to
accomplish.

It would be desirable to have a system and
method for generating fonts that does not make use
of bit mapped character storage. Further it would be
desirable to have a way of generating fonts that is
fast, flexible and which can be used to generate a
wide variety of fonts and accomplish transformations
while using both memory space and CPU time in an
efficient manner.

SUMMARY OF THE INVENTION
The present invention provides a system and

method of storing fonts and generating characters.
Instead of containing bit maps, the storage area for
each character in the font contains the addresses of
instructions to be used to form the character, and
the required parameters for those instructions.

BACKGROUND OF THE INVENTION

(1) Field of the invention
This invention relates to the generation of charac-

ters, and more particularly, but not exclusively, to the
generation and display of characters on digital
computer systems using mapped graphic display
devices.

10

(2) Related Art
There are presently a variety of methods available

for generating characters on computer systems with 15
mapped graphic display devices. A character font is
a complete set of characters of a given size and face.
Some computers use only one font. Other compu-
ters allow the operator or programmer to choose
from a selection of fonts. Further, the advent of 20
mapped graphic display allows computers to gener-
ate and display a variety of font types within a single
image.

The term "mapped" refers to the method of
storing and accessing data in the display memory. 25
For example, in a bit mapped display the video
screen may be thought of as an array of pixels. If a
screen is 100 pixels long by 100 pixels wide, there
will be 10,000 locations in memory corresponding to
the pixels on the screen. If each location of memory 30
is made to correspond to a particular pixel position
on the display screen, the display is said to be
"mapped".

One common way of drawing characters is
through the use of a character bit map. This 35
character bit map process involves storing patterns
representing the type, size and face of each
character in a section of memory (sometimes
referred to as "character memory"). Each character
displayed or printed may be thought of a existing 40
within a two dimensional matrix of pixels (sometimes
referred to as a "cell"). The bit pattern representing
the cell may be stored in a character memory. The
generation of a character font typically involves the
storage of a collection of bit patterns in character 45
memory. The collection usually includes alphabetic,
numeric and punctuation characters as well as
certain commonly used symbols.

Once the character "bit maps" have been stored
in "character memory", they must be transferred to 50
the screen in the desired order. In other words, there
must be some way of using the bit map information
to form a desired arrangement of characters which
are observable as words, sentences or other
structures. There are several known methods of 55
accomplishing this transfer.

One of these methods uses a "block copy"
operation to transfer bit maps from the character
memory to the display. To transfer a character, the
Central Processing Unit (CPU) reads the character's 60
bit map from character memory. The CPU then
writes the characters bit map to the display memory
driver circuit which, in turn, transfers it to the display

EP 0 325 409 A2

typically provides, relative to bit mapped systems,
efficient use of memory for the storage of a given
number of fonts (i.e., more fonts in less memory than
bit mapped systems) and for reduced CPU overhead

5 in the generation and drawing of fonts.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention may be better understood by

reference to the following drawings:
10 FIG. 1 is a general overview of a system of the

present invention.
FIG. 2 is a memory map of a Current Font

Store Table.
FIG. 3 is a memory map of a Font Look Up

15 Table.
FIG. 4 is a memory map of a Character Table

for a single character.
FIG. 5 is an example of Character Table

entries for the letter "B".
20 FIG. 6 is a memory map of a Text Transforma-

tion Table.
FIG. 7 is aflow chart of a Draw Executive.
FIG. 8 is an example of primitive construction

of the letter "q".
25 FIG. 9 is a flow chart of the executive

common portion of the Draw Program.
FIG. 10 is a flow chart of a typical Graphical

Call Routine.
FIG. 1 1 is a flow chart of an End of Character

30 routine.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment of the present inven-
35 tion uses a computer-based microcoded program

running on a graphics processor which uses
graphical primitives to store fonts and to generate
characters. It should be understood that while it is
preferred, (for speed purposes), that the operations

40 described herein be implemented at the microin-
struction level, these operations may be easily
implemented in any program language at the micro
or macro level. Further, the invention could also be
embodied in hardware or through the use of

45 programmable logic circuitry.
An overview of the present invention will first be

described by reference to Figure 1. The present
invention provides a system and method of storing
fonts and generating characters. Instead of contain-

50 ing bit maps, the storage area for each character in
the font contains the addresses of instructions to be
used to form the character, and the required
parameters for those instructions. The invention
makes use of memory tables, which store informa-

55 tion used in the generation of characters, and
programs which read and make use of that informa-
tion. These programs and tables allow the system to
obtain character code information from the CPU or
I/O device (e.g., keyboard), and to perform transfor-

60 mation operations on the character data as the
character is being generated on the display device.

Referring now to Figure 1 , it may be seen that the
system of the present invention preferably includes a
CPU 100, a graphics processor 102 (i.e., a device

65 that processes data in a memory for display), a

In one embodiment, a lookup table for the font
contains, for each character, the address of the
characters primitive table (the character table),
details of how much more information is stored for
this character in the character table and information
about the characters base offset and cell size. The
character table for each character includes ad-
dresses of microcode instructions followed by the
parameters necessary for character generation.

Any number of actions can be defined to draw a
character. For example, draw line, draw spline curve,
draw circle, draw ellipse, draw rectangle, draw single
pixel and flood fill. It should be understood that any
geometric figure can be drawn as a primitive. These
actions, called Graphical Primitives, may be called
upon to occur in any sequence and with any amount
of redundancy. The present invention therefore
allows the programmer or operator the ability to
design and use a wide variety of fonts and to
dynamically modify these fonts with relatively little
programming effort. Further, by using graphical
primitives, the present invention makes efficient use
of memory space and CPU time.

