Europdisches Patentamt
0’ European Patent Office (D Publication number: 0 329 942

Office européen des brevets A2

@ EUROPEAN PATENT APPLICATION

@) Application number: 89100716.3 @ Int. c1.+ GOSF 12/08

@) Date of filing: 17.01.89

@) Priority: 22.02.88 US 159016 @ Applicant: International Business Machines
Corporation
Date of publication of application: Old Orchard Road
30.08.89 Bulletin 89/35 Armonk, N.Y. 10504(US)
Designated Contracting States: @ Inventor: Gregor, Stephen Lee

DEFRGBIT) 628 Church Street
' Endicott, NY 13760(US)

Representative: Blutke, Klaus, Dipl.-Ing.
1BM Deutschiand GmbH Intellectual Property
Dept. Schonaicher Strasse 220
D-7030 Boblingen(DE)

@ Store queue for a tightly coupled multiple processor configuration with two-level cache buffer

storage. -
@ A multiprocessor system includes a system of - u e
store queues and write buffers in a hierarchical first PROCESEOR S, Jﬁ,’:g‘ BXECUTONWNT 1 FIG. 6B
level and second level memory system including a | oMo |oaTa 1882
first level store queue (18B1) for storing instructions !] =
and/or data from a processor (20B) of the mul- — I_I .
tiprocessor system prior to storage in a first level of ggggg Fgg/;MI .
cache (18B), a second level store queue (26A2) for R 12 CACHE/
storing the instructions and/or data from the first E i /SESZ,E%
level store queue (18B1) and a plurality of write ¢
buffers (26A2(A); 26A2(B)) for storing the instructions g,g,,g—l 22 owerar 2
and/or data from the second level store queue prior e i
to storage in a second level of cache. The mul- 280200
tiprocessor system includes hierarchical levels of 220 | A L2 Wa-0 | 2eaz®
caches and write buffers. When stored in the second . ens /
level write buffers, access to the shared second level NeX Bo-X Xx-Me 88 ga-
cache is requested; and, when access is granted, /
¢ the data and/or instructions is moved from the sec- sarl L2 CACHE WB
ond level write buffers to the shared second level
cache. When stored in the shared second level 285 ———— 268
@Ncache, corresponding obsolete entries in the first J_l e T
olevel of cache are invalidated before any other pro- m
cessor "sees" the obsolete data and the new data 2ar7 ; | 2m9
Q. and/or instructions are over-written in the first level N] Ps | [etre]
of cache. : 26A8 : =

Xerox Copy Centre

1 EP 0 329 942 A2 2

STORE QUEUE FOR A TIGHTLY COUPLED MULTIPLE PROCESSOR CONFIGURATION WITH TWO-LEVEL
CACHE BUFFER STORAGE

The subject matter of this invention relates to a
store queue in a first level of memory hierarchy
and a store queue and write buffers in a second
level of cache memory hierarchy of a multiproces-
sor computer system for queuing data intended for
storage in the second level of cache memory hier-
archy.

Computing systems include multiprocessor
systems. Multiprocessor systems comprise a plu-
rality of processors, each of which may at some
point in time require access to main memory. This
requirement may arise simultaneously with respect
to two or more of the processors in the mul-
tiprocessing system. Such systems may comprise
intermediate level caches for temporarily storing
instructions and data. For example, US Patents
4,445,174 and 4,442,487 disclose multiprocessor
systems including intermediate first level cache
storage (L1 cache) and intermediate second level
cache storage (L2 cache). These patents do not
specifically disclose a system configuration which
comprises an L1 cache for each processor of the
muitiprocessor system, an L2 cache connected to
and shared by the individual L1 caches of each
processor, and a main memory, designated L3,
connected solely to the shared L2 cache. in such a
configuration, if data and/or instructions, stored in
an L1 cache of one processor of the multiprocessor
gystem, should be moved for storage into the
shared L2 cache, and ultimately into L3, and if the
shared L2 cache is busy storing data and/or
instructions associated with another of the proces-
sors of the multiprocessor system, the L1 cache of
the one processor must wait until the shared L2
cache is no longer busy before it may begin its
storage operations. Therefore, a queuing system is
needed, for connection between the individual L1
caches of each processor and the shared L2
cache, to queue the data and/or instructions from
the L1 cache of the one processor prior to storage
in the shared L2 cache so that the one processor
may begin another operation. In such a queuing
system, when a first set of data and/or instructions
are stored in the queue, the queue itself may be
full; therefore, when the one processor intends to
store a second set of data and/or instructions in the
queue, as well as in its L1 cache, since the queue
is full, the one processor cannot begin another
operation until the queue is no longer full. There-
fore, it is desirable that the queue be designed in
stages, in a pipelined manner, such that the sec-
ond set of data and/or instructions may be queued
along with the first set of data and/or instructions.
In this manner, multiple sets of data and/or instruc-

10

15

20

25

30

35

40

45

§0

tions, intended for storage in an L1 cache, may be
queued for ultimate storage in the shared L2
cache, thereby permitting continued operation of
the one processor associated with the L1 cache.

In addition, when data is modified by one pro-
cessor of a multiprocessor configuration, which in-
cludes a plurality of processors, a single main
memory, and intermediate level caches L1 and L2,
if the corresponding un-modified data is stored in
the processor's cache, the modified data must be
re-stored in the processor's cache. The modified
data must be re-stored in its cache before the other
processors may "see" the modified data. There-
fore, some method of policing the visibility of the
modified data vis-a-vis the other processors in the
multiprocessor configuration is required. Further-
more, an apparatus is needed to maintain accurate
control over access to main memory and the
caches. In this application, the apparatus for polic-
ing the visibility of the modified data vis-a-vis other
processors and for maintaining control over access
to the main memory and the caches is termed a
"Storage Subsystem”.

Accordingly, it is an object of the present in-
vention to introduce a novel storage subsystem for
a computer system including a system and a meth-
od of novel store queues for queuing data intended
for storage in an L1 cache and for queuing data
intended for storage in a shared L2 cache of a
Storage Subsystem and especially to introduce a
novel storage subsystem including a system of
write buffers to be used in conjunction with the
novel store queues for increasing the capacity of
the store queues so that the various processors of
the multiprocessor system may not be inhibited in
their operation when attempting a store operation
to the shared L2 cache and to main memory.

These objects of the inveniion are accom-
plished by the features of the main claims. Further
advantages of the invention are characterized by
the subclaims.

In accordance with this and other objects of the
present invention, as shown in figure 6 of the
drawings, a storage subsystem includes a system
of store queues. A store queue is associated with a
levei one L1 cache and a store queue is assoiated
with a level two L2 cache of a multiprocessor
system. The multiprocessor system includes at
least first and second processors, each processor
having its own L1 cache. The L1 cache of each
processor is connected o its own first store queus
for queuing data prior fo storage in the L1 cache. In
addition, the two processors share a second level
of cache, an L2 cache. The L2 cache is connected

3 EP 0 329 942 A2 4

to its own second store queue as well. The L2
cache is connected to main memory, considered
an L3 level of memory hierarchy. Further, a system
of write buffers connect the second store queue to
the L2 cache. When data is intended for storage in
L1 cache, it is first queued in its first store queue
simultaneously with storage in L1 cache. Once
stored in L1 cache, the data must be stored in L2
cache; but, prior to storage in L2 cache, the data is
first queued in the second store queue of the L2
cache. When stored in the second store queue, the
data may be further stored in one of the write
buffers which interconnect the second store queue
o the L2 cache. Ultimately, the data is stored in a
final L2 cache write buffer prior to actual storage in
the L2 cache. The data "may be" stored in one of
the write buffers since data and/or instructions as-
sociated with "sequential stores (SS)” are stored in
the write buffers prior to actual storage in the final
L2 cache write buffer, but data and/or instructions
associated with "non-sequential stores (NS)" are
not stored in the write buffers, rather, they bypass
the write buffers and are stored directly into the
final L2 cache write buffer from the second store
queue. When access to the L2 cache is obtained,
via arbitration, the data stored in the final L2 cache
write buffer is stored in L2 cache. Once the data is
stored in L2 cache, subsequent cross-invalidation
requests, originating from the L2 cache, invalidate
other corresponding entries of the data in the L1
caches. As a result of this use of store queues at
the L1 cache, the store queue at the L2 cache
level, and the write buffers interconnected between
the L2 store queue and the L2 cache, one proces-
sor is not inhibited in its execution of various
instructions even though the L2 cache is busy with
a store operation associated with another of the
processors in the multiprocessor system. Perfor-
mance of the computer system of this invention is
maximized and interference between processors at
the L2 cache level is minimized.

Further scope of applicability of the present
invention will become apparent from the detailed
description presented hereinafter. it should be un-
derstood, however, that the detailed description
and the specific examples, while representing a
preferred embodiment of the invention, are given
by way of illustration only, since various changes
and modifications within the spirit and scope of the
invention will become obvious to one skilled in the
art from a reading of the following detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

A full understanding of the present invention

10

15

20

25

30

35

40

45

50

55

will be obtained from the detailed description of the
preferred embodiment presented hereinbelow, and
the accompanying drawings, which are given by
way of illustration only and are not intended to be
limitative of the present invention, and wherein:

figure 1 illustrates a uniprocessor computer
system;

figure 2 illustrates a triadic computer system;

figure 3 illustrates a detailed construction of
the /D Caches (L1 cache), the l-unit, E-unit, and
Control Store (C/S) illustrated in figures 1 and 2;

figure 4 represents another diagram of the
triadic computer system of figure 2;

figure 5 illusirates a detailed construction of
the storage subsystem of figure 4;

figure 6, which comprises figures 6a through
Bc, illustrates a detailed construction of a portion of
the L2 cache/Bus Switching Unit of figure 5 in
accordance with the present invention;

figure 7 illustrates a construction of the L1
store queue of figure 6;

figure 8 illustrates the L1 field address regis-
ters connected to the L1 store queue of figures 6
and 7;

figure 9 illustrates the L2 store queue of
figure 6;

figure 10 illustrates the L2 line-hold registers
and write buffers connected to the L2 store queue
of figures 6 and 9; and

figures 11 through 49 illustrate time line dia-
grams corresponding to the store routines asso-
ciated with the triadic computer system of figure 2.

DESCRIPTION OF THE PREFERRED EMBODI-
MENT

Referring to figure 1, a uniprocessor computer
system of the present invention is illusirated.

In figure 1, the uniprocessor system comprises
an L3 memory 10 connected to a storage controller
(SCL) 12. On one end, the storage controller 12 is
connected to an integrated /O subsystem controls
14, the controls 14 being connected to integrated
adapters and single card channels 16. On the other
end, the storage controller 12 is connected to I/D
caches (L1) 18, which comprise an instruction
cache, and a data cache, collectively termed the
"L1" cache. The I/D caches 18 are connected to an
instruction unit (I-unit), Execution unit (E-unit), con-
trol store 20 and to a vector processor (VP) 22.
The vector processor 22 is described in pending
patent application serial number 530,842, filed Sep-
tember 9, 1983, entitled "High Performance Par-
allel Vector Processor”, the disclosure of which is
incorporated by reference into the specification of

5 EP 0 329 942 A2 6

this application. The uniprocessor system of figure
1 also comprises the multisystem channel commu-
nication unit 24.

The memory 10 comprises 2 ‘intelligent"
memory cards, each memory card including a level
three (L3) memory portion and an extended (L4)
memory portion. The cards are "intelligent" due to
the existance of certain specific features: error
checking and correction, extended error checking
and correction (ECC) refresh address registers and
counters, and bit spare capability. The interface to
the L3 memory 10 is 8-bytes wide. Memory sizes
are 8, 16, 32, and 64 megabytes. The L3 memory
is connected to a storage controller (SCL) 12.

The storage controller 12 comprises three bus
arbiters arbitrating for access to the L3 memory 10,
to the /O subsystem controls 14, and to the I'D
caches 18. The storage coniroller further includes a
directory which is responsible for searching the
instruction and data caches 18, otherwise termed
the L1 cache, for data. If the data is located in the
L1 caches 18, but the data is obsolete, the storage
controller 12 invalidates the obsolete data in the L1
caches 18 thereby allowing the I/O subsystem con-
trols 14 to update the data in the L3 memory 10.
Thereafter, instruction and execution units 20 must
obtain the updated data from the L3 memory 10.
The storage controller 12 further includes a plural-
ity of buffers for buffering data being input to L3
memory 10 from the /O subsystem controls 14
and for buffering data being input to L3 memory 10
from instruction/execution units 20. The buffer as-
sociated with the instruction/execution units 20 is a
256 byie line buffer which allows the building of
entries 8 bytes at a time for certain types of
instructions, such as sequential operations. This
line buffer, when full, will cause a block transfer of
data to L3 memory to occur. Therefore, memory
operations are reduced from a number of individual
store operations to a much smaller number of line
transfers.

The instruction cache/data cache 18 are each
16K byie caches. The interface to the storage
controller 12 is 8 bytes wide; thus, an inpage

operation from the storage controller 12 takes 8.

data transfer cycles. The data cache 18 is a "store
through™ cache, which means that data from the
instruction/execution units 20 are stored in L3
memory and, if the corresponding obsolete daia is
not present in the L1 caches 18, the data is not
brought into and stored in the L1 caches. To assist
this operation, a "store buffer" is present with the
L1 data cache 18 which is capable of buffering up
o 8 store operations.

The vector processor 22 is connected to the
data cache 18. It shares the daiaflow of the
instruction/execution unit 20 into the storage con-
troller 12, but the vector processor 22 will not,

10

15

20

25

30

35

40

45

50

55

while it is operating, permit the
instruction/execution unit 20 o make accesses into
the storage controiler 12 for the fetching of data.

The integrated /0 subsystem 14 is connected
{o the storage controller 12 via an 8-byte bus. The
subsystem 14 comprises three 64-byte buffers
used to synchronize data coming from the inte-
grated /O subsystem 14 with the storage controller
12. That is, the instruction/execution unit 20 and
the /0 subsystem 14 operate on different clocks,
the synchronization of the two clocks being
achieved by the three 64-byte buffer structure.

The multisystem channel communication unit
24 is a 4-port channel to channel adapter, pack-
aged externally to the system.

Referring to figure 2, a triadic (multiprocessor)
system is illustrated.

In figure 2, a Storage Subsystem 26 is con-
nected to the ports of a pair of L3 memories
102/10b. The Storage Subsystem 26 includes a
bus switching unit (BSU) 26a and an L2 cache 26b.
The Storage Subsystem 26 will be set forth in
more detail in figure 5. The BSU 26a is connected
to the integrated /O subsystem 14, to shared chan-
nel processor A (SHCP-A) 28a, to shared channel
processor B (SHCP-B) 28b, and to three proces-
sors: a first processor including instruction/data
caches 18a and instruction/execution units/control
store 20a, a second processor including
instruction/data caches 18b and -
instruction/execution units/controt store 20b, and a
third processor including instruction/data caches
18¢c and instruction/execution units/control store
20c. Each of the instruction/data caches 18a, 18b,
18c are termed "L1" caches. The cache in the the
Storage Subsystem 26 is termed the L2 cache 26b,
and the main memory 10a/10b is termed the L3
memory. .sk The Storage Subsystem 26 connects
together the three processors 18a/20a, 18b/20b,
and 18c/20c, the two L3 memory ports 10a/10b,
the two shared channel processors 28, and an
integrated /O subsystem 14. The Storage Sub-
system 26 comprise circuits which decide the pri-
ority for requests to be handled, such as requests
from each of the three processors to L3 memory,
or requests from the /O subsystem 14 or shared
channel processors, circuits which operate the in-
terfaces, and circuiis to access the L2 cache 26b.
The L2 cache 26b is a "store in" cache, meaning
that operations which access the L2 cache, to
modify data, must also modify data resident in the
L2 cache (the only exception to this rule is that, if
the operation originates from the I/O subsystem 14,
and if the data is resident only in L3 memory
102/10b and not in L2 cache 26a, the data is
modified only in L3 memory, not in L2 cachs).

The interface between the Storage Subsystem
26 and L3 memories 10a/10b comprises two 16-

7 EP 0 329 942 A2 8

byte ports in lieu of the single 8-byte port in figure
1. However, the memory 10 of figure 1 is identical
to the memory cards 10a/10b of figure 2. The two
memory cards 10a/10b of figure 2 are accessed in
paraltel.

The shared channel processor 28 is connected
to the Storage Subsystem 26 via two ports, each
port being an 8-byte interface. The shared channel
processor 28 is operated at a frequency which is
independent of the BSU 26, the clocks within the
BSU being synchronized with the clocks in the
shared channel processor 28 in a manner which is
similar to the clock synchronization between the
storage controller 12 and the integrated /O sub-
system 14 of figure 1.

A functional description of the operation of the
uniprocessor computer system of figure 1 will be
set forth in the following paragraphs with reference
to figure 1.

Normally, instructions are resident in the in-
struction cache (L1 cache) 18, waiting to be ex-
ecuted. The instruction/execution unit 20 searches
a directory disposed within the L1 cache 18 to
determine if the typical instruction is stored therein.
If the instruction is not stored in the L1 cache 18,
the instruction/execution unit 20 will generate a
storage request to the storage controiler 12. The
address of the instruction, or the cache line con-
taining the instruction will be provided to the stor-
age controller 12. The storage controller 12 wiil
arbitrate for access to the bus connected to the L3
memory 10. Eventually, the request from the
instruction/execution unit 20 will be passed to the
L3 memory 10, the request comprising a command
indicating a line in L3 memory is to be fetched for
transfer to the instruction/execution unit 20. The L3
memory will laich the request, decode it, select the
location in the memory card wherein the instruction
is stored, and, after a few cycles of delay, the
instruction will be delivered to the storage conirol-
ler 12 from the L3 memory in 8-byte increments.
The instruction is then fransmitted from the storage
controller 12 to the instruction cache (L1 cache) 18,
wherein it is temporarily stored. The instruction is
re-transmitted from the instruction cache 18 to the
instruction buffer within the instruction/execution
unit 20. The instruction is decoded via a decoder
within the instruction unit 20. Quite often, an
operand is needed in order to execute the instruc-
tion, the operand being resident in memory 10. The
instruction/exsecution unit 20 searches the directory
in the data cache 18; if the operand is not found in
the directory of the data cache 18, another storage
access is issued by the instruction/execution unit
20 to access the L3 memory 10, exactly in the
manner described above with respect to the in-
struction cache miss. The operand is stored in the
data cache, the instruction/execution unit 20

10

15

20

25

30

35

40

45

50

55

searching the data cache 18 for the operand. If the
instruction requires the use of microcode, the
instruction/execution unit 20 makes use of the
microcode resident on the instruction execution
unit 20 card. If an input/output (I/0) operation need
be performed, the instruction/execution unit 20 de-
codes an /O instruction, resident in the instruction
cache 18. Information is stored in an auxiliary por-
tion of L3 memory 10, which is sectioned off from
instruction execution. At that point, the
instruction/execution unit 20 informs the integrated
1/0 subsystem 14 that such information is stored in
L3 memory, the subsystem 14 processors acces-
sing the L3 memory 10 to fetch the information.