The use of graphic primitives in the generation and
storage of fonts has several advantages over bit map
systems. These advantages are particularly signifi-
cant in the areas of scaling and rotation. Also, the
use of graphic primitives makes the generation of
characters orientation and size independent. For
example, if a character requires that a straight line be
drawn, only the relative start points and end points
need be provided. Rotating a line only requires
giving the line drawing operation different line
endpoint parameters. This makes rotation of a
character or of a character string easy to accom
plish. Further, text is easily scaled. The same
primitive used to draw a line may be used to draw a
longer or shorter line by merely varying the end-
points.

The present invention takes advantage of two
dimensional transformation techniques to make
transformation operations such as scaling (changing
the size of a character) and rotation (drawing a word,
character string or character at an angle) an easy
matter. A change in character size or rotation merely
requires manipulating the parameters supplied to
the primitives during the draw operation. Advant-
ageously, the present invention does not require any
changes to the primitives, the parameters them-
selves, or to sequence of primitive execution for a
given character. In the preferred embodiment, the
invention utilizes the known technique of two
dimensional transformation by matrix multiplication
to accomplish these transformation functions.

The present invention eliminates the need to
maintain several font bit maps in memory and
actually provides for the creation of the character as
it is drawn. Advantageously, this allows for the
storage and generation of several fonts based on a
single collection of stored graphic primitives and
commands for ordering their sequence of execution.
This also allows factors such as size, location and
rotation to be easily and dynamically modifiable
through manipulation of the parameters passed to
the graphic primitives. Further, the present invention

EP 0 325 409 A2

described in greater detail within.
As used in this specification, the term displayed is

used for convenience and is not intended to be a
limitation on the type of device on which a character

5 may appear. For example, a character may be made
to appear on a printer, a crt or any other appropriate
device. The term character refers to any shape or
symbol used to convey information. For example,
alpha-numerics, special characters, and arbitrarily

10 chosen symbols for a given application.
The present invention will now be described in

more specific detail. Figures 2 through 6 show the
various tables which are used in the preferred
embodiment of the present invention. In the

15 preferred embodiment, these tables are stored in
areas of Random Access Memory (RAM). It should
be understood that these tables may also be stored
elsewhere, for example in Read Only Memory (ROM)
or in a storage device such as a hard disk or floppy.

20 Figure 2 shows a memory map of the Current Font
Store Table (CFST). This table contains global
information for use by the Draw Program 124 and the
Executive Program 122, including the current text
color 200, cursor 'X' position 202, cursor 'Y' position

25 204, the Text Transformation Table (TTT) address
206, the Font Look Up Table (FLUT) address 208 for
the font selected and the number of characters in
the selected font 210. The Current Font Store Table
112 is initialized prior to entering the Executive

30 Program 122 and the cursor X position and cursor Y
position are updated as each character is displayed.
The other information stored in the CFST 112 may
also be changed in between the display of charac-
ters. It is preferred that each entry in the table be of

35 equal size although it is possible to use entries of
different sizes with some modification of the Execu-
tive Program 122. In one example tested by the
inventors, the size of each entry was 16 bits (which
was equal to the data word size of the computer

40 utilized). It is contemplated that any word size
sufficient to describe each entry would do just as
well.

The Figure 2 embodiment of the Current Font
Store Table 112 contemplates that the tables of

45 Figures 2 through 6 will be stored in a standard one
dimensional memory (i.e. only one address is
necessary to address any memory location). It
should be understood, however, that the table of
Figure 2 may be easily modified to work with a two

50 dimensional memory as well (ie where memory is
addressed by 'X' and 'Y' coordinates). Where
tables 3 through 6 are stored in such a two
dimensional memory, the entry for the Font Look Up
Table Address 208 is replaced with a FLUT 'X'

55 address and a FLUT 'Y' address. Similarly, entries
are added for the character table start and finish
addresses so as to define the left and right
boundaries of the two dimensional memory struc-
ture. Advantageously, similar modifications may be

60 performed where data is stored in any memory or
storage device requiring any given number of
coordinates for data addressing (e.g. a multi headed
disc). The contents of the tables of Figures 2
through 6 are not dependant on the type of storage

65 device holding the Current Font Store Table 1 1 2.

mapped display device 104 (such as high resolution
bit mapped display), I/O devices and controllers 106
(keyboards, disks, printers, etc.), a program memory
110, and a global memory 108 (for storing tables,
pointers, scratchpad or any other information used
by the programs). It should be understood that
Global and Program memories 108, 110, respec-
tively, may be separate physical memories or may be
defined areas within a single memory. It is preferred
that both Global and Program memory be high
speed memories such as static RAM (SRAM). The
display device 104 will typically be driven by the
graphics processor 102. The remaining components
(listed above) will typically pass data via a common
bus under control of an interrupt and arbitration
scheme. The techniques and hardward necessary to
interconnect these components are well known by
those skilled in the art. The operation and structure
of graphics processors is further discussed in
United States Patent Numbers 4,642,625 to Tsune-
hiro etal. and 4,580,134 to Cambell et al., which are
incorporated by reference herein in their entirety as
if printed in full below.

In the preferred embodiment, the following tables
are defined in global memory 114: Current Font
Store Table (CFS) 112, which stores certain global
information for use by an executive 122; a Font Look
Up Table 114 (FLUT), which stores, for each
character in the font, information concerning base
offsets, cursor increments, and a pointer to specific
information concerning how to draw that character;
Character Tables 116, (one for each character in the
font), which store pointers to programs which call
graphics primitives 126 (GPCR's) and information to
be used by those primitives; and a Text Transforma-
tion Table (TTT), 118 which contains information to
be used in the transformation, (if any), of the
character to be drawn (see Figure 6 for a represen-
tation of the memory map of the text transformation
table). Global memory 108, as shown in Figure 1,
also contains a Temporary Storage Area 120, which
holds pointers used by the programs and acts as a
scratchpad/Temporary Storage area.

The information within the table is used by two
programs which execute from program memory 110.
These programs are the Executive Program 122 and
Draw Program 124. The Executive Program 122 sets
up the color register of the systems graphics
controller 102 and collects, from the CPU 100 (which
may be connected to an appropriate I/O device 106),
information such as which and how many characters
are to be drawn. For each character, the Executive
122 calculates the Font Look Up Table address
where the information for the character is stored and
then calls the Draw Program 124. The Draw Program
124 finds the proper character table for the charac-
ter to be drawn, extracts the required parameters
from the character table, and then calls routines
(GPCR's) which transforms the parameters and
execute graphical primitives 126 necessary to draw
the character on the mapped display device 104. In
operation, the Draw Program 124 executes transfor-
mations and graphical primitives one at a time until
the character is drawn. The operations of the
Executive Program 122 and Draw Program 124 are

EP 0 325 409 A2 8

Figure 3 shows a memory map of the Font Look
Up Table 114. The Font Look Up Table (FLUT)
contains, for each character in the font, information
including the cursor 'X' and 'Y' increments 300, 302
(i.e. the amount that the cursor position is updated
by when a character is drawn), the base offset 304
(i.e. the amount that must be subtracted from the
cursor 'Y' position to give correct alignment for the
characters descending below the baseline), the
length of the Character Table 306 for the selected
character (i.e. the number of data items required to
generate that character) and the start address of the
Character Table 308. The FLUT may also contain an
entry for the Draw Program address 310 where it is
desired to draw charactes using more than one
technique or program. Where the Character Tables
116 are stored in a two dimensional memory the
Character Table address 308 will consist of an 'X'
address entry and a 'Y' address entry. As stated
above, modifications may be easily made for
memories or storage devices requiring any number
of address parameters.

Figure 4 shows a memory map of a Character
Table 400 for a single character. Each character
table 400 contains data identifying the graphical
primitives which are to be executed to generate the
character. This is accomplished by providing (in the
character table) the addresses 402, 404, 406 of
intermediate routines (Graphical Primitive Call Rou-
tines or GPCRs) which preprocess (such as, for
example, transform and modify using the current
cursor position) the parameters used in the execu-
tion of the graphical primitive and then cause the
execution of the specified graphical primitive. Each
GPCR address 402, 404, 406 is followed by a list of
parameters 408 necessary to execute the associ-
ated primitive in the desired manner. The last entry in
the Character Table is the "END OF CHARACTER"
primitive address 410.

Figure 5 shows an example of a character table
structure for the letter "B". It can be seen that the
letter "B" might be drawn using one straight line and
two arcs. The Character Table structure for the letter
"B" might therefore consist of the address 502 of a
GPCR for a line primitive followed by starting point
and ending point parameters 504, and, two entries
506, 508 with the address of the GPCR for arc
primitives, each followed by center point 510, radius
512, start point 514 and end point 516 information.

It should be understood that there is one
character table 400 for each character in the font.
These tables may be contiguous for storage effi-
ciency purposes but need not be for proper
operation of the invention.

Advantageously, the use of GPCRs allow the
programer to take advantage of the features of a
given operating system or of a particular piece of
hardware. For example, if an operating system
already contains software to execute graphical
primitives the GPCRs can be used to extract
parameter information from the Character table and
put it into a place where the existing graphical
primitive software 126 knows to find it. It can then
call the existing graphical primitive program. In one
embodiment, the GPCRs are also used to gather

data for and call a character transformation program.
The use of GPCRs also give the invention the

flexibility to be used in systems where the primitive
execution and/or character transformation functions

5 are accomplished in hardware. In this embodiment,
the GPCR's would extract and manipulate the
parameter data as needed for a given piece of
hardware and perform any other required interfacing
functions. For example, where a systems graphics

10 processor 102 has the ability to execute primitives
directly, the GPCR's act as an interface between the
Draw Program 124 and the hardware of the graphics
processor 102. In this embodiment the graphics
processor 102 will draw primitives so as to create

15 charactes under control of the Draw Program 124. It
should be understood that where the application is
appropriate the GCPR's may be eliminated and the
addresses of the graphical primitives may be placed
in the character tables 116 for direct execution.

20 The concept of Graphical Primitives is well known
by those skilled in the art and is taught in the books
"Computer Graphics" by Donald Hearn and Pauline
Baker (published by Prentice-Hall, 1986), and "Fun-
damentals of Interactive Computer Graphics" by J.D.

25 Foley & A. Van Dam (published by Addison Wesler,
reprinted 1983). Both of these books are hereby
incorporated by reference herein as if each were
printed in full below.