A functional description of the operation of the
multiprocessor computer system of figure 2 will be
set forth in the following paragraphs with reference
to figure 2.

In figure 2, assume that a particular
instruction/execution unit, one of 20a, 20b, or 20c,
requires an instruction and searches its own L1
cache, one of 18a, 18b, or 18c for the desired
instruction. Assume further that the desired instruc-
tion is not resident in the L1 cache. The particular
instruction execution unit will then request access
to the Storage Subsystem 26 in order to search the
L2 cache 26b disposed therein. The Storage Sub-
system 26 contains an arbiter which receives re-
quests from each of the instruction/execution units
20a, 20b, 20c, from the shared channel processor
28 and from the integrated /O subsystem 14.
When the particular instruction/execution unit (one
of 20a-20c) is granted access to the Storage Sub-
system 26 to search the L2 cache 26b, the particu-
lar instruction/execution unit searches the directory
of the L2 cache 26b disposed within the Storage
Subsystem 26 for the desired instruction. Assume
that the desired instruction is found in the L2 cache
26b. In that case, the desired instruction is returned
to the particular instruction/execution unit. If the
desired instruction is not located within the L2
cache, as indicated by its directory, a request is
made to the L3 memory, one of 10a or 10b, for the
desired instruction. If the desired instruction is lo-
cated in the L3 memory, it is immediately transmit-
ted to the Storage Subsystem 26, 16 bytes at a
time, and is bypassed to the particular
instruction/execution unit (one of 20a-20c) while
simultaneously being stored in the L2 cache 26b in
the Storage Subsystem 26. Additional functions
resident within the Storage Subsystem 26 relate to
rules for storage consistency in a multiprocessor
system. For example, when a particular
instruction/execution unit 20c (otherwise termed
"processor” 20c) modifies data, that data must be
made visible to all other instruction/execution units,
or "processors”, 20a, 20b in the complex. If pro-
cessor 20c modifies data presently stored in its L1

9 EP 0 329 942 A2 10

cache 18c¢, a search for that particular data is made
in the L2 cache directory 26j of the Storage Sub-
system 28. if found, the particuiar data in L2 cache
is modified to reflect the modification in the L1
cache 18c. When this is done, the other processors
20a and 20b are permitted to see the modified,
correct data now resident in the. L2 cache 26a in
order to permit such other processors to modify
their corresponding data resident in their L1 caches
18a and 18b. The subject processor 20c cannot re-
access the particular data in L1 cache until the
other processors 20a and 20b have had a chance
to modify their corresponding data accordingly.
The term “cross-interrogation" refers to checking
other processor's L1 caches for copies of data
maodified by the store request; cross-interrogation is
used to eliminate such copies; other L1 caches are
not updated with new data when store occurs.

Referring to figure 3, a detailed construction of
each instruction/execution unit (20 in figure 1 or
one of 20a-20c in figure 2) and iis corresponding
L1 cache {18 in figure 1 or one of 18a-18c in figure
2) is illustrated.

in figure 1, and in figure 2, the
instruction/execution unit 20, 20a, 20b, and 20c is
disposed in a block fabelled "l-unit E-unit C/S
(92KB)". This block may be termed the
"processcr”, the "instruction processing unit", or,
as indicated above, the "instruction/execution unit”.
For the sake of simplicity in the description pro-
vided below, the block 20, 20a-20c will be called
the "processor”. In addition, the "I/D caches (L1)"
will be called the "L1 cache". Figure 3 provides a

detailed construction for the processor (20, 20a,

20b, or 20c) and for the L1 cache (18, 18a, 18b, or
18c).

In figure 3, a processor (one of 20, 20a-20c)
comprises the following elements. A control store
subsystem 20-1 comprises a high speed fixed con-
trol store 20-1a of 84k bytes, a pagable area (8k
byte, 2k word, 4-way associative pagable area) 20-
1b, a directory 20-1¢ for the pagable control store
20-1b, a control store address register (CSAR) 20-
1d, and an 8-element branch and link (BAL STK)
facility 20-1e. Machine state controls 20-2 include
the glcbal controls 20-2a for the processor, an op
branch table 20-2b connected to the CSAR via the
control store origin address bus and used to gen-
erate the initial address for microcoded instruc-
tions. An address generation unit 20-3 comprises 3
chips, a first being an instruction cache DLAT and
L1 directory 20-3a, a second being a data cache
DLAT and L1 directory 20-3b, and a third being an
address generation chip 20-3¢ connected to the L1
cache 18, 18a-18c via the address bus. The in-
struction DLAT and L1 directory 20-3a is con-
nected to the instruction cache portion of the L1
cache via four "hit" lines which indicate that the

10

15

20

25

30

35

40

45

50

55

requested instruction will be found in the instruction
cache portion 18-1a of the L1 cache. Likewise, four
"hit" lines connect the data DLAT and L1 directory
20-3b indicating that the requested data will be
found in the data cache 18-2b portion of the L1
cache. The address generation unit 20-3 contains
copies of the 16 general purpose registers used to
generate addresses (see the GPR COPY 20-3d)
and includes three storage address registers
(SARS) 20-3¢, used to provide addresses io the
microcode for instruction execution. A fixed point
instruction execution unit 20-4 is connected to the
data cache 18-2 via the data bus (D-bus) and
contains a local store stack (local store) 20-4a
which contains the 16 general purpose registers
mentioned above and a number of working regis-
ters used exclusively by the microcode; condition
registers 20-4b which contain the results of a num-
ber of arithmetic and shift type operations and
contain the results of a 370 condition code; a four-
byte arithmetic logic unit (ALU) 20-4c; an 8-byte
rotate merge unit 20-4d; a branch bit select hard-
ware 20-4e which allow the selection of bits from
various registers which determine the direction of a
branch operation, the bits being selected from gen-
eral purpose registers, working registers, and the
condition registers. A floating point processor 20-5
includes floating point registers and four microcode
working registers 20-5e, a command decode and
control function 20-5za, a floating point adder 20-5b,
a fixed point and floating point multiply array 20-5¢,
and a square-root and divide facility 20-5d. The
floating point processor 20-5 is disclosed in pend-
ing patent application serial no 102,985, corre-
sponding to attorney docket number EN987043,
entitted "Dynamic Multiple Instruction Stream Mul-
tiple Data Mulitiple Pipeline Apparatus for Floating
Point Single Instruction Stream Single Data Ar-
chitectures", filed on September 30, 1987, the dis-
closure of which is incorporated by reference into
the specification of this application. The ALU 20-4c
contains an adder, the adder being disclosed in
pending patent application serial number 066,580,
filed June 26, 1987, entitled "A High Performance
Parallel Binary Byte Adder", the disclosure of
which is incorporated by reference into the speci-
fication of this application. An externals chip 20-6
includes timers and interrupt structure, the inter-
rupts being provided from the /O subsystem 14,
and others. An interprocessor communication fa-
cility (IPC) 20-7 is connected io the storage sub-
system via a communication bus, thereby allowing
the processors to pass messages to each other
and providing access to the time of day clock.

In figure 3, the L1 cache (one of 18, 18a, 18b,
or 18c) comprises the following elemenis. An in-
struction cache 18-1 comprises a 16k byte/4-way
cache 18-1a, a 16-byte instruction buffer 18-1b at

11 EP 0 329 942 A2 12

the output thereof, and an 8-byte inpage register
18-1¢ at the input from storage. The storage bus,
connected to the instruction cache 18-1 is eight
bytes wide, being connected to the inpage register
18-1c. The inpage register 18-1c is connected to
the control store subsystem 20-1 and provides data
to the subsystem in the event of a pagable control
store miss and new data must be brought into the
control store. A data cache 18-2 comprises an
inpage buffer 18-2a also connected to the storage
bus; a data cache 18-2b which is a 16k byte/4-way
cache; a cache dataflow 18-2c which comprises a
series of input and output registers and connected
to the processor via an 8-byte data bus (D-bus)
and to the vector processor (22a-22c) via an 8-byte
"vector bus"; an 8-element store buffer (STOR
BFR) 18-2d.

A description of the functional operation of a
processor and L1 cache shown in figure 3 will be
provided in the following paragraphs with reference
to figure 3 of the drawings.

Assume that an instruction to be executed is
located in the instruction cache 18-1a. The instruc-
tion is fetched from the instruction cache 18-1a and
is stored in the instruction buffer 18-1b (every
attempt is made to keep the instruction buifer full
at all times). The instruction is fetched from the
instruction buffer 18-1b and is stored in the instruc-
tion registers of the address generation chip 20-3,
the fixed point execution unit 20-4, and the ma-
chine state controls 20-2, at which point, the in-
struction decoding begins. Operands are fetched
from the GPR COPY 20-3d in the address genera-
tion unit 20-3 if an operand is required (normally,
GPR COPY is accessed if operands are required
for the base and index registers for an RX instruc-
tion). In the next cycle, the address generation
process begins. The base and index register con-
tents are added to a displacement field from the
instruction, and the effective address is generated
and sent to the data cache 18-2 and/or the instruc-
tion cache 18-1. In this example, an operand is
sought. Therefore, the effective address will be
sent to the data cache 18-2. The address is also
sent to the data DLAT and L1 directory chip 20-3b
(since, in this example, an operand is sought).
Access to the cache and the directories will begin
in the third cycle. The DLAT 20-3b will determine if
the address is translatable from an effective ad-
dress to an absolute address. Assuming that this
translation has been previously performed, we will
have recorded the translation. The translated ad-
dress is compared with the output of the cache
directory 20-3b. Assuming that the data has pre-
viously been fetched into the cache 18-2b, the
directory output and the DLAT output are com-
pared; if they compare equal, one of the four "hit"
lines are generated from the data DLAT and direc-

10

15

20

25

30

35

40

45

50

55

tory 20-3b. The hit lines are connected to the data
cache 18-2b; a generated "hit" line will indicate
which of the four associativity classes contains the
data that we wish to retrieve. On the next cycle, the
data cache 18-2b output is gated through a fetch
alignment shifter, in the cache dataflow 18-2¢c, is
shifted appropriately, is transmitted along the D-
BUS to the fixed point execution unit 20-4, and is
latched into the ALU 20-4c. This will be the access
of operand 2 of an RX type of instruction. In
paraflel with this shifting process, operand 1 is
accessed from the general purpose registers in
local store 20-4a. As a result, two operands are
latched in the input of the ALU 20-4c, if necessary.
In the fifth cycle, the ALU 20-4c will process (add,
subtract, divide, etc) the two operands accordingly,
as dictated by the instruction opcode. The output
of the ALU 20-4c is latched and the condition
registers 20-4b are laiched, at the end of the fifth
cycle, to indicate an overflow or zero condition. In
the sixth cycle, the output of the ALU 20-4c is
written back into the local store 20-4a and into the
GPR copy 20-3d of the address generation unit 20-
3 in order to keep the GPR copy 20-3d in sync
with the content of the local store 20-4a. When the
decode cycle of this instruction is complete, the
decode cycle of the next instruction may begin, so
that there will be up to six instructions in either
decoding or execution at any one time. Certain
instruction require the use of microcode to com-
plete execution. Therefore, during the decode cy-
cle, the op-branch table 20-2b is searched, using
the opcode from the instruction as an address, the
op-branch table providing the beginning address of
the microcode routine needed to execute the in-
struction. These instructions, as well as others,
require more than 1 cycle to execute. Therefore,
instruction decoding is suspended while the op-
branch table is being searched. In the case of
microcode, the -BUS is utilized to provide microin-
structions to the decoding hardware. The instruc-
tion cache 18-1a is shut-off, the control store 20-1a
is turned-on, and the microinstructions are passed
over the [-BUS. For floating point instructions, de-
coding proceeds as previously described, except
that, during the address generation cycle, a com-
mand is sent to the floating point unit 20-5 to
indicate and identify- the proper operation to per-
form. In an RX floating point instruction, for exam-
ple, an operand is fetched from the data cache 18-
2b, as desribed above, and the operand is trans-
mitted to the floating point processor 20-5 in lieu of
the fixed point processor 20-4. Execution of the
floating point instruction is commenced. When
complete, the results of the execution are returned
to the fixed point execution unit 20-4, the "results"”
being condition code, and any interrupt conditions,
such as overflow.

13 EP 0 329 942 A2 14

The f{oilowing description represents an alter-
nate functional description of the system set forth
in figure 3 of the drawings.

In figure 3, the first stage of the pipeline is.

termed instruction decode. The instruction is de-
coded. In the case of an RX instruction, where one
operand is in memory, the base and index register
contents must be obtained from the GPR COPY
20-3d. A displacement field is added to the base
and index registers. At the beginning of the next
cycle, the addition of the base, index, and displace-
ment fields is completed, to yield an effective ad-
dress. The effective address is sent ot the DLAT
and Directory chips 20-32/20-3b. The high order
portion of the effective address must be translated,
but the low order portion is not translated and is
sent to the cache 18-1a/18-2b. In the third cycle,
the cache begins an access operation, using the
bits it has obtained. The DLAT directories are
searched, using a virtual address to obtain an ab-
solute address. This absolute address is compared
with the absolute address kept in the cache direc-
tory. If this compare is successful, the "hit" line is
generated and sent to the cache chip 18-1a/18-2b.
Meanwhiie, the cache chip has accessed all four
associativity classes and latches an output accord-
ingly. In the fourth cycle, one of the four "slots" or
associalivity classes are chosen, the data is
aligned, and is sent across the data bus to the
fixed or floating point processor 20-4, 20-5. There-
fore, at the end of the fourth cycle, one operand is
latched in the ALU 20-4¢ input. Meanwhile, in the
processor, other instructions are being executed.
The GPR COPY 20-3d and the local store 20-4a
are accessed to obtain the other operand. At this
point, both operands are latched at the input of the
ALU 20-4c. One cycle is taken to do the computa-
tion, set the condition registers, and finally write the
result in the general purpose registers in the GPR
COPY 20-3d. The result may be needed, for exam-
ple, for address computation purposes. Thus, the
resuit would be input to the AGEN ADDER 20-3c.
During the execution of certain instruction, no ac-
cess to the caches 18-1a/18-2b is needed. There-
fore, when instruction decode is complete, the re-
sults are passed directly to the execution unit with-
out further delay (in terms of access to the
caches). Therefore, as soon as an instruction is
decoded and passed fo the address generation
chip 20-3, another instruction is decoded.

Referring to figure 4, another diagram of the
data prccessing system of figure 2 is illustrated.

In figure 4, the data processing system is a
multiprocessor system and includes a storage sub-
system 26; a first L1 cache storage 18a, a second
L1 cache storage 18b; a third L1 cache storage
18c; a first processing unit 20a, including an in-
struction unit, an execution unit, and a control

10

15

20

25

30

35

40

45

50

55

store, connected to the first L1 cache storage 18a;
a first vector processing unit 22a connected to the
first L1 cache storage 18a; a second processing
unit 20b, including a instruction unit, an execution
unit, a control store, connected to the second L1
cache storage 18b; a second vector processing
unit 22b connected to the second L1 cache storage
18b; a third processing unit 20¢, including an in-
struction unit, an execution unit, a control store,
connected to the third L1 cache storage 18c; and a
third vector processing unit 22c connected to the
third L1 cache storage 18c. A shared channel pro-
cessor A 28a and a shared channel processor B
28b are jointly connected to the storage subsystem
26, and an integrated adapter subsystem 14,16 is
also connected to the storage subsystem 26.

Referring to figure 5, the storage subsystem 26
of figures 2 and 4 is illustrated.

In figure 5, the storage subsystem 26 includes
an L2 control 26k, an L2 cache/bus switching unit
26b/26a, an L3/L4 memory 10a and an L3/L4 mem-
ory 10b connected fo the L2 cache/bus switching
unit 26b/26a, a memory control 26e connected to
the L2 control 26k, a bus switching unit control 26f
connected to the L2 cache/bus swiiching unit
26b/26a and to the memory control 26e, storage
channel data buffers 26g connected to the bus
switching unit control 26f and to the L2 cache/bus
switching unit 26b/26a, an address/key control 26h
connected to the memory control 26e and to the L2
control 26k, L3 storage keys 26i connected to the
address/key control 26h, and a channel L2 cache
directory 26j connscted to the memory control 26e
and to the address key control 26h. The L2 control
26k includes an arbitration unit in the BSU portion
of the storage subsystem 26, termed the "L2 cache
priority”. As noted later, the L2 cache priority de-
cides if a request to store information in L2 cache
26b should be granted.

The storage subsystem maintains storage con-
sistency among up to three central processing
units through use of a shared, serially reusable L2
cache storage with separate store queues for each
processor, and to support channel devices, up fo
three channel interfaces are supported, with two
parallel paths into L3/L4 storage. The function of
the storage subsystem is broken into several major
units. Two of these uniis are considered master
controllers in that they grant access fo the critical
resources, namely, the L2 cache and L3/L.4 mem-
ory ports. The remaining units are considered sub-
ordinate to L2 control and memory control.