Figure 6 is a memory map of the Text Transforma-
30 tion Table 118. In the preferred embodiment the

invention utilizes a 2 x 3 o r 3 x 3 matrix to perform
transformations on the characters to be generated.
The Text Transformation Table 118 contains the data
600 used in this matrix. Transformation refers to

35 manipulations such as rotation, scaling and transla-
tion. The invention uses a technique sometimes
referred to as "two dimensional transformation by
matrix multiplication". Two dimensional transforma-
tion by matrix multiplication is essentially a method

40 of transforming a point in a two dimensional plane by
treating the X, Y coordinates of the point as two of
the elements of a 3 x 1 matrix and multiplying that
matrix b y a 2 x 3 o r 3 x 3 matrix. The 2 x 3 or 3 x 3
matrix values determine how the point is translated,

45 rotated about an origin, and scaled relative to that
origin. The result of the matrix multiplication con-
tains the X and Y coordinates of the transformed
point. Advantageously, the use of graphical primi-
tives allows a character or string of characters to be

50 transformed by applying this technique to the
parameters for each primitive prior to the execution
of the primitive itself. The technique of two dimen-
sional transformation by matrix multiplication is
known by those skilled in the art and is described in

55 the book entitled "Principals of Interactive Computer
Graphics", authors Newman & Sproul, published by
McGraw Hill, second edition (printed 1984) which, in
its entirety, is incorporated by reference herein as if
printed in full below. Chapter 4 of this book is

60 particularly pertinent.
The Text Transformation Table 118 may be filled

before entering the Executive Program 122 and
changed for each character. It may also be left intact
for a stream of characters. It should be understood

65 that the programer may change the transformation

EP 0 325 409 A2 10

Table (FLUT) base address from the Current Font
Store Table. Assuming that the character code read
by the program was a value N, the program
calculates the address of the Nth data structure from

5 this FLUT base address. This calculation tells the
program where to look for the information concern-
ing a given character within the Font Look Up Table.
The FLUT offset address is stored in a globally
available memory area where the Draw Program (or

10 any other program) can access it.
In the embodiment of the FLUT shown in Figure 3

each character's data structure contains 6 entries.
Therefore, if this table were used and the character
code '02' was read the base address of the FLUT

15 would need to be offset by 12 entries.
Next, as indicated by block 716, the executive

calls the Draw Program 124 (which will be described
in detail later). The executive gets the address of the
Draw Program from the FLUT. Advantageously, this

20 allows the executive to use more than one Draw
Program where it is desired to generate a string of
characters using more than one method. When the
character has been drawn, control is returned to the
executive. If the complete string has been printed

25 the executive is exited. If there are more characters
to be printed the executive retrieves the next
character and repeats the sequence until the string
has been processed.

The executive may keep track of the character to
30 be printed through the use of a character string

pointer. This pointer may be incremented every time
a character is read an compared with the expected
string length in order to determine when the last
character has been processed. The executive may

35 store this pointer and the FLUT offset address in
global temporary storage (tempstore) 120 so that
they may be used by the Draw Program 124 or any
other program, routine or piece of hardware that may
need them.

40 The character generation operation will now be
described by reference to Figure 1 and Figures 8
through 11.

As has been explained, the system draws charac-
ters on the display device 104 by executing

45 primitives on the systems graphics processor 102.
The Draw Program 124 may be thought of as
consisting of two portions. The first portion of the
Draw Program 124 is used to orchestrate the
execution of the graphical primitives. The graphical

50 primitives are executed through the use of subrou-
tines (GPCR's) which are described below. A flow
chart of this first portion is shown in Figure 9.

The second portion of the Draw Program com-
prises a collection of subroutines (Graphical Primi-

55 tive Calls Routines) which call the appropriate
transformation and graphical primitive routines and
extract the appropriate parameters necessary to the
execution of these functions. There is a GPCR for
every primitive used to generate the font. These

60 primitives may include operations such as line,
spline curve, circle, rectangle, flood fill, ellipse,
single pixel and End OF Character. It should be
understood that any geometric figure can be drawn
as a primitive. As has been previously explained, the

65 parameters necessary to the transformation and

data 600 at any point desired.
The operation of the Character Generation system

and method will now be explained by reference to
Figure 1 and Figures 7 through 11.

As has been explained, the invention utilizes a set
of computer instructions which may be thought of as
having two parts, an Executive Program 122 and a
Draw Program 124. The operation of the Executive
Program 122 will first be explained by reference to
Figures 1 and 7.

First, as indicated by block 700, the current
Executive Program 122 sets the font color by
reading it from the Current Font Store Table 112 and
writing it into the color register of the computers
graphics processor 102. This step may be accom-
plished elsewhere but is preferably accomplished in
the Executive Program 122. Advantageously, setting
the color at this point allows for individual strings or
characters to be set with their own color. On
monochrome systems this information may be
omitted or used to set features such as inverse
video. This information may be similarly used to
provide color information to a printer or printer
plotter where these devices are used.

Next, as indicated by block 702, the Executive
Program 122 gets the number of characters in the
string to be printed and the strings starting address
(character address if only one character is to be
displayed). It should be understood that character
codes may be generated by the CPU 100 (shown in
Figure 1) or obtained from any appropriate input
device (such as a keyboard) via the CPU 100. It
should also be understood that the executive routine
may be interrupt driven. The operation of the
invention is unaffected by the origin of the character
code.

The Executive then retrieves the first character (as
indicated by block 704) and a determination is made,
block 706, as to whether the character code is
recognizable as being within one of the prepro-
grammed fonts. In the preferred embodiment this is
accomplished by reading the number of characters
in the font from the Current Font Store and
determining whether the font is less than or equal to
that number. This operation assumes that the
character codes start at zero and run contiguously
to the highest character code available for that font.
If this assumption is incorrect or if another method is
desired, the character may be compared with the
valid character codes in the character look up table.
If this is not sufficient a separate character code
table may be created or other know methods may be
used.

If the character code is not recognized as being
with a known font the next character in the string is
obtained (indicated by blocks 708, 710, 704) or if no
more characters are to be drawn the Executive is
exited (blocks 708, 712). The program may easily be
modified to set an error flag, print an error character
or take any other desired action if the character is
not recognized.

If the character code is recognized, it is used to
develop an offset address for the fonts look up table
(the FLUT offset address). In order to accomplish
this the program reads the appropriate Font Look Up

EP 0 325 409 A2 12 11

execution of the primitives are found in the Transfor-
mation Table (Figure 5) and the Character Table
(Figure 4).

As indicated by block 900, the Draw Program 124
first gets the appropriate Character Table address
from the FLUT and copies the address to a globally
accessible temporary storage area. This stored data
is then used as the character table pointer. As
indicated by block 902, the program then reads the
address of the first GPCR in the character table,
updates the character table pointer to the next entry
and, as shown in block 904, jumps to the GPCR
address. The GPCR's are preferably accessed as
subroutine calls.

Figure 10 shows a flow chart for a typical GPCR.
As indicated by block 1000, the GPCR first reads the
parameter data from the character table and updates
the character table pointer. As has been stated,
there is one GPCR for each primitive required. Each
GPCR knows exactly how many parameters are
necessary to execute a primitive and where to put
them.

Next, in block 1002, the GPCR adds the cursor
position to all coordinates so that the drawn
character will be properly placed (at the specified
location) on the screen.

Next, in block 1004, the character base offset 304
is read from the Font Look Up Table 1114 and
subtracted from the current cursor Y position so as
to give correct alignment for characters descending
below the base line. This may be seen more clearly
by reference to Figure 8. The letter "b" is shown
within a cell 800 and with its baseline 802. As can be
seen, the letter "q" descends below the base line
802 used by the letter "b" (which is also normally
used by most characters). For most characters, the
current Y cursor position is at the base line. In order
to force the cursor to start lower the Base Offset
value from the "q" data structure within the FLUT is
subtracted from the current Y cursor position. This
will make the bottom of the letter "q" appear below
any non offset characters.

Next, in block 1006, the GPCR executes the
transformation program. The transformation pro-
gram gets it data from the Text Transformation Table
1118. Alternatively, the GPCR may extract the data
from the text transformation table and pass it to the
Transfor mation Program. It is preferred, for econ-
omy of coding that the transformation program be
executed as a subroutine call.

The transformation program operates on the
primitive parameters, (which are passed to it from
the GPCR), and puts the manipulated parameters in
a globally accessible area.

Next, in block 1008, the GPCR executes the
primitive program for which it is defined (preferably
by a subroutine call). As has been stated, the GPCR
places the transformed parameters wherever the
primitive program expects to or needs to find them
(e.g. in a particular location in memory). As can be
seen from Figure 1, the Primitive Programs 126
cause the systems Graphics Controller 102 to draw
the primitive on the mapped Display Device 104. The
first portion of the Draw Program is then re-entered
1010 (preferably through the use of a return

command).
The next primitive address is then executed and

the cycle repeats itself. The last address in the
Character Table 400 (for each character) is for the

5 End of Character Primitive (Figure 11). When
executed, the End of Character Primitive updates
the cursor position with the X, Y increment read from
entries 1 and 2 in the characters FLUT structure
(block 1100) and returns to the Executive. It is

10 important to note that it is the Execution of the End
of Character Primitive that terminates the Draw
Program and returns control 1102 to the Executive
Program 122 whereby the next character may be
generated.

15 In the embodiment described above, the cursor
position stored in the Current Font Store Table 1 1 2 is
a "nominal" cursor position which does not necess-
arily correspond to the position at which each
character is displayed, but instead corresponds to

20 the position where the character would be displayed
before the operation of the Transformation program
in performing any desired translation, scaling or
rotation.

The Text Transformation Table 1118 may be
25 modified between display of each character. For

example, if it is desired to rotate each character by
10 degrees about a centre corresponding to the
cursor position before display of that character, the
centre of rotation provided by the Text Transforma-

30 tion Table may be updated using the current cursor
position before the transformation program is ex-
ecuted.

In a development of the transformation operation,
rotation or scaling relative to a centre corresponding

35 to the centre of each character may be accom-
plished. In order to do this, the Font Look Up Table
entry for each character is amplified to include data
giving the centre position of that character relative to
the initial cursor position. Thus, prior to execution of

40 the transformation program, the Text Transformation
Table can be updated using the current cursor
position and the centre position of the character
relative to the cursor position to provide for rotation
or scaling of the character about the centre of the

45 character.
As an alternative embodiment, the character table

or tables may first be read from amemoryon storage
device and then placed into Global Memory/Tempor-
ary Storage 120 before execution. This would be

50 done where the Character Table is stored in a slower
access memory (for example a two dimensional
memory) or storage device (for example a floppy)
and it is desired to actually execute out of faster
memory (such as Static RAM). In this case, rather

55 than storing the End of Character Address 41 0 at the
end of the Character Table 400, the program keeps
track of the number of entries in the Character Table
and continues to place them into temporary storage
until the number of entries copied is equal to the

60 character table length (read from entry 5 in the
FLUT's character structure). At that point, the
program inserts an END OF CHARACTER address
at the end of the character data. Once the.LUT
information has been loaded into temporary storage,

65 the program begins to read the information from the

EP 0 325 409 A2 13 14

beginning of temporary store just as described
above for the first embodiment.