L2 Control 26K

L2 control provides the primary interface for
the central processors to access the lower levels of

15 EP 0 329 942 A2 16

the storage hierarchy, L2 cache, L3, and L4 mem-
ory. L2 control maintains a unique
command/address interface with each processor in
the configuration. Across this interface, each pro-
cessor sends fetch requests from the L1 cache
when an L1 cache miss occurs for a processor
fetch request. All processor siore requests are
transferred to the L2 control across this interface as
well. L2 control maintains request queues for each
of the processors at the L2 cache level. An L2
cache priority circuit selects one request from
among the pending requests for service on any
given cycle. The L2 cache directory exists in L2
control and is used to determine if the selected
request can complete by accessing data in L2
cache. If so, the request completes and is dis-
carded. If the request cannot complete due to an
L2 cache directory miss, the request remains
pending in L2 control and a request is sent to
memory control to cause an inpage for the desired
data from L3 storage. L2 control is responsibie for
maintaining storage consistency throughout the
configuration, keeping track of the L1 cache con-
tents in L2 status arrays. When necessary, re-
quests for L1 cache copy invalidation are sent to
the necessary processors across their respective
command/address interfaces.

Memory Control 26E

Memory conirol is the unit responsible for al-
locating access to the L3/L4 storage ports. Two
independent ports exist, each containing half of the
storage contents. Memory control queues all chan-
nel requests, up to a maximum of seven, as well as
processor L2 cache miss requests, up o one per
processor. From this queue of requests, memory
control selects a request per memory port on
which to operate. For the processor requests, this
is the major function performed. For channels, how-
ever, memory control also conirols access to the
storage key arrays and the channel L2 cache direc-
tory. When memory control is given a channel

request from address/key, it must first determine if .

the desired data exist in L2 cache by searching an
L2 cache directory copy labeled the channel L2
cache directory. Additionally, memory conirol de-
termines if the access is allowed by comparing the
storage key associated with the request against the
storage key in the storage key arrays. If no protec-
tion exceptions are found, memory conirol allows
the request to contend for L3 access. When se-
lected by L3 pricrity, the request is directed to L2
control if a channel L2 cache directory search has
resufted in a hit, or to the L3 port if the search
resuited in an L2 cache directory miss.

10

15

20

25

30

35

40

45

50

55

Address/Key Control 26H

Address/key control has two primary functions.
First, it is the command/address interface for the
external channel devices, supporting three separate
channel interfaces. It acceptis siorage requests
from the channel devices, converting them to the
storage subsystem clock rate, and queues them in
internal buffers. It also forwards the requests to
memory control. Address/key returns the status of
all channel operations to the channel subsystem as
well. The other function is to support the storage
key arrays and reference/change (R/C) bits arrays.
The key arrays support the storage keys required
by the S/370 architecture. Memory control is the
primary controlier for granting access to these ar-
rays. Address/key controls granting access to the
R/C arrays which are used by processor L2 cache
accesses to update the reference and change bits
of the storage key arrays. Multiple copies of the
R/C bits exist and must be merged on request by
address/key.

Bus Switching Unit (BSU) Control 26F

BSU control represents the primary controller
for the L2 cache/BSU data flow and storage chan-
nel data buffers (SCDB) data flow. !t is the focal
point for the L2 controf and memory control re-
quests to move data throughout the storage sub-
system. BSU conirol manages the data buses ca-
pable of moving information to/ffrom the L2 cache,
L3/L4 ports, and SCDBs.

L2 Cache/Bus Switching Unit 26B/26A Data Flow

The L2 cache data arrays reside here. Each
central processor has an eight-byte bidirectional
data interface into the L2 cache data flow unit. This
supports data movement from processor to L2
cache or L3/L4 storage as well as from L2 cache or
L3/L4 storage to the processor. Two 16-byte inter-
faces, one to each L3/L4 port, are also supported in
this unit. Last, two 32-byte interfaces to the storage
channel data buffers are maintained here. These
interfaces support data movement between the
SCDBs and the L2 cache or L3/L4 storage.

Storage Channel Data Buffers 26G

To support the three channel storage inter-
faces, the storage channel data buffer maintains a
set of buffers for each independent channel data
interface. This supports movement of data from the
channel devices to L2 cache or L3/L4 storage, and

17 EP 0 329 942 A2 18

back again. The channel data buffer controls are
split, some coming from the channel interface it-
self, some from the storage subsystem (BSU con-
trol). The storage channel data buffer unit also
supports the memory buffer for allowing L3/L4
memory-to-memory transfers requested by the
central processors.

In figure 5, the L2 cache/bus switching unit
26b/26a generates three output signals: cp0, cpl,
and cp2. The L2 control 26k also generates three
output signals: cp0, cp1, and cp2. The cp0 output
signal of the L2 cache/bus switching unit 26b/26a
and the ¢p0 output signal of the L2 control 26k
jointly comprise the outpuf signal from storage
subsystem 26 of figure 1 energizing the first L1
cache storage 18a. Similarly, the cp1 output sig-
nals from L2 cache/bus switching unit 26b/26a and
L2 control 26k jointly comprise the output signal
from storage subsystem 26 of figure 1 energizing
the second L1 cache siorage 18b and the cp2
output signals from the L2 cache/Bus Switching
Unit 26bs26a and L2 control 26k jointly comprise
the output signal from storage subsystem 26 of
figure 1 energizing the third L1 cache storage 18c.

In figure 5, the storage channel data buffers
26g generate three output signals: shcpa, shcpb,
and nio, where shcpa refers to shared channel
processer A 28a, shcpb refers to shared channel
processor B 28b, and nio refers to the integrated
/O and adapter subsystem 14/16. Similarly, the
address/key control 26h generates the three output
signals shcpa, shcpb, and nio. The shepa output
signal from the storage channel data buffers 26g in
conjunction with the shepa output signal from the
address/key control 26h jointly comprise the output
signal generated from the storage subsystem 26 of
figure 1 to the shared channel processor A 28a.
The shepb output signal from the storage channel
data buffers 26g in conjunction with the shcpb
output signal from the address/key conirol 26h
jointly comprise the output signal generated from
the storage subsystem 26 of figure 1 to the shared
channel processor B 28b. The nio output signal
from the storage channel data buffers 26g in con-
junction with the nio output signal from the
address/key control 26h jointly comprise the output
signal generated from the storage subsystem 26 of
figure 1 to the integrated adapter subsystem 14/16.

Referring to figure 6, a detailed construction of
a portion of the L2 cache/BSU 26b/26a of figure 5
is illustrated, this portion of the L2 cache/BSU
26b/26a including an L2 store queue arrangement
in association with the L2 cache. Further, in figure
6, a detaiiled construction of the L1 cache storage
18a, 18b, 18c of figure 4 is illustrated, the L1 cache
storage including an L1 store queue arrangement
in association with the L1 cache.

In figure 8, the L1 cache storage 18a of figure

10

15

20

25

30

35

40

45

50

55

10

4 comprises the L1 cache 18a connected to an L1
store queue 18al. The L1 cache is connected, at
its input, to an inpage data register (INPG DATA)
18a2, and is connected, at its output, to a fetch
data (FETCH DATA) register 18a3. The L1 cache
storage 18b of figure 4 comprises the L1 cache
18b connected to an L1 store queue 18b1. The L1
cache is connected, at its input, to an inpage data
register (INPG DATA) 18b2, and is connected, at
its output, to a fetch data (FETCH DATA) register
18h3. The L1 cache storage 18c of figure 4 com-
prises the L1 cache 18c connected to an L1 store
queue 18ci. The L1 cache is connected, at its
input, to an inpage data register (INPG DATA)
18c2, and is connected, at its output, to a fetch
data (FETCH DATA) register 18c3. The L1 store
queue 18al is connected to an L2 store queue
26al. Similarly, the L1 store queue 18bt is con-
nected to an L2 store queue 26a2; and the L1 store
queue 18c1 is connected to an L2 store queue
26a3. Therefore, each L1 store queue is uniquely
associated with a specific processor of the muil-
tiprocessor configuration. Each L1 store queue is
also uniquely associated with an L2 store queue.
Therefore, each L2 store queue is uniquely asso-
ciated with a specific processor of the muitiproces-
sor configuration. Each L2 store queue has certain
write buffers connected to the output thereof. For
example, L2 store queue 26at is connected, at its
output, to a L2 write buffer 0 (L2WB-0) 26a1(a) and
to a L2 write buffer 1 (L2WB-1) 26at(b). The L2
store queue 26al is also connected, at its output,
to a storage subsystem L2 write buffer controls (SS
L2WB CTLS) 26ai(c). L2 store queue 26a2 is con-
nected, at its output, to a L2 write buffer 0 (L2WB-
0) 26a2(a) and to a L2 write buffer 1 (L2WB-1)
26a2(b). The L2 store queue 26a2 is also con-
nected, at its output, to a storage subsystem L2
write buffer controls (SS L2WB CTLS) 26a2(c). L2
store queue 26a3 is connected, at its output, o a
L2 write buffer 0 (L2WB-0) 26a3(a) and to a L2
write buffer 1 (L2WB-1) 26a3(b). The L2 store
gueue 26a3 is also connected, at its output, 0 a
storage subsystem 12 write buffer controls (SS
L2WB CTLS) 26a3(c). The aforementioned write
buffers and L2 store queues are all connected, at
their outputs, to an L2 cache write buffer (L2
CACHE WB) 26a4, the L2 cache write buifer 26a4
being connected, at its output, to the L2 cache 26b.
The aforementioned L2 write buffer controls (L2WB
CTLS) are each connected, at their outputs, to an
L2 address register (L2 ADDR) 26a5 which ad-
dresses the L2 cache. The L2 cache 26b is con-
nected, at its output, to an L2 cache read buffer (L2
CACHE RB) 26a6, which is further connected, at its
output, to a L1 0 inpage buffer (L10IPB) 26a7, to a
L1 1 inpage buffer (L11IPB) 26a8, and to a L1 2
inpage buffer (L12IPB) 26a9. Inpage buffer 26a7 is

19 EP 0 329 942 A2 20

connected to the aforementioned inpage data reg-
ister 18a2; inpage buffer 26a8 is connected to the
aforementioned inpage data register 18b2, and in-
page buffer 26a9 is connected to the aforemen-
tioned inpage data register 18c2.

By way of background, the L1 store queues
18al, 18b1, 18c1 and the L2 store queues 26at,
26a2, 26a3 shown in figure 6 are designed to
support the $/370 and 370-XA instruction set, maxi-
mizing performance for a given processor while
minimizing interference between processors at the
highest level common storage, the L2 cache 26a
buffer storage. The store queue organization is
structured as a two-level queue, assuming the at-
tributes of the two-level cache storage. Each pro-
cessor possesses its own store queus. At the L1
cache level, the L1 store queue controls will admin-
ister the enqueue of requests and maintains some
storage consistency. At the L2 cache level, the L2
control 26k of figure 5 will administer the dequeue
of requests and maintains global storage consis-
tency between cache levels and processors. The
store requests are divided into categories which
allow the most efficient processing of storage at the
shared L2 cache level. This store queue design
maintains retriability of the instruction set while
allowing instruction execution to proceed even
when stores for the instructions have not com-
pleted to the highest level of common storage, the
L2 cache buffer storage. This allows for improved
machine performance by permitting the stores of
ong instruction to overlap with the pipeline execu-
tion stages of succeeding instructions, limited only
by architectural consistency rules. The store queue
design avoids the necessity to pretest instructions
which may suffer from page faults in a virtual
storage environment by delaying storing results to
the highest level of common storage until the true
end of the instruction. Also, an efficient mechanism
for the machine to recover from such situations
using only processor microcode is supported.

The 370-XA instruction set is divided into sev-
eral types which process operands residing in real
storage. These instructions can be split into two
categories based on the length of the results stored
to real storage: non-sequential stores (NS) and
sequential stores (8S). The NS type consists pri-
marily of the instructions whose operand lengths
are implied by the instruction operation code. Their
result length is from one to eight bytes and they
typically require a single store access to real stor-
age. A special case is one where the starting
address of the resultant storage field pius the
length of the operand vyields a result which crosses
a doubleword boundary, requiring two store ac-
cesses to store the appropriate bytes into each
doubleword. The SS type consists of the instruc-
tions whose operand lengths are explicitly noted

10

15

20

25

30

35

40

45

50 .

55

11

within the text of the instruction or in general regis-
ters used by the instruction. Also, such instructions
as store multiple may be classified this way. Their
result length ranges from one to 256 bytes, requir-
ing multiple store accesses. Results can be stored
a single byte at a time, or in groups of bytes, up to
eight per request. Special consideration is given to
other types of instructions, requiring additional pro-
cessing modes. Certain instructions require the
ability to store multiple results to non-contiguous
locations in real storage. A mode of operation al-
lowing multiple NS types per instruction is sup-
ported for this type of instruction. Instructions that
use explicit lengths for their operands may actually
store only one to eight bytes. These store requests
are converted in the storage subsystem to NS
types for performance reasons which will be made
clear later. In some situations, the ability to support
a mixed mode of store queue operations is re-
quired. SS types, followed by NS types within the
same instruction support these instruction require-
ments. The other requirement to support the store
request handling in the storage subsystem is that
an end-of-operation (EOP) indicator be associated
with each store request: '0'b implies no EOP, 't'b
implies this is the last store in the instruction. The
EOP indicator marks the successful completion of
the 370-XA instruction and its associated store
requests. Multiple requests to store data, during the
execution of a single instruction, into the common
level of storage, the L2 cache buffer storage, are
not allowed uniess an end of operation (EOP) in-
dication has been received, indicating the end of
the execution of that particular instruction. If the
EOP indication has not been received, the data
may be stored in the L1 store queus, the L2 store
queue, and the L2 write buffers; however, the data
may not be stored in the L2 cache unless the EOP
indication has been received, signalling the end of
execution of the particular instruction. When EOP
indication is received, the store from the 1.2 write
buffers to the L2 cache may begin. This supports
the philosophy that an instruction must successfully
complete before it is allowed to modify storage.
This does not preclude the modification of the
requesting processor's L1 cache, however. A spe-
cial mode of operation is supported for this store
request status indicator as well. In the level of
interrupt processing where 370-XA instructions are
not actually being executed, all store requests are
forced to contain the EOP indication to allow effi-
cient processing of microcode interrupt routines.

A functional description of the L1 and L2 store
queue design of the present invention will be set
forth in the following paragraph with particular ref-
erence to figure 6 of the drawings, with ancillary
reference to the block of figure 5 labelled "L2
cache/Bus Switching Unit (BSU) 26b/26a" which is

21 EP 0 329 942 A2 22

shown connected on one end to L1 caches 18a,
18b, 18¢, and, on the other end, to L3/L4 (main)
memcry 10&/10b, and with general reference to
figures 1-3 of the drawings.

A processor, one of 20a, 20b, or 20c of figure
2, issues a processor store request to the L1 cache
function, one of 18a, 18b, or 18c of figure 2. The
command type (NS or SS, EOP), starting field
address, one to eight bytes of data, and a field
length are presented simultaneously to the L1
cache function. The starting field address consists
of program address bits 1:31, identifying the first
byte of the field in storage. The field length in-
dicates the number of bytes to be modified starting
at that address, one to eight. If the storage field
modified by the request should cross a doubleword
boundary, it is interpreted as two requests by L1
cache, sach requiring a cache access and store
queue enqueue. Sequential stores are comprised
of a number of such store requests with the
sequencing under control of the execution unit.
Referring to figure 2, the L1 cache function 18
receives the information. The storage address, pre-
sented by the processor 20, is translated to an
absolute address, via the data DLAT and L1 direc-
tory 20-3a, 20-3b of figure 2, and the low-order bits
of the absolute address and the field length from
the absolute address are used to generate store
byte flags (STBF). The store byte flags identify the
bytes to be stored within the doubleword, the bytes
being identified by absolute address bits 1:28. The
L1 cache directory, 20-3a, 20-3b of figure 2, is
searched to determine if the data exists in the L1
cache. Next, the L1 cache function 18 makes an
entry on the L1 store queue. If processor 20a is
making the store request, L1 cache 18a makes an
entry on the L1 store queue 18atl of figure 6,
enqueuing the absolute address, command type,
data, and store byte flags in L1 store queue 18ail.
in parallel with this action, if the requested data
gxists in the L1 cache 18a (an L1 cache 18a hit),
this data in L1 cache 18a is updated according to
the absolute address and store byte flags. If all
prior stores have been transferred to the L2 cache
26b function, and the interface to L2 cache 26b is
available, the store request, enqueued in L1 store
queue 18al, is transferred to the L2 cache function,
i.e., to the L2 store queue 26al, 26a2, or 26a3 and
to their respective write buffers. The L2 cache
function receives the following information: the
doubleword absolute address, the command type,
the data, and the store byte flags. This information
is enqueued onto the L2 store queus, in this exam-
ple, this information is stored in the L2 siore queue
26at1. The nexi step is to store this information,
from the L2 store queue 26at, into the L2 cache
26b. As shown in figure 6, for data and/or instruc-
tions which are part of a sequential store (SS)

10

15

20

25

30

35

40

45

50

55

12

operation, these instructions are stored into L2
cache 26b via the L2 write buffers, that is, via the
L2 WB-0 26ai(a), L2 cache WB 26a4 or via L2
WB-1 26a1(b), L2 cache WB 26a4. Note that non-
sequential store (NS) operations do not utilize
L2WB-0 or L2WB-1 when storing information from
the L2 store queue into L2 cache 26b; rather, they
are stored directly into the L2 cache WB 26a4 from
the L2 store queue 26al, 26a2, 26a3. I all preced-
ing stores for this processor have been serviced
and other conditions are satisfied, the request en-
ters L2 cache priority in L2 control 26k (i.e., L2
cache priority is an arbitration unit in the BSU
portion of the storage subsystem 26 which decides
if the request to store this information in L2 cache
26b should be granted at this time). When the
request is granted, the absolute address, obtained
from the data DLAT and L1 directory 20-3a,20-3b
of figure 2, is used to search the L2 cache direc-
tory 26J of figure 5. If the corresponding data is
found in L2 cache 26a, the data is stored to L2
cache 26a of figure 6 under the control of the store
byte flags. L1 status arrays, reflecting the contents
of each processors' L1 caches 18a, 18b, 18c, are
interrogated and the appropriate L1 cross-invalida-
tion requests are sent to the L1 caches 18a-18c in
order to invalidate the corresponding obsolete data °
stored in one or more the L1 caches 18a-18c, in
order to maintain storage consistency. Once the
data is stored in L2 cache 26, the corresponding
data entry, stored in the L1 store queue 18al, the
L2 store queue 26al, and L2 write buffers is then
dequeued (erased or removed) from both the L1
and L2 store queues 18al and 26at and L2 write
buffers.

Referring to figure 7, a consfruction of the
contents of the L1 store queue 18al, 18b1, and
18c1, of figure 6, is illustrated.

in figure 7, the L1 store queue 18a1, 18b1, and
18¢c1, each comprise a logical address portion
18ai(a), an absolute address portin 18at(b), a
command field 18at(c), a data field 18a1(d), and a
store byte flag (STBF) field 18al(e).

In figure 6, each processor or execution unit
202-20c in the configuration of figure 2 maintains
its own L1 store queue totally independent of the
other processors. Each L1 store queue 18a1-18ct
of figures 6 and 7 can be considered a one dimen-
sional array. lt is a first-in, first-out, cyclic queue in
regards to requests for transfer to the L2 store
queue. The contents of the L1 store queue 18ai-
18c1 comprise five primary fields. The first, the
logical address 18at(a), is not necessarily required.
It can be maintained to allow detection of stores
into the instruction siream within the same proces-
sor, labeled program siore compare. The absolute
address can be used for this purpose, however.
The second field contains the absolute address

23 EP 0 329 942 A2 24

18a1(b). This address represents the address of
the doubleword of the data in the siore queue
entry. It is the address resulting from dynamic
address transiation performed prior to enqueuing
the store request. This address is used to update
the L1 and L2 cache buffers. It is also used as the
address for succeeding instructions' attempts to
fetch results enqueued on the L1 store queue, but
not yet stored into L2 cache, labeled operand store
compare. The command field 18at(c) contains the
sequential store bit: '0'b if a non-sequential store
request, '1'b if sequential store request. The other
bit is the EOP bit. It delimits instruction boundaries
within the store queue. The next field, the data field
18a1(d), contains up to eight bytes of data, aligned
according to the logical address bits 29:31. As an
example, if four bytes are to be stored starting at
byte position 1, then bytes 1:4 contain the resuitant
four bytes to store to memory in this field. The final
field, the Store Byte Flag (STBF) field 18ai(e),
indicates which bytes are to be written {o storage
within the engueued doubleword. From the pre-
vious example, store byte flags 1:4 would be ones,
while 0 and 5:7 would be zeros.

In a multiple processor configuration, if a pro-
cessor attempts to fetch data enqueued on the L1
store queue, one of two actions results. First, if the
fetch request results in an L1 cache hit, all
"conceptually completed" store queue entry ab-
solute addresses are compared to the doubleword
boundary against the doubleword absolute address
of the fetch request. Should one or more equal
compares be found, the fetch is held pending the
dequeue of the last maiched queue entry fo L2
cache. This prevents the requesting processor from
seeing the data before the other processors in the
configuration. Second, if the fetch request resuits in
an L1 cache miss, all "conceptually compieted”
store queue enfry absolute addresses are com-
pared to the L1 cache line boundary against the L1
cache line absolute address of the fetch request.
Should one or more equal compares be found, the
fetch is held pending the dequeue of the last
matched queue entry to L2 cache. This guaraniees
storage consistency between the L1 and L2
caches.

Still referring to figure 7, four "pointers” wiil be
discussed: the L1EP pointer, the L1TP pointer, as
shown in figure 7; the L1IP pointer and the L1DP
pointer, not shown in the drawings. An entry is
placed onto the L1 store queue each time a store
request is presented to L1 cache, provided the
logical address can successfully be translated and
no access exceptions occur and regardless of the
L1 cache hit/miss status. Just prior to enqueue, the
L1 store queue enqueue pointer (L1EP) is incre-
mented to point to the next available entry in the
queue. Enqueue is permitied provided the L1 store

10

15

20

25

30

35

40

45

50

56

13

queue is not full. Store queue full is predicted,
accounting for the pipeline stages from the instruc-
tion register to the L1 cache, to prevent store
queue overflow. Enqueue is controlied by the ex-
ecution unit store requests. An L1 store queue
transfer pointer (L1TP) is implemented to support
bidirectional command/address and data interfaces
with the L2 cache. Normally, both interfaces are
available, and when a store request is placed onto
the L1 store queus, it is also transferred to the L2
store queue. Under certain situations, the transfer
of the store request to L2 must be delayed, per-
haps due to data transfers from L2 cache to L1
cache for an L1 cache feich miss. This allows the
execution unit to continue after requesting the store
without requiring that the request has been suc-
cessfuily transferred to L2. The L1TP is incre-
mented each time a request is transferred to L2.
An instruction boundary pointer (L1IP) is required
to delimit 370-XA instruction boundaries. Each time
an EOP indication is received, the L1EP is copied
into the L1IP. The L1IP is used to mark
"conceptually compieted” stores in the L1 store
queue. These are complete from the viewpoint of
the execution unit, as the 370-XA instruction has
completed, even though they may not yet be re-
flected in L2 cache, the common level of storage in
the configuration. This pointer marks the boundary
for the entries checked for program store compare
and operand store compare. Last, the L1 dequeue
pointer (L1DP) identifies the most recent entry re-
moved from the store queue. It actually points to
an invalid L1 store queue entry, marking the last
available entry for enqueue. L1 store queue entries
are dequeued only by signal from the L2 store
queue controls whenever the corresponding entry
is removed from the L2 store queue. This pointer is
used along with the L1EP to identify store queue
full and empty conditions, controlling the execution
unit as necessary. .

Referring to figure 8, two field address regis-
ters are connected to an output of the L1 store
queue of figure 7, and in particular, to the absolute
address portion 18ai1(b) of the output of the L1
store queue 18al-18¢c1 of figure 7. These field
address registers are termed the Starting Field
Absolute Address (SFAA) field address register and
the Ending Field Absolute Address (EFAA) field
address register.

In figure 8, to support sequential store process-
ing, two additional address registers, called field
address registers, are required for comparison pur-
poses: the SFAA and the EFAA field address regis-
ters. Consider that a 370-XA instruction may modi-
fy up to 256 bytes of storage with single-byte store
requests. Given that each request presented to the
L1 store queue 18a1-18ct requires a unique entry,
256 entries would be required to contain the entire

25 EP 0 329 942 A2 26

instruction to support the retry philosophy. To
avoid this situation, when a sequential store is
started in the L2 cache 26a, each eniry associated
with the same instruction is dequeued and its ad-
dress is loaded into the appropriate field address
register of figure 8, either the SFAA or the EFAA.
This allows the limits of the storage field, modified
by the sequential store, to be maintained for com-
parison purposes in a minimal amount of hardware,
at the L1 cache or L1 store queue level. These
registers are used to support "program store com-
pare" and "operand store compare". The following
sub-paragraphs describe the program store com-
pare and the operand store compare concept:

Operand Store Compare

As required by the conceptual sequence within
a processor, if an instruction stores a result fo a
location in storage and a subsequent instruction
fetches an operand from that same location the
operand fetch must see the updated contents of
the storage location. The comparison is required on
an absolute address basis. With the queuing of
store requests, it is required that the operand feich
be delayed until the store is actually completed at
the L2 cache and made apparent to all processors
in the configuration. For the uniprocessor, the re-
striction that the store complete to L2 cache before
allowing the fetch to continue is waived as there
exists no other processor to be made cognizant of
thé change to storage. lt is not required that chan-
nels be made aware of the processor stores in any
prescribed sequence as channels execute asyn-
chronously with the processor. In this case, en-
queuing on the L1 store queue, and updating the
L1 operand cache if the data exist there, is suffi-
cient o mark completion of the store. However, if
the data are not in L1 cache at the time of the
store, the fetch request with operand store com-
pare must wait for the store to complete to L2
cache before allowing the inpage to L1 cache to
guarantee data consistency in all levels of the
cache storage hierarchy.

Program Store Compare

Within a processor, two cases of program store
compare exist: the first involves an operand store
to memory followed by an instruction fetch from
the same location (store-then-feich); the second
involves prefetching an instruction into the instruc-
tion buffers and subsequently storing into that
memory location prior to execution of the prefetch-
ed instruction (fetch-then-store). As required by the
conceptual sequence within a processor, if an in-

10

15

20

25

30

35

40 -

45

50

55

14

struction stores a result to a location in storage and
a subsequent instruction fetch is made from that
same location, the instruction fetch must see the
updated contenis of the storage location. The com-
parison is required on a logical address basis. With
the queuing of store requests, it is required that the
instruction fetch be delayed until the store is ac-
tually completed at the L2 cache and made appar-
ent {o all processors in the configuration. For the
second case, the address of each operand store
executed within a processor is compared against
any prefetched instructions in the instruction
stream and, if equal, the appropriate instructions
are invalidated. The source of the prefetched
instructions, the L1 insiruction cache line, is not
actually invalidated until the operand store occurs
in L2 cache. At that time, L2 cache control requests
invalidation of the L1 instruction cache line. There
can be no relaxation of the rules for the uniproces-
sor as the program instructions reside in a phys-
ically separate L1 cache than the program
operands, and stores are made to the L1 operand
cache only. As such, the store-then-fetch case re-

" quires that the L2 cache contain the most recent

data stored by the processor prior o the inpage to
the L1 instruction cache.

The field address registers (SFAA and EFAA)
of figure 8 are also used for operand overlap detec-
tion within the same storage-storage 370-XA in-
struction. The concept of operand overlap is de-
scribed in the following paragraph:

Operand Overlap

Within the storage-to-storage instructions,
where both operands exist in storage, it is possible
for the operands to overlap. Detection of this con-
dition is required on a logical address basis. The
memory system hardware actually detects this
overiap on an absolute address basis. The destina-
tion field in storage is actually being built in the L1
store queue, and L1 cache if L1 cache directory hit,
and in the L2 cache write buffers, not in the L2
cache itself. When operand overlap occurs, the L1
cache store queue data and the old L1 line data
from L2 cache are merged on inpage to L1 cache.
In the case of desiructive overlap, the fetches for
the overlapped portion are not necessarily fetched
from storage. Hence, the actual up dating of L2
cache is postponed until end-of-operation for the
instruction.

When operand overlap is detected on a fetch
access, no problem exists provided the data is
stored in L1 cache when the stores modify the
contents of L1 cache in parallel with enqueuing at
the L1 cache level. If an L1 cache miss occurs on a
fetch with operand overlap, the L1 store qusue is

27 EP 0 329 942 A2 28

emptied (L2 processes all entries in the L1 store
queue related to this instruction) prior to allowing
the fetch request transfer to L2 cache. This guar-
antees that L2 has the most recent data for the
instruction in its L2 write buffers. The L1 cache
miss can then be handled in L2 cache, merging the
contents of the L2 write buffers and L2 cache line
to give the most recent data to L1 cache.

Referring to figure 9, the contents of the L2
store queue 26al, 26a2, and 26a3 of figure 6 is
illustrated.

In figure 9, the contents of the L2 store queue
consist of four primary fields. The first field con-
tains the absolute address 26ai{a). This address
represents the address of the doubleword of the
data in the store queue entry. It is the absolute
address transferred with the request from the L1
store queue. This address is used to update the L2
cache and L2 write buffers. It is also used as the
address for interrogating the L1 status arrays which
maintain a record of the data in each L1 cache for
each processor in the configuration. The command
(CMND) field 26a1(b) contains the sequential store
bit: '0'b if a non-sequential store request, '1'b if
sequential store request. The other bit is the EOP
bit. It delimits instruction boundaries within the
store queue. The next field, the DATA field 26a1(c),
contains up to eight bytes of data, transferred as
loaded into the L1 store queue. The final field, the
store byte flag (STBF) field 26ai(d), indicates
which bytes are to be written to storage within the
enqueued doubleword, as in the L1 store queue.

Each processor 20a, 20b, 20c of figures 2 and
4, maintains its own L2 store queue 26al, 26a2,
26a3, respectively, totally independent of the other
processors. The storage subsystem manages the
L2 store queues 26a1-26a3 and L2 write buffers
(see figure B) for each processor. The L2 write
buifers may be seen in figure 8 as L2 write buffer 0
(L2WB-0) 26a1(a) and L2 write buffer 1 (L2ZWB-1)
26al1(b) associated with processor 20a and L2
cache write buffer (L2 cache WB 26a4. Similarly,
L2WB-0 26a2(z) and L2WB-1 26a2(b) are asso-
ciated with processor 20b, and L2WB-0 26a3(a)
and L2WB-1 26a3(b) are associated with processor
20c.

Generally speaking, the L2 store queue is com-
prised of two major parts: (1) the first part is the L2
store queue one-dimensional array 26a1-26a3; it is
a first-in, first-out, cyclic queue in regards to de-
queuing requests to L2 cache 26a or to the L2
write buffers itemized above from figure 6; its
structure is identical to the L1 store queue; how-
ever, the entry pointers are slightly different; and
(2) the second part is the set of L2 write buffers
26a1(a)/26al(b), 26a2(a)/26a2(b), 26a3(a)/26a3(b),
and 26a4 of figure 6 used for sequential store
processing for each processor in the configuration.

10

15

20

25

30

35

40

45

50

55

15

In figure 9, an entry is placed onto the L2 store
queue each time a store request is transferred
across the L1 cache/storage subsystem interface
from the requesting processor. Just prior to en-
queue, the L2 store queue enqueue pointer (L2EP)
is incremented to point to the next available entry
in the queue. Enqueue is ‘always allowed as L1
prevents store queue overflow, provided the L1
store queue and L2 store queue support the same
number of entries. A completed pointer (L2CP) is
required to delimit serviceable stores within the L2
store queue. Each time an EOP indication is re-
ceived, the L2EP is copied into the L2CP. Also, for
sequential store processing, each time a sequential
store request is enqueued, the L2CP is increment-
ed. The L2CP is used to mark serviceable stores in
the L2 store queue. These are store requests that
can be written into L2 cache in the case of non-
sequential stores and store requests that can be
moved into the L2 write buffers in the case of
sequential stores. Last, the L2 dequeue pointer
(L2DP) identifies the most recent entry removed
from the L2 store queue. It actually points to an
invalid L2 store queue entry, marking the last avail-
able entry for enqueue. L2 store queue entries are
dequeued whenever they are written into L2 cache
26a (NS) or moved into the L2 write buffers (SS).

Referring to figure 10, a set of L2 store queue
line hold registers (disposed in the SS L2WB CTLS
26a1(c), 26a2(c), and 26a3(c)) and L2 store queue
write buffers (as shown in figure 6) is illustrated.

As shown in figure 6, and seen again in figure
10, the L2 store queue 26al, 26a2, 26a3 DATA
26a1(c) are each connected at its output to an L2
write buffer-0 (L2WB-0) 26a1(a), 26a2(a) and 26a3-
(a); and to an L2 write buffer-1 (L2WB-1) 26a1(b),
26a2(b), and 26a3(b). However, as seen in figure
10, the L2 store queue 26atl, 26a2, 26a3 AB-
SOLUTE ADDRESS 26a1(a) are each connected to
the storage subsystem L2 write buffer controls (SS
L2WB CTLS) 26al(c), 26a2(c), & 26a3(c), each of
the write buffer controls (SS L2WB CTLS) including
a set of line hold registers comprising line hold 0
register 26a1(d), 26a2(d), and 26a3(d), a line hold 1
register 26a1(e), 26a2(e), 26a3(e), and a line hold 2
register 26a1(f), 26a2(f), and 26a3(f). The line hold
registers are address registers, and they are need-
ed to support sequential store processing. Further,
although not shown in figure 6 but seen in figure
10, the L2 store queue 26al, 26a2, 26a3 store byte
flags STBF 26a1(d) are each connected to a L2
write buffer store byte flag 0 (L2WB STBF 0)
register 26a1 (g). 26a2(g), 26a3(g), to L2 write buffer
store byte flag 1 (L2WB STBF 1) register 26a1(h),
26a2(h), 26a3(h) and to L2 write buffer store byte
flag 2 (L2WB STBF 2) register 26al(i), 26a2(i),
26a3(i). :

In operation, referring to figure 10 in conjunc-

29 EP 0 329 942 A2 30

tion with figure 8, consider that a 370-XA instruc-
tion may modify up to 256 bytes of storage. With
an L2 cache line size of 128 bytes, this 256-byte
field can span three L2 cache lines. When a se-
quential store is started in L2, the first line-hold
register is loaded with the absolute address portion
of the L2 store queue and the L2 cache directory is
searched, using the absolute address, to determine
if the data currently exists in L2 cache. If it does,
the L2 cache set is also loaded into the line-hold
register and the cache line is now pinned in L2
cache for the duration of the sequential store. Pin-
ning simply means the L2 cache line cannot be
replaced by another line for the duration of the
sequential store, but it does not restrict access in
any other way. If the L2 cache directory search
results in a miss, the data continue to be moved
into the L2 write buffer and dequeued from the
store queue. Processing continues up to the end of
the current cache line. If the end of the cache line
is reached before the required data have been
inpaged into L2 cache, processing is suspended,
otherwise processing continues with the next L2
cache line. Each time another L2 cache line is
stored into, the L2 cache directory is searched
again, and another line-hold register is established.
Once EOP is detected for the sequential store, the
data are stored into L2 cache in successve cache
write cycles, and the line-hold registers are reset. A
final dequeue signal is transferred to L1 to release
the field address registers associated with this se-
quential store in L1. This allows the limits of the
storage field modified by the sequential store to be
maintained with minimal hardware while improving
concurrency at the L2 cache level. Note that the L2
cache directory is accessed a maximum of 6 times
for the 256-byte storage field. This is a significant
reduction in L2 cache busy time over an implemen-
tation which treats each doubleword of the field as
a unique store, possibly requiring 33 cache ac-
cesses. In addition to the line-hold registers, L2
write buffers are required to handle the data portion
of the L2 store queue to permit sequential store
processing. As sequential store entries are de-
queued from the L2 store queue, the image of the
storage field is built in the L2 write buffers,
address-aiigned as if the data were placed into real
storage. Upon receipt of EOP for the sequential
store, up to three contiguous line-write cycles are
taken in L2 cache, moving one to 128 bytes into
cache on each write cycle under control of the
store byte flags. In this way, a 256-byte field can
be written into L2 cache with a maximum of 3 write
operations. This is a considerable improvement to
L2 cache availability. For cases of operand overlap,
when an L1 inpage request is handled in L1 cache,
controls detect the fact that data in the L2 write
buffer is {0 be merged with data from L2 cache.