The present invention is not limited to the drawing
of stick figures. By using the other primitives in
conjunction with the flood fill primitive characters of 5
any width and color may be drawn. For example to
draw the letter "i" the primitive routines for a
rectangle and a circle may be used (ie the circle
drawn over the rectangle). The "flood fill" primitive
may then be used to fill in the two shapes drawn by 10
the primitives. The flood fill primitive is rather unique
in that it actually looks into the display memory,
determines the perimeter of the polygon to be filled
and then, starting at a specified point, fills in the
polygon with a specified color. It should be under- 15
stood that two dimensional characters can also be
generated through the use of primitives that directly
draw filled geometric shapes (e.g. filled rectangle,
filled circle).

As can be seen from the foregoing description, 20
the invention actually generates characters on a real
time basis rather than simply drawing or printing
characters based on pre-stored bit patterns. Many
modifications and improvements to the preferred
embodiments will now occur to those skilled in the 25
art. For example, the GPCRs may be eliminated and
the character table may contain address data
directly identifying the graphical primitive programs
used to generate the character. Further, the text
transformation and/or the base offset modification 30
functions may be eliminated if the programer does
not desire to use these features. Moreover, the
graphical primitives may be executed by appropriate
hardware/firmware or by software. Therefore, while
the preferred embodiments have been described, 35
these should not be taken as a limitation of the
present invention but only as exemplary thereof.

generating the character.
3. The character generating apparatus of

claim 2, further comprising :
means for updating the position of a cursor
after the character has been generated by the
means for generating the character.

4. The character generating apparatus of
claim 3, further comprising:
means for causing the character to be gener-
ated at a specified location by the means for
generating the character.

5. The character generating apparatus of
claim 4, further comprising :
means for modifying the size and disposition
indicating data so that the means for causing
the character to be generated at a specified
location indicates the specified location to the
means for generating the character.

6. The character generating apparatus of any
of claims 3 to 5, further comprising :
means for allowing the character code data of a
next character to be received by the means to
receive character data after the character has
been generated by the means for generating
the character.

7. A character generating apparatus, com-
prising:
means to receive character code data ident-
ifying a character in a set of such characters;
means for reading size and disposition data for
at least one graphical primitive in accordance
with the character code data;
means for modifying the size and disposition
data as specified by cursor position data; and
means for generating the graphical primitive in
accordance with the modified size and disposi-
tion data.

8. The character generating apparatus of
claim 7, further comprising:
means for modifying the cursor position data
used by the means for modifying the size and
disposition data.

9. The character generating apparatus of
claim 8, further comprising :
means for changing the cursor position data
used by the means for modifying the cursor
position data as a function of a base offset
value.

10. The character generating apparatus of any
of claims 7 to 9, further comprising :
means for transforming the modified size and
disposition data in accordance with text trans-
formation data before the modified size and
disposition data is provided to the means for
generating the graphical primitive.

11. The character generating apparatus of
claim 10, wherein the means for transforming
comprises means for transforming the modified
size and disposition data in accordance with
two dimensional transformation by matrix multi-
plication.

12. The character generating apparatus of any
of claims 7 to 1 1 , further comprising :
means for causing graphical primitives to be
generated in succession to form the identified

Claims 40

1 . A character generating apparatus compris-
ing:
means to receive character code data ident-
ifying a character in a set of such characters ; 45
means for providing, for each received charac-
ter code data, data identifying at least one
graphical primitive, in a set of different such
graphical primitives representing a plurality of
different shapes, for making up the character 50
identified by that character code data, and data
indicating the size and disposition of the or
each identified graphical primitive in the charac-
ter; and
means for generating the character from the 55
graphical primitive or primitives identified by the
primitive identifying data of a size and in a
disposition indicated by the size and disposition
indicating data.

2. The character generating apparatus of 60
claim 1 , further comprising:
means for transforming the size and disposition
indicating data in accordance with text transfor-
mation data prior to the size and disposition
indicating data being provided to the means for 65

EP 0 325 409 A2 16 15

character.
22. The computer-based method of claim 21,

wherein step (3) further comprises the step of
providing to the computer a link of parameters
necessary to execute the graphical primitives.
23. The computer-based method of claim 22,

wherein the step of providing to the computer a
list of parameters comprises the step of
providing data indicating the size and disposi-
tion of graphical primitives.
24. The computer-based method of claim 23,

wherein the step of providing to the computer a
list of parameters comprises a step of transfor-
ming the parameters provided to the computer,
whereby each graphical primitive is transformed
so that the character is rotated and/or trans-
lated and/or scaled.
25. The computer-based method of any of

claims 19 to 24, wherein step (2) further
comprises the step of flood filling the at least
one graphical primitive with a specified color.
26. A computer character generator which

uses a bit-mapped display, characterized in that
the bit map for each character is formulated
when that character is displayed.

27. A character generating apparatus compris-
ing:
means to receive character code data ident-
ifying a character in a set of such characters;
means for providing, for each received charac-
ter code data, data identifying at least one
graphical primitive, in a set of different such
graphical primitives, for making up the charac-
ter identified by that character code data, and
data indicating the size and disposition of the
one or each identified graphical primitive in the
character;
means for generating the character from the
graphical primitive or primitives identified by the
primitive identifying data of a size and in a
disposition indicated by the size and disposition
indicating data;
means for transforming the size and disposition
indicating data in accordance with text transfor-
mation data prior to the size and disposition
indicating data being provided to the means for
generating the character;
means for updating the position of a cursor
after the character has been generated by the
means for generating the character;
means for causing the character to be gener-
ated at a specified location by the means for
generating the character;
means for modifying the size and disposition
indicating data so that the means for causing
the character to be generated at a specified
location indicates the specified location to the
means for generating the character; and
means for allowing the character code data of a
next character to be received by the means to
receive character data after the character has
been generated by the means for generating
the character,
wherein the means for transforming comprises
means for transforming the modified size and

character.
13. The character generating apparatus of

claim 12, further comprising:
means for updating a current cursor position in
accordance with cursor increment data after 5
the indicated character has been generated.