10

15

20

25

30

35

40

45

50

55

16

The store byte flags associated with the L2 write
buffers conirol which bytes are gated from the L2
write buffer and which bytes are gated from L2
cache. The result is that L1 cache receives the
requested L1 cache line with its most recent modi-
fications for the currenily executing instruction. As
each processor possesses a set of such facilities,
the storage subsystem supports the concurrent
processing of sequential store operations for each
processor in the configuration. The only points of
contention are the L2 cache directory required for
interrogation and actual L2 write buffer storing into
L2 cache.

To support efficient recovery from page faults
in a virtual storage environment, microcode may
issue a reset processor storage interface com-
mand. This allows the L1 and L2 store queues to
clear entries associated with a partially completed
370-XA instruction. The scenario is that microcode
first guarantee that all previcusly completed
instructions' stores are written into L2 cache. The
reset processor storage interface command can
then be issued. Both the L1 and L2 store queues
are placed into their system reset state, along with
any related controls. Microcode invalidates any
data in the L1 cache that this instruction may have
modified. The affect of the instruction on storage
has now been nullified.

in summary, the L1 and L2 siore queue design
of the present invention allows maximum isolation
of each processor's execution within a tightly-coup-
led multiple processor while minimizing the utiliza-
tion of the shared L2 cache buffer resource. Stor-
age is not modified by any instruction until suc-
cessful completion of the 370-XA instruction within
the processor. Instructions are processed in such a
way as to maximize storage availability by handling
them according to result storage field length. This
allows simplified storage handling in that partial
results do not appear in L2 cache, the common
level of storage. Therefore, lines in L2 cache do not
have to be held exclusive to a particular processor
during its operations. It also supports simplified
page fault handling by eliminating the need for
pretesting storage field addresses or requiring ex-
clusive access to data in L2 cache fo allow partial
result storing. This maximizes concurrent availablil-
ity to data within the shared L2 cache, further
improving the performance of the overall mulitiple
processor configuration.

A more detailed description of the functional
operation of the L1 store queue and the L2 store
queue of the present invention, and of store re-
quest processing in general, will be set forth in the
following paragraphs with reference to figures 4
through 10, and with the assistance of the time line
diagrams illustrated in figures 11 through 49.

31 EP 0 329 942 A2 32

1.0 Storage Routines - MP/3 Processor Storage
Store Routines

1.1 Storage Store, TLB Miss

Refer to figure 11 for a time line diagram.

The execution unit issues a processor storage
store request to the L1 operand cache. The set-
associative TLB search fails to yield an absolute
address for the logical address presented by the
request. A request for dynamic address translation
is presented to the execution unit and the current
storage operation is nullified. The TLB miss over-
rides the results of the L1 cache directory search
due to the lack of a valid absolute address for
comparison from the TLB. The write to the L1
cache is canceled. The L1 store queue does not
enqueue the request due to the TLB miss. Any
prefetched instructions which succeed the current
instruction are checked for modification by the
store request through logical address comparison.
As a TLB miss has occurred for the L1 operand
cache, no valid absolute address exists to com-
plete the store request. The program store com-
pare checks are blocked. The store request is not
transferred to L2 cache due to the TLB miss. For a
hardware-executed instruction, program execution
is restarted at this instruction address if the ad-
dress translation is successful. For a microinstruc-
tion store request, the microinstruction is re-ex-
ecuted if address transiation is successful. For ei-
ther case, L1 control avoids enqueuing any re-
peated store requests to avoid transferring dupli-
cate store requests to the L2 store queue and
commences L1 store queue engueues with the first
new store request.)

1.2 Storage Store, TLB Hit, Access Exception

Refer to figure 12 for a time line diagram.

The execution unit issues a processor storage
store request to the L1 operand cache. The set-
associative TLB search yields an absolute address
for the logical address presented by the request.
However, an access exception, either protection or
addressing, is detected as a result of the TLB
access. The execution unit is notified of the access
exception and the current storage operation is nulli-
fied. The access exception overrides the resulis of
the L1 cache directory search. The write to the L1
cache is canceled. The L1 store queue does not
enqueue the request due to the access exception.
Any prefetched instructions which succeed the cur-
rent instruction are checked for modification by the
store request through logical address comparison.
As an access exception has occurred, no valid

10

15

20

25

30

36

40

45

50

55

17

absolute address exists to compiste the store re-
quest. The program store compare checks are
blocked. The store request is not transferred to the
L2 store queue as the current program will abnor-
mally end. Eventually the processor L2 interface
will be reset by microcode as part of the processor
recovery routine to purge any enqueued stores
associated with this instruction.

1.3 Storage Store, Non-sequential, TLB Hit, No
Access Exceptions, Delayed Store Queue Transfer,
L2 Cache Busy

See figure 13 for a time line diagram.

The execution unit issues a non-sequential pro-
cessor storage store request to the L1 operand
cache. The set-associative TLB search yields an
absolute address, with no access exceptions, for
the logical address presented by the request. If the
search of the L1 cache directory finds the data in
cache, an L1 hit, through equal comparison with
the absolute address from the TLB, a write to the
selected L1 cache set is enabied. The store re-
quest data are written into the L1 cache con-
gruence and selected set using the store byte
control flags to write only the desired bytes within
the doubleword. If the directory search results in an
L1 cache miss, due to a miscompare with the
absolute address from the TLB, the write of the L1

‘cache is canceled. In either case, the store request

is enqueued on the L1 store queue. The queue
entry information consists of the absolute address,
data, store byte flags, and store request type (non-
sequential or sequential store, end-of-operation).
The transfer of the processor store request to the
L2 cache store queue is delayed. Any combination
of three situations can delay the transfer. First,
store requests must be serviced in the sequence
they enter the store queue. If the L1 store queue
enqueue pointer is greater than the L1 transfer
pointer, due to some previous L1/L2 interface busy
condition, this request cannot be transferred to L2
cache until all preceding entries are first trans-
ferred. Second, the L1 cache store queue enqueue
pointer equals the L1 transfer pointer, but the L1/L2
interface is busy with data transfers to another L1
cache or a request for L1 cache line invalidation
from L2. Third, the L2 store queue is currently full
and unable to accept another store request from
the L1 store queue. Any prefeiched instructions
which succeed the current instruction are checked
for modification by the store request through logi-
cal address comparison. if an equal match occurs,
the instruction buffers are invalidated. Eventually,
the processor store request is transferred to the L2
cache. Iif the L2 store queue associated with this
processor is empty at the time the request is

33 - EP 0 329 942 A2 34

received and end-of-operation is indicated with the
store request, this request can be serviced imme-
diately if selected by L2 cache priority. In any
case, an eniry is made on the L2 store queue for
the requesting processor. The L2 cache store
queue is physically divided into two portions: con-
trol and data. The absolute address and store re-
quest type are maintained in the L2 control 26k
function. The associated data and store byte flags
are enqueued in the L2 cache data flow function.
The L2 cache priority does not select this proces-
sor store request for service.

1.4 Storage Store, Non-sequential, TLB Hit, No
Access Exceptions, L2 Cache Hit

See figures 14-21 for time line diagrams.

The execution unit issues a non-sequential pro-
cessor storage store request to the L1 operand
cache. The setf-associative TLB search yields an
absolute address, with no access exceptions, for
the logical address presented by the request. If the
search of the L1 cache directory finds the data in
cache, an L1 hit, through equal comparison with
the absolute address from the TLB, a write to the
selected L1 cache set is enabled. The store re-
quest data are written into the L1 cache con-
gruence and selected set using the store byte
control flags to write only the desired bytes within
the doubleword. If the directory search resuits in an
L1 cache miss, due to a miscompare with the
absolute address from the TLB, the write of the L1
cache is canceled. in either case, the store request
is enqueued on the L1 store queue. The queue
entry information consists of the absolute address,
data, store byte flags, and store request type (non-
sequential or sequential stors, end-of-operation). If
the store queue is empty prior to this request or
the L1 store queue enqueue pointer equals the
transfer pointer, and the L1/L2 interface is avail-
able, the store request is transferred to L2 imme-
diately. Otherwise, the transfer is delayed until the
L1 store queue transfer pointer selects this entry
while the L1/L2 interface is available. Any prefeich-
ed instructions which succeed the current instruc-
tion are checked for modification by the store re-
guest through logical address comparison. If an
equal maich occurs, the instruction buffers are in-
validated. L2 control receives the store request. I
the L2 stcre queue is empty and end-of-operation
is indicated with the store request, this request can
be serviced immediately if selected by L2 cache
priority. If the store queue is empty, but no end-of-
operation is associated with the store request, it
must wait on the store queue until end-of-operation
is received before being allowed to enter L2 cache
priority. If the L2 store queue for this processor is

10

15

20

25

30

35

40

45

50

55

18

not empty, then this request must wait on the store
queue until all preceding stores for this processor
have completed to L2 cache. In any case, an entry
is made on the L2 store queue for the requesting
processor. The L2 cache store queus is physically
divided into two portions: control and data. The
absolute address and store request type are main-
tained in the L2 control 26k function. The asso-
ciated data and store byte flags are engueued in
the L2 cache data flow function. The L2 cache
priority selects this processor store request for
service. L2 control 26k transfers a processor L2
cache store command and L2 cache congruence {0
L2 cache control and a processor L2 cache store
command to memory control. As the L1 operand
cache is a store-thru cache, an inpage to L1 cache
is not required regardless of the original store
request L1 cache hit/miss status. L2 conirol 26k
dequeues the store request from the control portion
of the L2 cache store queue for this processor.
One of four conditions result from the L2 cache
directory 26J search which yield an L2 cache hit.

Case 1

The search of the L2 cache directory 26J re-
sults in an L2 cache hit, but a freeze register with
uncorrectable storage error indicator active or line-
hold register with uncorrectable storage error in-
dicator active is set for an alternate processor for
the requested L2 cache line. L2 control 26k sus-
pends this store request pending release of the
freeze or line-hold with uncorrectable storage error.
The store request is restored onto the control por-
tion of the L2 cache store queue for this processor.
Command buffer requests for this processor can
still be serviced by L2 control 26k. No information
is fransferred to address/key. The L2 cache line
status and cache set are transferred to L2 cache
control, the cache set modifier is transferred to L2
cache, and the L2 cache line status is transferred
to memory control. Locked status is forced due to
the alternate processor freeze or line-hold with un-
correctable storage error conflict. The L1 status
array compares are blocked due to the freeze or
line-hold with uncorrectable storage error conflict.
L2 control 26k blocks the transfer of instruction
complete to the requesting processor's L1 cache
due to the freeze or line-hold with uncorrectable
storage error conflict. L2 cache control receives the
processor L2 cache store command and L2 cache
congruence and starts the access to L2 cache. L2
cache control transfers the command to L2 data
flow to dequeue the oldest eniry from the L2 store
queue and write through the L2 write buffer into L2
cache. Upon receipt of the L2 cache line status, L2
hit and locked, L2 cache control cancels the de-

35 EP 0 329 942 A2 36

queue of the data store queue entry and the write
of the L2 cache. Memory conirol receives the L2
command and L3 port identification. Upon receipt
of the L2 cache line status, L2 hit and locked, the
request is dropped.

Case 2

The search of the L2 cache directory 26J re-
sults in an L2 cache hit, but a lock register is set
for an alternate processor for the requested
doubleword. L2 control 26k suspends this store
request pending release of the lock. The store
request is restored onto the control portion of the
L2 cache store queue for this processor. Command
buffer requests for this processor can still be ser-
viced by L2 control 26k. No information is trans-
ferred to address/key. The L2 cache line status and
cache set are transferred to L2 cache control, the
cache set modifier is transferred to L2 cache, and
the L2 cache line status is transferred to memory
control. Locked status is forced due to the alternate
processor lock conflict. The L1 status array com-
pares are blocked due to the lock conflict. L2
control 26k blocks the transfer of instruction com-
plete to the requesting processor's L1 cache due to
the lock conflict. L2 cache control receives the
processor L2 cache store command and L2 cache
congruence and starts the access to L2 cache. L2
cache control transfers the command to L2 data
flow to dequeue the oldest entry from the L2 store
queue and write through the L2 write buffer into L2
cache. Upon receipt of the L2 cache line status, L2
hit and locked, L2 cache controi cancels the de-
queue of the data store queue entry and the write
of the L2 cache. Memory conirol receives the L2
command and L3 port identification. Upon receipt
of the L2 cache line status, L2 hit and locked, the
request is dropped.

Case 3

The search of the L2 cache directory 28J re-.

sults in an L2 cache hit, but an inpage freeze
register with uncorrectable storage error indication
is active for this processor. This situation occurs for
a processor after an uncorrectable storage error
has been reported for an L2 cache inpage due to a
store request. The L2 cache line is marked invalid.
The absolute address is transferred to address/key
with a set reference and change bits command.
The L2 cache line status and cache set are trans-
ferred to L2 cache control, the cache set modifier
is transferred to L2 cache, and the L2 cache line
status is transferred to memory control 26e. L2
control clears the command buffer request block

70

15

20

25

30

35

40

45

50

55

19

latch, the freeze register, and the uncorrectable
storage error indication associated with the freeze
register as a result of the store request. All L1
status arrays, excluding the requesting processor's
L1 operand cache status, are searched for copies
of the modified L1 cache line. The low-order L2
cache congruence is used to address the L1 staius
arrays and the L2 cache set and high-order con-
gruence are used as the comparand with the L1
status array outputs. If an equal match is found in
the requesting processor's L1 instruction cache
status array, the entry is cleared, and the L1 cache
congruence and L1 cache set are transferred to the
requesting processor for local-invalidation of the L1
cache copy after the request for the address buss
has been granted by the L1. If any of the alternate
processors' L1 status arrays yield a match the
necessary entries are cleared in L1 status, and the
L1 cache congruence and L1 cache sets, one for
the L1 operand cache and one for the L1 instruc-
tion cache, are simultaneously transferred to the
required alternate processors for cross-invalidation
of the L1 cache copies after the request for the
address buss has been granted by that L1. The L2
store access is not affected by the request for
local-invalidation or cross-invalidation as L1 guar-
antees the granting of the required address inter-
face in a fixed number of cycles. Note that no L1
copies should be found for this case as the store is
taking place after an L2 cache miss inpage was
serviced for the store request and an uncorrectable
storage error was detected in the L3 line. If end-of-
operation is associated with this store request, L2
control 26k transfers an instruction complete signal
to the requesting processor's L1 cache to remove
all L1 store queue entries associated with this
instruction; the stores have completed into L2
cache. The dequeue from the L1 store queue oc-
curs simultaneously with the last, or only, update to
L2 cache. The dequeue from the L2 store queue
occurs as each non-sequential store completes. to
L2 cache. L2 cache control receives the processor
L2 cache store command and L2 cache congru-
ence and starts the access to L2 cache. L2 cache
control transfers the command to L2 data flow to
dequeue the oldest entry from the L2 store queue
and write through the L2 write buffer into L2 cache.
Upon receipt of the L2 cache line status, L2 hit and
not locked, L2 cache control uses the L2 cache set
to control the store into L2 cache and the write
occurs under control of the store byte flags in what
would be the second cycle of the processor L2
cache read sequence. Memory conirol receives the
L2 command and L3 port identification. Upon re-
ceipt of the L2 cache line status, L2 hit and not
locked, the request is dropped. Addressikey re-
ceives the absolute address for reference and
change bits updating. The reference and change

37 EP 0 329 942 A2 38

bits for the 4KB page containing the L2 cache line
updated by the store request are set to "1'b.

Case 4

The search of the L2 cache directory 264 re-
sults in an L2 cache hit. The L2 cache line is
marked modified. The absolute address is trans-
ferred to addressikey with the set reference and
change bits command. The L2 cache line status
and cache set are transferred to L2 cache conirol,
the cache set modifier is transferred to L2 cache,
and the L2 cache line status is transferred to mem-
ory control 26e. If the requesting processor holds a
lock, the lock address is compared with the store
request address. If a compare results, the lock is
cleared; if a miscompare results, a machine check
is set. All L1 status arrays, excluding the request-
ing processor's L1 operand cache status, are
searched for copies of the modified L1 cache line.
The low-order L2 cache congruence is used to
address the L1 status arrays and the L2 cache set
and high-order congruence are used as the com-
parand with the L1 status array outputs. If an equal
match is found in the requesting processor's L1
instruction cache status array, the entry is cleared,
and the L1 cache congruence and L1 cache set are
transferred o the requesting processor for local-
invalidation of the L1 cache copy after the request
for the address buss has been granted by the L1. I
any of the alternate processors' L1 status arrays
yield a maich the necessary entries are cleared in
L1 status, and the L1 cache congruence and L1
cache sets, one for the L1 ogerand cache and one
for the L1 instruction cache, are simuitaneocusly
transferred to the required alternate processors for
cross-invalidation of the L1 cache copies after the
request for the address buss has been granted by
that L1. The L2 store access is not affected by the
request for local-invalidation or cross-invalidation as
L1 guarantees the granting of the required address
interface in a fixed number of cycles. If end-of-
operation is associated with this store request, L2
control 26k transfers an instruction complete signal
to the requesting processor's L1 cache to remove
all L1 store queue entries associated with this
instruction; the stores have completed into L2
cache. The dequeue from the L1 store queue oc-
curs simultaneously with the last, or only, update to
L2 cache. The dequeue from the L2 store queue
occurs as each non-sequential store completes o
L2 cache. L2 cache control receives the processor
L2 cache store command and L2 cache congru-
ence and starts the access to L2 cache. L2 cache
control transfers the command to L2 data flow to
dequeue the oldest entry from the L2 store queue
and write through the L2 write buffer into L2 cache.

10

15

20

25

30

35

40

45

50

55

20

Upon receipt of the L2 cache line status, L2 hit and
not locked, L2 cache control uses the L2 cache set
to control the store into L2 cache and the write
occurs under control of the store byte flags in what
would be the second cycle of the processor L2
cache read sequence. Memory control receives the
L2 command and L3 port identification. Upon re-
ceipt of the L2 cache line status, L2 hit and not
locked, the request is dropped. Address/key re-
ceives the absolute address for reference and
change bits updating. The reference and change
bits for the 4KB page containing the L2 cache line
updated by the store request are set to '1'b.

1.5 Storage Store, Non-sequential, TLB Hit, No
Access Exceptions, L2 Cache Miss

See figures 22-30 for time line diagrams.

The execution unit issues a non-sequential pro-
cessor storage siore request to the L1 operand
cache. The set-associative TLB search yields an
absolute address, with no access exceptions, for
the logical address presented by the request. If the
search of the L1 cache directory finds the data in
cache, an L1 hit, through equal comparison with
the absolute address from the TLB, a write to the
selected L1 cache set is enabled. The store re-
quest data are written into the L1 cache con-
gruence and selected set using the store byte
control flags to write only the desired bytes within
the doubleword. If the directory search resulis in an
L1 cache miss, due to a miscompare with the
absolute address from the TLB, the write of the L1
cache is canceled. In either case, the store request
is enqueued on the L1 store queue. The queue
entry information consists of the absolute address,
data, store byte flags, and store request type (non-
sequential or sequential store, end-of-operation). If
the store queue is empty prior to this request or
the L1 store queue enqueue pointer equals the
transfer pointer, and the L1/L2 interface is avail-
able, the store request is transferred to L2 imme-
diately. Otherwise, the transfer is delayed until the
L1 store queue fransfer pointer selecis this eniry
while the L1/L2 interface is available. Any prefetch-
ed instructions which succeed the current instruc-
tion are checked for modification by the store re-
quest through logical address comparison. i an
equal match occurs, the instruction buffers are in-
validated. L2 conirol receives the store request. If
the L2 store queue is empty and end-of-operation
is indicated with the store request, this request can
be serviced immediately if selected by L2 cache
priority. If the store queue is empty, but no end-of-
operation is associated with the store request, it
must wait on the store queue until end-of-operation
is received before being allowed to enter L2 cache

39 EP 0 329 942 A2 40

priority. If the L2 store queue for this processor is
not empty, then this request must wait on the store
queue until all preceding stores for this processor
have completed to L2 cache. In any case, an entry
is made on the L2 store queue for the requesting
processor. The L2 cache store queue is physically
divided into two portions: control and data. The
absolute address and store request type are main-
tained in the L2 control 26k function. The asso-
ciated data and store byte flags are enqueued in
the L2 cache data flow function. The L2 cache
priority selects this processor store request for
service. L2 control 26k transfers a processor L2
cache store command and L2 cache congruence to
L2 cache control and a processor L2 cache store
command to memory control. As the L1 operand
cache is a store-thru cache, an inpage to L1 cache
is not required regardless of the original store
request L1 cache hit/miss status. L2 control 26k
dequeues the store request from the control portion
of the L2 cache store queue for this processor.
One of three conditions result from the L2 cache
directory 26J search which yield an L2 cache miss.
As the L2 cache is a store-in cache, the L2 cache
line must be inpaged from L3 processor storage
prior to completion of the store request. The store
request is suspended as a result of the L2 cache
miss to allow other requests to be serviced in the
L2 cache while the inpage for the requested L3 line
occurs.

Case A -

The search of the L2 cache directory 264 re-
sults in an L2 cache miss, but a previous L2 cache
inpage is pending for this processor. L2 control 26k
suspends this siore request pending completion of
the previous inpage request. The store request is
restored onto the control portion of the L2 cache
store queue for this processor. No further requests
can be serviced for this processor in L2 cache as
both the command buifers and store queue are
pending completion of an L2 cache inpage. No
information is transferred to address/key. The L2
cache line status and cache set are transferred to
L2 cache controi, the cache set modifier is frans-
ferred to L2 cache, and the L2 cache line status is
transferred to memory control. Locked status is
forced due to the previous inpage request. The L1
status array compares are blocked due to the L2
cache miss. L2 control 26k blocks the transfer of
instruction complete to the requesting processor's
L1 cache due to the L2 cache miss. L2 cache
control receives the processor L2 cache store com-
mand and L2 cache congruence and starts the
access to L2 cache. L2 cache controt transfers the
command to L2 data flow to dequeue the oldest

10

15

20

25

30

35

40

45

50

55

21

eniry from the L2 store queue and write through
the L2 write buffer into 1.2 cache. Upon receipt of
the L2 cache line status, L2 miss and locked, L2
cache control cancels the dequeue of the store
queue entry and the write of the L2 cache. Memory
control receives the L2 command and L3 port
identification. Upon receipt of the L2 cache line
status, L2 miss and locked, the request is dropped.

Case B

The search of the L2 cache directory 26J re-
sults in an L2 cache miss, but a previous L2 cache
inpage is pending for an alternate processor to the
same L2 cache line. L2 control 26k suspends this
store request pending completion of the previous
inpage request. The store request is restored onto
the control portion of the L2 cache store queus for
this processor. Command buffer requests for this
processor can still be serviced by L2 control 26k.
No information is transferred to address/key. The
L2 cache line status and cache set are transferred
to L2 cache confrol, the cache set modifier is
transferred to L2 cache, and the L2 cache line
status is transferred to memory control 26e.
Locked status is forced due fo the previous inpage
freeze conflict. The L1 status array compares are
blocked due to the L2 cache miss. L2 control 26k
blocks the transfer of instruction complete {o the
requesting processor's L1 cache due to the L2
cache miss. L2 cache control receives the proces-
sor L2 cache store command and L2 cache con-
gruence and starts the access to L2 cache. L2
cache control transfers the command to L2 data
flow to dequeue the oldest entry from the L2 store
queue and write through the L2 write buffer into L2
cache. Upon receipt of the L2 cache line status, L2
miss and locked, L2 cache control cancels the
dequeue of the store queue entry and the write of
the L2 cache. Memory control receives the L2
command and L3 port identification. Upon receipt
of the L2 cache line status, L2 miss and locked, the
request is dropped.

Case C

The search of the L2 cache directory 26J re-
sults in an L2 cache miss. L2 control 26k suspends
this store request and sets the processor inpage
freeze register. The store request is restored onto
the control portion of the L2 cache store queue for
this processor. Command buffer requests for this
processor can still be serviced by L2 control 26k.
The absolute address is transferred to address/key.
The L2 cache line status and cache set are trans-
ferred to L2 cache control, the cache set modifier

41 EP 0 329 942 A2 42

is transferred to L2 cache, and the L2 cache line
status is transferred to memory control 26e. The L1
status array compares are blocked due to the L2
cache miss. L2 control 26k blocks the transfer of
instruction complete to the requesting processor's
L1 cache due to the L2 cache miss. L2 cache
control receives the processor L2 cache store com-
mand and L2 cache congruence and staris the
access to L2 cache. L2 cache control transfers the
command to L2 data flow to dequeue the oldest
entry from the L2 store gueue and write through
the L2 write buffer into L2 cache. Upon receipt of
the L2 cache line status, L2 miss and not {ocked,
L2 cache control cancels the dequeue of the store
queue entry and the write of the L2 cache. Memory
control receives the L2 command and L3 port
identification. Upon receipt of the L2 cache line
status, L2 miss and not locked, the request enters
priority for the required L3 memory port. When all
resources are available, including an
inpage/outpage buffer pair, a command is trans-
ferred to BSU control to start the L3 fetch access
for the processor. Memory control instructs L2 con-
frol 26k to set L2 directory status normally for the
pending inpage. Address/key receives the absolute
address. The reference bit for the 4KB page con-
taining the requested L2 cache line is set to "1'b.
The associated change bit is not altered as only an
L2 cache inpage is in progress; the store access
will be re-executed after the inpage completes. The
absolute address is converted to an L3 physical
address. The physical address is transferred to
BSU controf as soon as the interface is available as
a result of the L2 cache miss. BSU control, upon
receipt of the memory control 266 command and
addressikey L3 physical address, initiates the L3
memory port 128-byte feich by transferring the
command and address io processor storage and
selecting the memory cards in the desired port.
Data are transferred 16 bytes at a time across a
multiplexed command/address and data interface
with the L3 memory port. Eight transfers from L3
memery are required to obifain the 128-byte L2
cache line. The sequence of quadword transfers
starts with the quadword containing the doubleword
requested by the store access. The next three
transfers contain the remainder of the L1 cache
line. The final four transfers contain the remainder
of the L2 cache line. While the last data transfer
completes to the L2 cache inpage buffer BSU
control raises the appropriate processor inpage
compiete to L2 control 26k. During the data trans-
fers to L2 cache, address/key monitors the L3
uncorrectable error lines. Should an uncorrectable
error be detected during the inpage process sev-
eral functions are performed. With each quadword
transfer to the L2 cache, an L3 uncorrectable error
signal is transferred to the processor orignially re-

10

15

20

25

30

35

40

45

50

55

22

questing the store access. At most, the processor
receives one storage uncorrectable error indication
for a given L2 cache inpage request, the first one
detected by address/key. The doubleword address
of the first storage uncorrectable error detected by
address/key is recorded for the requesting proces-
sor. Should an uncorrectable storage error occur
for any data in the L1 line accessed by the proces-
sor, an indicator is set for storage uncorrectable
error handling. Finally, should an uncorrectabie er-
ror occur for any data transferred to the L2 cache
inpage buffer, addressikey sends a signat to L2
control fo alter the handling of the L2 cache inpage
and subsequent store request. L2 cache priority
selects the inpage complete for the processor for
service. L2 conirol 26k transfers a write inpage
buffer command and L2 cache congruence to L2
cache control and an ingage complete status reply
to memory conirol 26e. One of two conditions
result from the L2 cache directory 26J search.

Case 1

L2 control 26k selects an L2 cache line for
replacement. In this case, the status of the re-
placed line reveals that it is unmodified; no castout
is required. The L2 directory is updated to reflect
the presence of the new L2 cache line. If no L3
storage uncorrectable error was detected on inpage
to the L2 cache inpage buffer, the freeze register
established for this L2 cache miss inpage is
cleared. If an L3 storage uncorrectable error was
detected on inpage to the L2 cache inpage buffer,
the freeze register established for this L2 cache
miss inpage is left active and the storage uncorrec-
table error indication associated with the freeze
register is set; the command buifers for the proces-
sor which requested the inpage are biocked from
entering L2 cache priority; all L1 cache indicators
for this processor are set for storage uncorrectable
error reporting. The selected L2 cache set is trans-
ferred to addresstkey and L2 cache control. The
status of the replaced L2 cache line is transferred
to L2 cache control and memory control 26e, and
the cache set modifier is iransferred to L2 cache.
The L1 status arrays for all L1 caches in the
configuration are checked for copies of the re-
placed L2 cache line. Should any be found, the
appropriate requests for invalidation are transferred
to the L1 caches. The L1 status is cleared of the L1
copy status for the replaced L2 cache line. L2
cache control receives the write inpage buffer com-
mand and prepares for an L2 line write to complete
the L2 cache inpage, pending status from L2 con-
trol 26k. L2 cache control receives the L2 cache
set and replaced line status. As the replaced line is
unmodified, L2 cache controi signais L2 cache that

43 EP 0 329 942 A2 44

the inpage buffer is to be written to L2 cache. As
this is a full line write and the cache sets are
interleaved, the L2 cache set must be used to
manipulate address bits 25 and 26 to permit the L2
cache line write. BSU control transfers end-of-op-
eration to memory control 26e. Addressikey re-
ceives the L2 cache set from L2 control 26k. The
L2 mini directory update address register is set
from the inpage address buffers and the L2 cache
set received from L2 controi. Memory control re-
ceives the status of the replaced line. As no
castout is required, memory control 26e releases
the resources held by the inpage request. Memory
control transfers a command tc addresstkey to
update the L2 mini directory using the L2 mini
directory update address register associated with
this processor. Memory control then marks the
current operation completed and allows the re-
questing processor to enter memory resource pri-
ority again. The original L2 store queue request
now reenters the L2 cache service priority circuitry.
The store access is attempted again, once selected
for L2 cache service, and executed as if this is the
first attempt to service the request within L2 control
26k.

Case 2

L2 controi 26k selects an L2 cache line for
replacement. In this case, the status of the re-
placed line reveals that it is modified; an L2 cache
castout is required. The L2 directory is updated to
reflect the presence of the new L2 cache line. If no
L3 storage uncorrectable error was detected on
inpage to the L2 cache inpage buffer, the freeze
register established for this L2 cache miss inpage
is cleared. If an L3 storage uncorrectable error was
detected on inpage to the L2 cache inpage buffer,
the freeze register established for this L2 cache
miss inpage is left active and the storage uncorrec-
table error indication associated with the freeze
register is set; the command buffers for the proces-
sor which requested the inpage are blocked from
entering L2 cache priority; all L1 cache indicators
for this processor are set for storage uncorrectable
error reporting. The address read from the direc-
tory, along with the selected L2 cache set, are
transferred to address/key. The selected L2 cache
set is transferred to L2 cache control. The status of
the replaced L2 cache line is transferred to L2
cache control and memory control 26e, and the
cache set modifier is transferred to L2 cache. The
L1 status arrays for all L1 caches in the configura-
tion are checked for copies of the replaced L2
cache line. Should any be found, the appropriate
requests for invalidation are transferred to the L1
caches. The L1 status is cleared of the L1 copy

10

15

20

25

30

35

40

45

50

55

23

status for the replaced L2 cache line. L2 cache
control receives the write inpage buffer command
and prepares for an L2 line write to complete the
L2 cache inpage, pending status from L2 control
26k. L2 cache control receives the L2 cache set
and replaced line status. As the replaced line is
modified, L2 cache control signals L2 cache that a
full line read is required to the outpage buffer
paired with the inpage buffer prior to writing the
inpage buffer data to L2 cache." As these are full
line accesses and the cache sets are interleaved,
the L2 cache set must be used to manipulate
address bits 25 and 26 to permit the L2 cache line
accesses. Address/key receives the outpage ad-
dress from L2 control 26k, converis it to a physical
address, and holds it in the outpage address buff-
ers along with the L2 cache set. The L2 mini
directory update address register is set from the
inpage address buffers and the L2 cache set re-
ceived from L2 control. Addressikey transfers the
outpage physical address to BSU control in prep-
aration for the L3 line write. Memory control re-
ceives the status of the replaced line. As a castout
is required, memory control 26e cannot release the
L3 resources until the memory update has com-
pleted. Castouts are guaranteed to occur to the
same memory port used for the inpage. Memory
conirol transfers a command to address/key to
update the L2 mini directory using the L2 mini
directory update address register associated with
this processor. Memory control then marks the
current operation completed and allows the re-
questing processor to enter memory resource pri-
ority again. The original t2 store queue request
now reenters the L2 cache service priority circuitry.
The store access is attempted again, once selected
for L2 cache service, and executed as if this is the
first attempt to service the request within L2 control
26k. BSU control, recognizing that the replaced L2
cache line is modified, starts the castout sequence
after receiving the outpage address from
address/key by transferring a full line write com-
mand and address to the selected memory port
through the L2 cache data flow. Data are trans-
ferred from the outpage buffer to memory 16 bytes
at a time. After the last quadword transfer to mem-
ory, BSU control transfers end-of-operation to
memory control 26e. Memory cantrol, upon receipt
of end-of-operation from BSU control, releases the
L3 port to permit overlapped access to the memory
port.

1.6 Storage Store, Sequential, Initial L2 Line Ac-
cess, TLB Hit, No Access Exceptions, L2 Cache Hit

See figures 31-35 for time line diagrams.
The execution unit issues a sequential proces-

45 EP 0 329 942 A2 46

sor storage store request to the L1 operand cache.
The sei-associative TLB search yields an absolute
address, with no access exceptions, for the logical
address presented by the request. if the search of
the L1 cache directory finds the data in cache, an
L1 hit, through equal comparison with the absolute
address from the TLB, a write to the selected L1
cache set is enabled. The store request data are
written into the L1 cache congruence and selected
set using the store byte control flags to write only
the desired bytes within the doubleword. If the
directory search results in an L1 cache miss, due
to a miscompare with the absolute address from
the TLB, the write of the L1 cache is canceled. In
either case, the store request is enqueued on the
L1 store queue. The queue entry information con-
sists of the absolute address, data, store byte flags,
and store request type (non-sequential or sequen-
tial store, end-of-operation). If the store queue is
empty prior to this request or the L1 store queue
enqueue pointer equals the transfer pointer, and
the L1/1.2 interface is available, the store request is
transferred to L2 immediately. Otherwise, the trans-
fer is delayed until the L1 store queue transfer
pointer selects this entry while the L1/L2 interface
is available. Any prefetched instructions which suc-
ceed the current instruction are checked for modi-
fication by the store request through logical ad-
dress comparison. If an equal match occurs, the
instruction buffers are invalidated. L2 control re-
ceives the store request. If the sequential store
routine has not been started, then this request is
the initial sequential store access as well as the
initial store access to the L2 cache line. If the initial
sequential store request has been serviced and a
sequential operation is in progress, this represents
the initial store access to a new L2 cache line in
the sequential store routine. If the L2 store queue is
empty, this request can be serviced immediately if
selected by L2 cache priority. |f the L2 store queue
for this processor is not empty, then this request
must wait on the store queue until all preceding
stores for this processor have completed to L2
cache or the L2 cache write buffers. In either case,

an eniry is made on the L2 store queue for the .

requesting processor. The L2 cache store queue is
physically divided into fwo portions: control and
data. The absolute address and store request type
are maintained in the L2 control 26k function. The
associated data and store byte flags are enqueued
in the L2 cache data flow function. If this store
request is the start of a sequential store operation,
L2 conitrol 26k must check the L2 cache directory
26J for the presence of the line in L2 cache. If a
sequential operation is in progress for this proces-
sor, comparison of address bits 24, 25, 27, and 28
wiih those of the previous sequential store request
for this processor has detected absolute address

10

15

20

25

30

35

40

45

50

58

24

bit 24 of this store request differs from that of the
previous store request. This store request is to a
different L2 cache line. As such, L2 control 26k
must check the L2 cache directory 26J for the
presence of this line in L2 cache. No repeat com-
mand is fransferred to L2 cache control and no
information is immediately iransferred to
address/key and memory control 26e. As this is not
the first line to be accessed by the sequential store
operation, L2 conirol 26k checks the status of the
previous sequentially accessed L2 cache line. If the
previous line is not resident in L2 cache, L2 control
26k holds sequential processing on the current line
until the inpage completes. Otherwise, L2 control
26k can continue sequential stores to the current
L2 cache line. See the description of 'Sequential,
Secondary L2 Line Accesses'. The L2 cache prior-
ity selects this processor store request for service.
L2 control 26k transfers a store to L2 cache write
buffer command and L2 cache congruence to L2
cache confrol and a processor L2 cache store
command to memory control 26e. As the L1
operand cache is a store-thru cache, an inpage to
L1 cache is not required regardless of the original
store request L1 cache hit/miss status. L2 conirol
26k dequeues the store request from the control
portion of the L2 store queue to allow overlapped
processing of subsequent sequential store requests
to the same L2 cache line. L2 control 26k recog-
nizes that this store request is the start of a new L2
cache line within the sequential store operation. If
this store request is the start of a sequentiai store
operation, L2 control 26k sets the sequential opera-
tion in-progress indicator for this processor. Store
queue request absolute address bits 24, 25, 27,
and 28 are saved for future reference in the se-
quential store routine. If an alternate processor lock
conflict is detected, it is ignored as the data are
destined to the L2 cache write buffers for the
requesting processor, not L2 cache. If the request-
ing processor holds a lock, a machine check is set.
One of two conditions result from the L2 cache
directory 26J search which yield an L2 cache hit.