14. The character generating apparatus of any
of claims 7 to 13, wherein the means for
modifying or the means for transforming utilize
values contained in a table. 10

15. An apparatus for the real time generation
of characters using graphical primitives com-
prising:
graphics processor means;
mapped display device means connected to the 15
graphics processor means;
program memory means;
at least one graphical primitive program for
causing the graphics processor means to draw
at least one predetermined shape on the 20
mapped display device means; and
draw program means residing in the program
memory means for orchestrating the execution
of the at least one graphical primitive program,
whereby a character is generated on the 25
mapped display device means.

16. The apparatus of claim 15, further compris-
ing:
executive program means residing in the pro-
gram memory means for receiving character 30
code data, and for indicating to the draw
program a starting address to allow the execu-
tion of the at least one graphical primitive
program in accordance with the received
character code data. 35

17. The apparatus of claim 15 or 16, further
comprising transformation means for transfor-
ming the at least one predetermined shape in
accordance with text transformation data,
whereby the generated character may be 40
displayed on the mapped display device means
in rotated and/or scaled and/or translated form.

18. The apparatus of claim 17, further compris-
ing:
memory means for providing the text transfor- 45
mation data to the transformation means.

19. A computer-based method of generating
characters using graphical primitives for visual
display, comprising the steps of:
(1) reading character code data; and 50
(2) causing the computer to execute the
graphical primitives necessary to generate a
character specified by the character code data
on a bit mapped display device.
20. The computer-based method of claim 19, 55

further comprising a step between steps (1)
and (2) of:
(3) providing the computer with a list of the
graphical primitives necessary to generate the
character. 60
21 . The computer-based method of claim 20,

wherein step (3) comprises the step of provid-
ing to the computer a list of the starting
addresses of programs which execute the
graphical primitives necessary to generate the 65

EP 0 325 409 A2 18 17

ter code and operable to read data originating
from the table memory means representing the
start address of the or each graphical primitive
routine for that character code and to cause
execution of the graphical primitive routine that
commences at the read start address; and each
graphical primitive routine being operable to
read size and disposition data originating from
the table memory means for the respective
character code and respective graphical primi-
tive routine and to form a graphical primitive of a
respective shape and of size and in a disposi-
tion according to the read size and disposition
data.

disposition data in accordance with two dimen-
sional transformation by matrix multiplication.
28. A character generating apparatus, com-

prising:
means to receive character codes each ident-
ifying a character in a set of such characters;
table memory means storing a table providing
for each character code a start address of at
least one graphical primitive routine to be
executed in forming the character identified by
that code and size and disposition data to be
used by that routine; routine memory means
storing a plurality of such graphical primitive
routines beginning at respective start ad-
dresses; and
control means responsive to a received charac-

10

15

20

25

30

35

40

45

50

55

60

65

10

EP 0 325 409 A2
r

F I G . 1 .

100-s

MAPPED DISPLAY
DEVICE I06 I 0 4 - \

INPUT, OUTPUT
a i / o d e v i c e s

(AND CONTROLLERS)

CENTRAL
PROCESSING

UNIT

GRAPHICS
PROCESSOR

X 7
/ IO2 IO8

PROGRAM MEMORY II4 - n o \
GLOBAL MEMORY GLOBAL MEMORY

FONT LOOK UP TABLE II2- CURRENTFONTSTORE
EXECUTIVE
PROGRAM

TEXT COLOR CURSOR X INCREMENT 0 0
CURSOR X POS. CURSOR Y INCREMENT
CURSOR Y POS. BASE OFFSET
T.T.T. ADDRESS CHAR. TABLE LENGTH

I 2 2 ' /
F.L.U.T ADDRESS CHAR. TABLE ADDRESS
FONT LENGTH DRAW PROGRAM ADDRESS

CURSOR X INCREMENT
l ie CURSOR Y INCREMENT \ GLOBAL MEMORY

DRAW
PROGRAM CHARACTER TABLES

GPCR ADDRESS
PARAMETER

/ \ PARAMETER N
1 2 4 ' , 1 2 6 GPCR ADDRESS V

PARAMETER

EXISTING
GRAPHICAL
PRIMITIVE

EXISTING
GRAPHICAL
PRIMITIVE

EXISTING
GRAPHICAL
PRIMITIVE

GPCR ADDRESS
PARAMETER
GPCR ADDRESS

GLOBAL MEMORY GLOBAL MEMORY
TEXT TRANSFORM-

ATION TABLE TEMPSTORE
ELEMENTS FOR POINTERS AND
3 X 3 MATRIX SCRATCHPAD

PARAMETER
PARAMETER N o PARAMETER N

cr, ;
^ FOR CHAR CODES

03- END

L L 118 120

EP 0 325 409 A2 r

F I G . 2 .

CURRENT FONT STORE TABLE 112

- 2 0 0
- 2 0 2
- 2 0 4
- 2 0 6
- 2 0 8
- 2 1 0

CURRENT TEXT COLOR
CURRENT CURSOR X POSITION
CURRENT CURSOR Y POSITION
TEXT TRANSFORMATION TABLE ADDRESS
FONT LOOK UP TABLE ADDRESS
FONT LENGTH (NUMBER OF CHAR.)

F I G . 3 .