Case 1

The search of the L2 cache directory 26J re-
sults in an L2 cache hit, but a freeze register with
uncorrectable storage error indicator active or line-
hold register with uncorrectabie storage error in-
dicator active is set for an alternate processor for
the requested L2 cache line. L2 control 26k sus-
pends this store request and succeeding sequential
store requests pending release of the freeze or
line-hold with uncorrectable storage error. The
store request is restored onto the control portion of
the L2 cache store queus for this processor. Com-

47 EP 0 329 942 A2 48

mand buffer requests for this processor can still be
serviced by L2 control 26k. No information is trans-
ferred to address/key. The L2 cache line status and
cache set are transferred to L2 cache control, the
cache set modifier is transferred to L2 cache, and
the L2 cache line status is transferred to memory
control 26e. Locked status is forced due to the
alternate processor freeze or line-hold with uncor-
rectable storage error conflict. The L1 status array
compares are blocked due to the sequential store
operation being in progress. L2 control 26k does
not transfer instruction complete to the requesting
processor's L1 cache due to the sequential store
operation being in progress. L2 cache control re-
ceives the store to L2 cache write buffer command
and L2 cache congruence and starts the access to
L2 cache. L2 cache control transfers the command
to L2 data flow to dequeue the oldest entry from
the L2 store queue and write into the next L2 cache
write buffer. Upon receipt of the L2 cache line
status, L2 hit and locked, L2 cache control cancels
the dequeue of the data store queue entry and the
write of the L2 cache write buffer. Memory control
receives the L2 command and L3 port identifica-
tion. Upon receipt of the L2 cache line status, L2
hit and locked, the request is dropped.

Case 2

The search of the L2 cache directory 26J re-
sults in an L2 cache hit. The L2 cache line is not
marked modified. No information is transferred to
address/key. The L2 cache line status and cache
set are fransferred to L2 cache control, the cache
set modifier is transferred to L2 cache, and the L2
cache line status is transferred to memory control.
A line-hold, comprised of absolute address bits
4:24 and the L2 cache set, is established for the L2
cache line to be modified by this store request.
Absolute address bit 25 is used to record whether
this store request modifies the high half-line or low
half-line of the L2 cache line. Bit 25 equal to '0'b
sets the high half-line modifier of the current line-
hold register; bit 25 equal to '1'b sets the low half-
line modifier. The L1 status array compares are
blocked due to the sequential store operation being
in progress. L2 control 26k does not transfer in-
struction complete to the requesting processor's L1
cache due to the sequential store operation being
in progress. L2 cache control receives the store to
L2 cache write buffer command and L2 cache
congruence and starts the access to L2 cache. L2
cache conirol transfers the command to L2 data
flow to dequeue the oldest entry from the L2 store
queue and write into the next L2 cache write buffer.
Upon receipt of the L2 cache line status, L2 hit and
not locked, L2 cache control completes the store to

10

15

20

25

30

35

40

45

50

55

25

the L2 cache write buffer, loading the data and
store byte flags, address-aligned, into the write
buffer for the requesting processor. The L2 cache
congruence is saved for subsequent sequential
store requests associated with this operation and
1.2 cache write buffer in L2 data flow. For this
portion of the sequential store operation, the cache
set is not required, but pipeline stages force the
store queue data to be moved into the L2 cache
write buffer in a manner consistent with non-se-
quential store requests. The data store queue entry
is dequeued from the L2 store queue, but not the
L1 store queue, at the time the data are written into
the L2 cache write buffer. Memoary control receives
the 1.2 command and L3 port identification. Upon
receipt of the L2 cache line status, L2 hit and not
locked, the request is dropped.

1.7 Storage Store, Sequential, Initial L2 Line Ac-
cess, TLB Hit, No Access Exceptions, L2 Cache
Miss

See figures 36-44 for time line diagrams.

The execution unit issues a sequential proces-
sor storage store request to the L1 operand cache.
The set-associative TLB search yields an absolute
address, with no access exceptions, for the logical
address presented by the request. If the search of
the L1 cache directory finds the data in cache, an
L1 hit, through equal comparison with the absolute
address from the TLB, a write to the selected L1
cache set is enabled. The store request data are
written into the L1 cache congruence and selected
set using the store byte control flags to write only
the desired bytes within the doubleword. If the
directory search results in an L1 cache miss, due
to a miscompare with the absolute address from
the TLB, the write of the L1 cache is canceled. In
either case, the store request is enqueued on the
L1 store queue. The queue entry information con-
sists of the absolute address, data, store byte flags,
and store request type (non-sequential or sequen-
tial store, end-of-operation). If the store queue is
empty prior to this request or the L1 store queue
enqueue pointer equals the transfer pointer, and
the L1/L2 interface is available, the store request is
transferred to L2 immediately. Otherwise, the trans-
fer is delayed until the L1 store queue transfer
pointer selecis this entry while the L1/L2 interface
is available. Any prefeiched instructions which suc-
ceed the current instruction are checked for madi-
fication by the store request through logical ad-
dress comparison. If an equal match occurs, the
instruction buffers are invalidated. L2 controt re-
ceives the store request. If the sequential store
routine has not been started, then this request is
the initial sequential store access as well as the

49 EP 0 329 942 A2 50

initial store access to the L2 cache line. If the initial
sequential store request has been serviced and a
sequential operation is in progress, this represents
the initial store access to a new L2 cache line in
the sequential store routine. If the L2 store queue is
empty, this request can be serviced immediately if
selected by L2 cache priority. If the L2 store queue
for this processor is not empty, then this request
must wait on the store queue unti! all preceding
stores for this processor have completed to L2
cache or the L2 cache write buffers. In either case,
an entry is made on the L2 store queue for the
requesting processor. The L2 cache store queue is
physically divided into two portions: control and
data. The absolute address and store request type
are maintained in the L2 control 26k function. The
associated data and store byte flags are enqueued
in the L2 cache data flow function. If this store
request is ihe start of a sequential store operation,
L2 conirol 26k must check the L2 cache directory
264J for s presence of the line in L2 cache. If a
sequeniial operation is in progress for this proces-
sor, comparison of address bits 24, 25, 27, and 28
with those of the previous sequential store request
for this processor has detected absolute address
bit 24 of this store request differs from that of the
previous store request. This store request is to a
different L2 cache line. As such, L2 control 26k
must check the L2 cache directory 26J for the
presence of this line in L2 cache. No repeat com-
mand is fransferred to L2 cache control and no
information is immediately transferred to
address/key and memory control 26e. As this is not
the first line to be accessed by the sequential store
operation, L2 control 26k checks the status of the
previous sequentially accessed L2 cache line. If the
previous line is not resident in L2 cache, 1.2 control
26k holds sequential processing on the current line
until the inpage completes. Otherwise, L2 control
26k can continue sequential stores to the current
L2 cache line. See the description of 'Sequential,
Secondary L2 Line Accesses'. The L2 cache prior-
ity selects this processor store request for service.
L2 control 26k transfers a store to L2 cache write
buffer command and L2 cache congruence to [2
cache control and a processor L2 cache store
command to memory conirol 26e. As the L1
operand cache is a store-thru cache, an inpage to
L1 cache is not required regardless of the original
store request L1 cache hit/miss status. L2 controf
26k dequeues the store request from the conirol
portion of the L2 store queue to allow overlapped
processing of subsequent sequential store requests
to the same L2 cache line. One of three conditions
resuit from the L2 cache directory 26J search
which yieid an L2 cache miss. As the L2 cache is a
store-in cache, the L2 cache line must be inpaged
from L3 processor storage prior to the start of the

10

15

20

25

30

35

40

45

50

55

26

sequential store completion routine.

Case A

The search of the L2 cache directory 26J re-
sults in an L2 cache miss, but a previous L2 cache
inpage is pending for this processor. L2 control 26k
suspends this store request and succeeding se-
quential store requests pending completion of the
previous inpage request. The store request is re-
stored onto the control portion of the L2 cache
store queue for this processor. No further requests
can be serviced for this processor in L2 cache as
both the command buffers and the store queue are
pending completion of an L2 cache inpage. No
information is transferred to address/key. The L2
cache line status and cache set are transferred to
£2 cache control, the cache set modifier is trans-
ferred to L2 cache, and the L2 cache line status is
transferred to memory control. Locked status is
forced due to the previous inpage request. The L1
status array compares are blocked due to the se-
quential store operation being in progress. L2 con-
trol does not transfer instruction complete to the
requesting processor's L1 cache due to the se-
quential "store operation being in progress. L2
cache control receives the store to L2 cache write
buffer command and L2 cache congruence and
starts the access to L2 cache. L2 cache control
transfers the command to L2 data flow to dequeue
the oldest entry from the L2 store queue and write
into the next L2 cache write buffer. Upon receipt of
the L2 cache line staius, L2 miss and locked, L2
cache control cancels the dequeue of the data
store queue entry and the write of the L2 cache
write buffer. Memory control receives the L2 com-
mand and L3 port identification. Upon receipt of the
L2 cache line status, L2 miss and locked, the
request is dropped.

Case B

The search of the L2 cache directory 26J re-
sults in an L2 cache miss, but a previous L2 cache
inpage is pending for an alternate processor to the
same L2 cache line. L2 control 26k suspends this
store request and succeeding sequential store re-
quests pending completion of the previous inpage
request. The store request is restored onto the
control portion of the L2 cache store queue for this
processor. Command buffer requests for this pro-
cessor can still be serviced by L2 control. No
information is transferred to address/key. The L2
cache line status and cache set are transferred to
L2 cache conirol, the cache set modifier is trans-
ferred to L2 cache, and the L2 cache line status is

51 EP 0 329 942 A2 : 52

transferred to memory control. Locked status is
forced due to the previous inpage freeze conflict.
The L1 status array compares are blocked due to
the sequential store operation being in progress. L2
control does not transfer instruction complete to the
requesting processor's L1 cache due to the se-
quential store operation being in progress. L2
cache control receives the store to L2 cache write
buffer command and L2 cache congruence and
starts the access to L2 cache. L2 cache control
transfers the command to L2 data flow to dequeue
the oldest entry from the L2 store queue and write
into the next L2 cache write buffer. Upon receipt of
the L2 cache line status, L2 miss and locked, L2
cache control cancels the dequeue of the data
store queue entry and the write of the L2 cache
write buffer. Memory control receives the L2 com-
mand and L3 port identification. Upon receipt of the
L2 cache line status, L2 miss and locked, the
request is dropped.

Case C

The search of the L2 cache directory 26J re-
sults in an L2 cache miss. To permit sequential
store processing to overlap the servicing of the L2
cache miss, L2 control 26k does not suspend this
store request, but does set the processor inpage
freeze register. Both command buffer requests, and
sequential store requests for the current L2 cache
line, can be serviced by L2 control 26k for this
processor. The absolute address is transferred to
address/key. The L2 cache line status and cache
set are transferred to L2 cache control, the cache
set modifier is transferred to L2 cache, and the L2
cache line status is transferred to memory control
2Be. If this store request is the start of a sequential
store operation, L2 conirol 26k sets the sequential
operation in-progress indicator for this processor.
Store queue request absolute address bits 24, 25,
27, and 28 are saved for future reference in the
sequential store routine. A line-hold, comprised of
absolute address bits 4:24 and the L2 cache set, is
established for the L2 cache line to be modified by
this store request. Absolute address bit 25 is used
to record whether this store request modifies the
high half-line or low half-line of the L2 cache line.
Bit 25 equal to '0'b sets the high half-line modifier
of the current line-hold register; bit 25 equal to '1'b
sets the low half-line modifier. The L1 status array
compares are blocked due to the sequential store
operation being in progress. L2 control 26k does
not transfer instruction complete to the requesting
processor's L1 cache due to the sequential store
operation being in progress. L2 cache control re-
ceives the store to L2 cache write buffer command
and L2 cache congruence and starts the access to

10

15

20

25

30

35

40

45

50

55

27

L2 cache. L2 cache control transfers the command
to L2 data flow to dequeue the oldest entry from
the L2 store queue and write info the next L2 cache
write buffer. Upon receipt of the L2 cache line
status, L2 miss and not locked, L2 cache control
completes the store to the L2 cache write buffer,
loading the data and store byte flags, address-
aligned, into the write buffer for the requesting
processor. The L2 cache congruence is saved for
subsequent sequential store requests associated
with this operation and L2 cache write buffer in L2
data flow. For this portion of the sequential store
operation, the cache set is not required, but pipe-
line stages force the store queue data to be moved
into the L2 cache write buffer in a manner consis-
tent with non-sequential store requests. The data
store queue entry is dequeued from the L2 store
queue, but not the L1 store queue, at the time the
data are written into the L2 cache write buffer.
Memory control receives the L2 command and L3
port identification. Upon receipt of the L2 cache
line status, L2 miss and not locked, the request
enters priority for the required L3 memory port.
When all resources are available, including an
inpage/outpage buffer pair, a command is trans-
ferred to BSU control to start the L3 fetch access
for the processor. Memory control instructs L2 con-
trol to set L2 directory status normally for the
pending inpage. Addressikey receives the absolute
address. The reference bit for the 4KB page con-
taining the requested L2 cache line is set fo "1'b.
The associated change bit is not altered as only an
L2 cache inpage is in progress; the store access
will be executed during the sequential store com-
pletion routine. The absolute address is converted
to an L3 physical address. The physical address is
transferred to BSU control as soon as the interface
is available as a result of the L2 cache miss. BSU
control, upon receipt of the memory control 26e
command and addresstkey L3 physical address,
initiates the L3 memory port 128-byte fetch by
transferring the command and address to proces-
sor storage and selecting the memory cards in the
desired port. Data are transferred 16 bytes at a
time across a multiplexed command/address and
data interface with the L3 memory port. Eight trans-
fers from L3 memory are required to obtain the
128-byte L2 cache line. The sequence of quadword
transfers starts with the quadword containing the
doubleword requested by the store access. The
next three transfers contain the remainder of the L1
cache line. The final four transfers contain the
remainder of the L2 caché line. While the last data
fransfer completes to the L2 cache inpage buffer
BSU control raises the appropriate processor in-
page complete to L2 control 26k. During the data
transfers to L2 cache, address/key monitors the L3
uncorrectable error lines. Should an uncorrectable

53 EP 0 329 942 A2 54

error be detected during the inpage process sev-
eral functions are performed. With each quadword
transfer to the L2 cache, an L3 uncorrectable error
signal is transferred to the processor orignially re-
questing the store access. At most, the processor
receives cne storage uncorrectable error indication
for a given L2 cache inpage request, the first one
detected by address/key. The doubleword address
of the first storage uncorrectable error detected by
addressrkey is recorded for the requesting proces-
sor. Should an uncorrectable storage error occur
for any data in the L1 line accessed by the proces-
sor, an indicator is set for storage uncorrectable
error handling. Finally, should an uncorrectable er-
ror occur for any data fransferred to the L2 cache
inpage buffer, addressikey sends a signal to L2
control 26k to alter the handling of the L2 cache
inpage and subsequent sequential store completion
routine. L2 cache priority selects the inpage com-
plete for the processor for service. L2 control 26k
transfers a write inpage buffer command and L2
cache congruence to L2 cache controi and an
inpage complete status reply to memory control
26e. One of two conditions result from the L2
cache directory 26J search.