FONT LOOK UP TABLE (FLUT) 114
/ BASE

ADDRESS - 3 0 0
- 3 0 2
- 3 0 4
- 3 0 6
- 3 0 8
-310

CURSOR X INCREMENT (0 0)
CURSOR Y INCREMENT (0 0)
CHARACTER BASE OFFSET(OO)
CHARACTER TABLE LENGTH (00)
START ADDRESS OF CHARACTER TABLE (0 0)
START ADDRESS OF DRAW PROGRAM (00) BASE +

OFFSET (01) CURSOR X INCREMENT (01)
CURSORY INCREMENT (01)
CHARACTER BASE OFFSET (01)
CHARACTER TABLE LENGTH (01)
START ADDRESS OF CHARACTER TABLE (01)
START ADDRESS OF DRAW PROGRAM (01) BASE +

0 F F S E T (0 2) - CURSOR X INCREMENT (0 2)
CURSOR Y INCREMENT (02)
CHARACTER BASE 0 F F S E T (0 2)
CHARACTER TABLE LENGTH (0 2)
START ADDRESS OF CHARACTER TABLE (02)
START ADDRESS OF DRAW PROGRAM (0 2)

EP 0 325 409 A2
r

F I G . 4 .

CHARACTER TABLE FOR A SINGLE CHARACTER . 4 0 0

POINTER TO 1st GRAPHICAL PRIMITIVE CALL ROUTINE
FIRST PARAMETER FOR GRAPHICAL PRIMITIVE
SECOND PARAMETER FOR GRAPHICAL PRIMITIVE
THIRD PARAMETER FOR GRAPHICAL PRIMITIVE

Nth PARAMETER FOR GRAPHICAL PRIMITIVE . 4 0 4
POINTER TO 2nd GRAPHICAL PRIMITIVE CALL ROUTINE
FIRST PARAMETER FOR GRAPHICAL PRIMITIVE
SECOND PARAMETER FOR GRAPHICAL PRIMITIVE
THIRD PARAMETER FOR GRAPHICAL PRIMITIVE

Nth PARAMETER FOR GRAPHICAL PRIMITIVE

4 0 6
POINTER TO Nth GRAPHICAL PRIMITIVE CALL ROUTINE
FIRST PARAMETER FOR GRAPHICAL PRIMITIVE
SECOND PARAMETER FOR GRAPHICAL PRIMITIVE
THIRD PARAMETER FOR GRAPHIC P R I M I T I V E

410
V Nth PARAMETER FOR GRAPHICAL PRIMITIVE

POINTER TO END OF GRAPHICAL PROGRAM

EP 0 325 409 A2

F I 6 . 5 .

EXAMPLE OF CHARACTER TABLE FOR THE LETTER "B"

POINTER TO "LINE" GPCR
X START COORDINATE

- 5 0 4

- 5 0 6

- 5 1 0

-512

-514
-516

- 5 0 8

Y START COORDINATE
X FINISH COORDINATE
Y FINISH COORDINATE
POINTER TO "ARC" GPCR
X CENTER COORDINATE
Y CENTER COORDINATE
RADIUS
START POINT X
START POINT Y
END POINT X
END POINT Y
POINTER TO "ARC" GPCR
X CENTER COORDINATE
Y CENTER COORDINATE
RADIUS
START POINT X
START POINT Y
END POINT X
END POINT Y
POINTER TO "END"OF CHARACTER PROGRAM

EP 0 325 409 A2

F I G . 6 .

TEXT TRANSFORMATION TABLE

DATA FOR ARRAY LOCATION 0 . 0
DATA FOR ARRAY LOCATION 0 .

DATA FOR ARRAY LOCATION 0 . 2
DATA FOR ARRAY LOCATION 1 . 0
DATA FOR ARRAY LOCATION
DATA FOR ARRAY LOCATION 1 . 2

DATA FOR ARRAY LOCATION 2 . 0

DATA FOR ARRAY LOCATION 2.1
DATA FOR ARRAY LOCATION 2 . 2

8f00 F I G . 8 .

8 0 2

1 /

EP 0 325 409 A2

F I G . 7 .

7 0 0
\

7 0 2

GET STRING
LENGTH

AND POINTER
ADDRESS

READ
CHARACTER

CODE
(CHARNO)

S E T
TEXT

COLOR

1
7 0 4

CALCULATE
FLUT

OFFSET _ ADDRESS ^
714

716

710
1

UPDATE
STRING
POINTER

7 0 8

EP 0 325 409 A2

F I G . 9 .

1 •

GET CHAR.
TABLE

9 0 0 ADDRESS
v__ AND COPY

TO TEMPSTORE

902 READ GPCR
V ADDRESS

FROM CHAR.
TABLE AND

UPDATE POINTER

9 0 4 JUMP TO
^ GPCR

SUBROUTINE

».

F I Q . 1 1 .

IIOO

UPDATE
CURSOR
POSITION

WITH X ANDY
INCREMENTS

I I02

EP 0 325 409 A2
r

F I G . 1 0 .

READ
PARAMETERS
FROM CHAR.

TABLE/UPDATE
POINTER

'IOOO

I 0 0 2 I 0 0 4 I 0 0 6 C _r_ A
SUBTRACT

CHARACTER
BASE O F F S E T

FROM
CURSOR Y

ADD CURSOR
POSITION

TO ALL
COORDINATES

EXECUTE
TRANSFORMATION

PROGRAM

I 0 0 8
r IOIO

EXECUTE
PRIMITIVE
PROGRAM

	bibliography
	description
	claims
	drawings