Case 1

L2 control 26k selects an L2 cache line for
replacement. In this case, the status of the re-
placed line reveals that it is unmodified; no castout
is required. The L2 directory is updated to reflect
the presence of the new L2 cache line. The freeze
register established for this L2 cache miss inpage
is cleared. If an L3 storage uncorrectable error was
detected on inpage to the L2 cache inpage buffer,
the uncorrectable storage error indicator associated
with the line-hold register related to this L2 cache
miss inpage is set; all L1 cache indicators for this
processor are set for storage uncorrectable error
reporting. The selected L2 cache set is iransferred
to addressikey and L2 cache control. The status of
the replaced L2 cache line is fransferred to L2
cache confrol and memory control 26e, and the
cache set modifier is transferred to L2 cache. The
L1 status arrays for all L1 caches in the configura-
tion are checked for copies of the replaced L2
cache line. Should any be found, the appropriate
requests for invalidation are transferred to the L1
caches. The L1 status is cleared of the L1 copy
status for the replaced L2 cache line. L2 cache
control receives the write inpage buffer command
and prepares for an L2 line write to complete the
L2 cache inpage, pending status from L2 conirol
26k. L2 cache control receives the L2 cache set
and replaced line status. As the replaced line is
unmodified, L2 cache control signals L2 cache that

10

15

20

25

30

35

40

45

50

55

28

the inpage buffer is to be written to L2 cache. As
this is a full line write and the cache sets are
interleaved, the L2 cache set must be used to
manipulate address bits 25 and 26 to permit the L2
cache line write. BSU control transfers end-of-op-
eration to memory control 26e. Address/key re-
ceives the L2 cache set from L2 conirol 26k. The
L2 mini directory update address register is set
from the inpage address buffers and the L2 cache
set received from L2 control. Memory controi re-
ceives the status of the replaced line. As no
castout is required, memory control 26e releases
the resources held by the inpage request. Memory
control transfers a command to address’key to
update the L2 mini directory using the L2 mini
directory update address register associated with
this processor. Memory controi then marks the
current operation completed and allows the re-
questing processor to enter memory resource pri-
ority again.

Case 2

L2 conirol 26k selects an L2 cache line for
replacement. In this case, the status of the re-
placed line reveals that it is modified; an L2 cache
castout is required. The L2 directory is updated to
reflect the presence of the new L2 cache line. The
freeze register established for this L2 cache miss
inpage is cleared. If an L3 storage uncorrectable
error was detected on inpage to the L2 cache
inpage buffer, the uncorrectable storage error in-
dicator associated with the line-hold register related
to this L2 cache miss inpage is set; all L1 cache
indicators for this processor are set for storage
uncorrectable error reporting. The address read
from the directory, along with the selected L2
cache set, are transferred to addresstkey. The se-
lected L2 cache set is transferred to L2 cache
control. The status of the replaced L2 cache line is
transferred to L2 cache control and memory control
26e, and the cache set modifier is transferred to L2
cache. The L1 status arrays for all L1 caches in the
configuration are checked for copies of the re-
placed L2 cache line. Should any be found, the
appropriate requests for invalidation are transferred
to the L1 caches. The L1 status is cleared of the L1
copy status for the replaced L2 cache line. L2
cache control receives the write inpage buffer com-
mand and prepares for an L2 line write to complete
the L2 cache inpage, pending status from L2 con-
trol 26k. L2 cache control receives the L2 cache
set and replaced line status. As the replaced line is
modified, L2 cache control signals L2 cache that a
full line read is required to the outpage buffer
paired with the inpage buffer prior to writing the
inpage buffer data to L2 cache. As these are full

55 EP 0 329 942 A2 56

line accesses and the cache sets are interleaved,
the L2 cache set must be used to manipulate
address bits 25 and 26 to permit the L2 cache line
accesses. Address/key receives the ouipage ad-
dress from L2 control 26k, converts it to a physical
address, and holds it in the ouipage address buff-
ers along with the L2 cache set. The L2 mini
directory update address register is set from the
inpage address buffers and the L2 cache set re-
ceived from L2 control. Address/key transfers the
outpage physical address to BSU contro! in prep-
aration for the L3 line write. Memory control re-
ceives the status of the replaced line. As a castout
is required, memory control 26e cannot release the
L3 resources until the memory update has com-
pleted. Castouts are guaranteed to occur to the
same memory port used for the inpage. Memory
control transfers a command to addressikey to
update the L2 mini directory using the L2 mini
directory update address register associated with
this processor. Memory control then marks the
current operation completed and allows the re-
questing processor to enter memory resource pri-
ority again. BSU control, recognizing that the re-
placed L2 cache line is modified, starts the castout
sequence after receiving the outpage address from
address/key by transferring a full line write com-
mand and address to the selected memory port
through the L2 cache data flow. Data are trans-
ferred from the outpage buffer to memory 16 bytes
at a time. After the last qiadword transfer to mem-
ory, BSU control transfers end-of-operation to
memory control 26e. Memory control, upon receipt
of end-of-operation from BSU control, releases the
L3 port to permit overlapped access to the memory
port.

1.8 Storage Store, Sequential, Secondary L2 Line
Accsss, TLB Hit, No Access Exceptions

See figures 45-49 for time line diagrams.
The execution unit issues a sequential proces-
sor storage store request to the L1 operand cache.

The set-associative TLB search yields an absolute .

address, with no access exceptions, for the logical
address presented by the request. If the search of
the L1 cache directory finds the data in cache, an
L1 hit, through equal comparison with the absolute
address from the TLB, a write to the selected L1
cache set is enabled. The store request data are
written into the L1 cache con gruence and selected
set using the store byte control flags to write only
the desired bytes within the doubleword. If the
directory search resuits in an L1 cache miss, due
to a miscompare with the absolute address from
the TLB, the write of the L1 cache is canceled. In
either case, the store request is enqueued on the

10

15

20

25

30

36

40

45

50

55

29

L1 store queue. The queue entry information con-
sists of the absolute address, data, store byte flags,
and store request type (non-sequential or sequen-
tial store, end-of-operation). If the L1 store queue
enqueue pointer equals the transfer pointer and the
L1/L2 interface is available, the store request is
transferred to L2 immediately. Otherwise, the trans-
fer is delayed until the L1 store queue transfer
pointer selects this eniry while the L1/L2 interface
is available. Any prefetched instructions which suc-
ceed the current instruction are checked for modi-
fication by the store request through logical ad-
dress comparison. If an equal maich occurs, the
instruction buffers are invalidated. L2 control 26k
receives the store request. If the initial sequential
store request has been serviced and a sequential
operation is in progress, this and succeeding store
requests are given special consideration. If the L2
store queue is empty, this request can be serviced
immediately by a special sequential store operation
sequencer exclusive to this processor. If the L2
store queue for this processor is not empty, then
this request must wait on the store queue until all
preceding stores for this processor have completed
to the L2 cache write buffers. In either case, an
entry is made on the L2 store queue for the re-
questing processor. The L2 cache store queue is
physically divided into two portions: conirol and
data. The absolute address and stiore request type
are maintained in the L2 control 26k function. The
associated data and store byte flags are enqueued
in the L2 cache data flow function. L2 control 26k,
recognizing that a sequential operation is in
progress for this processor, compares address bits
24, 25, 27, and 28 with those of the previous
sequential store request for this processor. Ab-
solute address bit 24 of this store request matches
that of the previous store request. This store re-
quest is to the same L2 cache line. As such, this
store queue request can be serviced regardiess of
whether the L2 cache line presently exists in L2
cache as the L2 cache and its directory are not
involved in the dequeue. The store queue request
is serviced and the request is dequeued from the
control portion of the L2 cache store queue for this
processor. If absolute address bit 25 equals '1'b,
the low half-line modifier of the current line-hold
register is set to '1'b, indicating that this half-line is
modified. L2 control transfers one of three com-
mands, on an interface specifically allocated for
this processor, to L2 cache control based on the
difference between address bits 27 and 28 of this
sequential store request and those of the previous
store request. The command is repeat with no
address increment if the difference is '00'b, repeat
and increment by 8 if the difference is '01'b, and
repeat and increment by 16 if the difference is
'10'b. Store queue request absolute address bits

57 EP 0 329 942 A2 58

24, 25, 27, and 28 are saved for future reference in
the sequential store routine and the store queue
entry is dequeued, allowing the next eniry to be
serviced in the following cycle. L2 control 26k
transfers no information to address/key or memory
control 26e. L2 cache control fransfers the com-
mand fo L2 data flow to dequeue the oldest entry
from the L2 store queue using the most recently
supplied L2 cache congruence for this processor,
with the address adjusted as specified by L2 con-
trol 26k. The data and store byie flags are written,
address-aligned, inio the L2 cache write buffers for
the requesting processor. For this portion of the
sequential store operation, the cache set is not
required, but pipeline stages force the store queue
data to be moved into the L2 cache write buffer in
a manner consistent with non-sequential store re-
quests. The data store queue entry is dequeued
from the L2 store queus, but not the L1 store
queue, at the time the data are written into the L2
cache write buffer.

1.9 Storage Store, Sequential, Completion Routine,
L2 Cache Hit

The sequential store completion routine is a
series of commands generated by L2 control 26k
which cause the L2 cache write buffers for a pro-
cessor to be written to L2 cache. This is normally
started by the receipt of end-of-operation for the
instruction executing the sequential stores. End-of-
operation can be associated with the last sequential
store request of a sequential operation or it may be
transferred later, as a separate end-of-operation
storage command for this processor. In either case,
once detected by L2 control 26k for a sequential
store operation, the sequential operation sequencer
for this processor starts the completion routine.
The sequential operation sequencer checks all ac-
tive line-holds against the locks of the alternate
processors and verifies that all required L2 cache
lines are resident in cache. If any lock conflicts
exist or any L2 cache miss is outstanding for the
sequential store operation, the sequential operation
completion routine is held pending. If no lock con-
flicts exist and the required lines are resident in L2
cache, the sequential operation completion routine
enters L2 control 26k priority. The L2 cache priority
selects this sequential store operation completion
request for service. Recognizing the number of
active line-holds, L2 control 26k holds the L2 cache
exclusive to this request for a contiguous number
of cycles necessary to complete all L2 cache line
writes associated with the line-hold registers. This
routine finishes the sequential operation by storing
alt valid L2 cache write buffer contents to L2 cache
with consecutive store L2 cache write buffer to L2

10

15

20

25

30

35

40

45

50

55

30

cache commands. The following sequence is ex-
ecuted up to three times, depending on the num-
ber of valid line-hold registers associated with the
sequential siore operation. L2 control 26k transfers
a store L2 cache write buffer to L2 cache com-
mand and the L2 cache congruence, taken from
the line-hold register, to L2 cache control. L2 con-
trol transfers an L2 cache store command to mem-
ory control. One of two conditions resuit from the
L2 cache directory search which yield an L2 cache
hit.

Case 1

The search of the L2 cache directory 26J re-
sults in an- L2 cache hit, but the uncorrectable
storage error indicator associated with the line-hold
register is active. This situation occurs for a pro-
cessor after an uncorrectable storage error has
been reported for an L2 cache inpage due to a
sequential store request. The L2 cache line is
marked invalid. The absolute address is transferred
to address/key with a set reference and change
bits command. The L2 cache line status and cache
set are fransferred to L2 cache control, the cache
set modifier is transferred o L2 cache, and the L2
cache line status is transferred to memory control.
The line-hold register associated with this L2 cache
line of the sequential store operation is cleared and
the corresponding uncorrectable storage error in-
dicator is reset. All L1 status arrays, excluding the
requesting processor's L1 operand cache status,
are searched for copies of the modified L2 cache
half-lines under control of the haif-line modifiers
from the associated line-hold register. The low-
order L2 cache congruence is used to address the
L1 status arrays and the L2 cache set and high-
order congruence are used as the comparand with
the L1 status array outputs. If an equal maich is
found in the requesting processor’'s L1 instruction
cache status array, the necessary eniries are
cleared, and the L1 cache congruence and L1
cache sets are transferred to the requesting pro-
cessor for local-invalidation of the L1 instruction
cache copies after the request for the address buss
has been granted by the L1. If any of the alternate
processors’ L1 status arrays yield a match the
necessary entries are cleared in L1 status, and the
L1 cache congruence and L1 cache sets, two for
the L1 operand cache and two for the L1 instruc-
tion cache, are simultaneously transferred to the
required alternate processors for cross-invalidation
of the L1 cache copies after the request for the
address buss has been granted by that L1. The L2
store access is not affected by the request for
local-invalidation or cross-invalidation as L1 guar-
antees the granting of the required address inter-

59 EP 0 329 942 A2 60

face in a fixed number of cycles. L2 conirol 26k
transfers an instruction complete signal to the re-
questing processor's L1 cache to remove all en-
tries associated with the sequential store with the
last store L2 cache write buffer to L2 cache com-
mand in the compietion routine; all associated
stores have completed into L2 cache. The dequeue
from the L1 store queue and the release of the L2
cache write buffers occur simultaneously with the
final update of the L2 cache. L2 cache control
receives the store L2 cache write buffer to L2
cache command and L2 cache congruence and
starts the access to L2 cache. L2 cache control
transfers the command to L2 data flow to store the
required L2 cache write buffer contents into L2
cache. Upon receipt of the L2 cache line status, L2
hit and not locked, L2 cache conirol uses the L2
cache set to control the store into L2 cache, man-
ipulating address bits 25 and 26 to accomplish the
full line write. The write occurs under control of the
L2 cache write buffer store byte flags in two cycles:
the update to quadwords zero and one (32 bytes)
occurs in the first cycle; in the second cycle, the
remaining quadwords (96 bytes) in the L2 cache
line are updated. Memory control receives the L2
command and L3 port identification. Upon receipt
of the L2 cache line status, L2 hit and not locked,
the request is dropped. Address/key receives the
absolute address for reference and change bits
updating. The reference and change bits for the
4KB page containing the L2 cache line updated by
the store request are set fo '1'b.

Case 2

The search of the L2 cache direciory 26J re-
sults in an L2 cache hit. The L2 cache line is
marked modified. The absolute address is trans-
ferred to address’key with a set reference and
change bits command. The L2 cache line status
and cache set are transferred to L2 cache conirol,
the cache set modifier is transferred to L2 cache,
and the L2 cache line status is transferred to mem-
ory control 26e. The line-hold register associated
with this L2 cache line of the sequential store
operation is cleared. All L1 status arrays, excluding
the requesting processor's L1 operand cache sta-
tus, are searched for copies of the modified L2
cache half-lines under control of the half-line modi-
fiers from the associated line-hold register. The
low-order L2 cache congruence is used to address
the L1 status arrays and the L2 cache set and
high-order congruence are used as the comparand
with the L1 status array outputs. If an equal match
is found in the requesting processor's L1 instruc-
tion cache status array, the necessary entries are
cleared, and the L1 cache congruence and L1

10

15

20

25

30

35

40

45

50

55

31

cache sets are transferred to the requesting pro-
cessor for local-invalidation of the L1 instruction
cache copies after the request for the address buss
has been granted by the L1. If any of the alternate
processors' L1 status arrays yield a maich the
necessary entries are cleared in L1 status, and the
L1 cache congruence and L1 cache sets, two for
the L1 operand cache and two for the L1 instruc-
tion cache, are simultaneously tfransferred to the
required alternate processors for cross-invalidation
of the L1 cache copies after the request for the
address buss has been granted by that L1. The L2
store access is not affected by the request for
local-invalidation or cross-invalidation as L1 guar-
antees the granting of the required address inter-
face in a fixed number of cycles. L2 control 26k
transfers an instruction complete signal to the re-
questing processor's L1 cache to remove all en-
tries associated with the sequential store with the
last store L2 cache write buffer to L2 cache com-
mand in the completion routine; all associated
stores have completed into L2 cache. The dequeue
from the L1 store queue and the release of the L2
cache write buffers occur simultaneously with the
final update of the L2 cache. L2 cache control
receives the store L2 cache write buffer to L2
cache command and L2 cache congruence and
starts the access to L2 cache. L2 cache control
transfers the command to L2 data flow to store the
required L2 cache write buffer contents into L2
cache.

Upon receipt of the L2 cache line status, L2 hit
and not locked, L2 cache control uses the L2
cache set to control the store into L2 cache, man-
ipulating address bits 25 and 26 to accomplish the
full line write. The write occurs under control of the
L2 cache write buffer store byte flags in two cycles:
the update to quadwords zero and one (32 bytes)
occurs in the first cycle; in the second cycle, the
remaining quadwords (96 bytes) in the L2 cache
line are updated. Memory control receives the L2
command and L3 port identification. Upon receipt
of the L2 cache line status, L2 hit and not locked,
the request is dropped. Address/key receives the
absolute address for reference and change bits
updating. The reference and change bits for the
4KB page containing the L2 cache line updated by
the store request are set to '1'b.

The invention being thus described, it should
be obvious that the same may be varied in many
ways. Such variations are not to be regarded as a
departure from the spirit and scope of the inven-
tion, all all such modifications as would be obvious
to one skilled in the art are intended to be included
within the scope of the following claims.

61 EP 0 329 942 A2 62

Claims

1. A multiprocessor system having a plurality
of processors including a first processor and at
least one second processor, a first level cache
connected fo each processor, a single second level
cache (26B) connected to each first level cache
(18A, B, C) and shared by the processors, and a
third level main memory connected to the second
level cache, a system for queuing and buffering
data and/or instructions, comprising:

a first level store queue means (18B1) associated
with each processor and having an input connected
to its corresponding processor and connected to an
input of its corresponding first level cache (18B) for
receiving said data and/or instructions from said its
corresponding processor intended for potential
storage in said its corresponding first level cache
and for queuing said data and/or instructions there-
in, each of the first level store queue means having
outputs; and

a second level store queue means (26A2) asso-
ciated with each first level store queue means and
interconnected between the output of its respective
first level store queue means and an input of the
single second level cache for receiving said data
and/or instructions from said first level store queue
means and for queuing said data and/or instruc-
tions therein prior to storage of said data and/or
instructions in said second level cache.

2. Muitiprocessor system of claim 1, wherein
each said second level store queue means com-
prise:

a queue means connected to the output of its first
level store queue means for receiving said data
and/or instructions from said its respective first
level store queue means and initially storing said
data and/or instructions therein; and

write buffer (26A2(A), 26A2(B)) and control means
(26A2(C)) connected to an output of said queue
means for receiving said data and/or instructions
stored in said queue means and for secondarily
storing at least some of said data and/or instruc-
tions therein, said at least some of said data and/or
instructions stored in said write buffer and control
means being stored in said second level cache
when said second level cache is not busy and
allows the storage of said data and/or instructions
thersin.

3. Multiprocessor system of claim 2, wherein
said at least some of said data and/or instructions
are stored sequentially in said second level cache
{26B) from said write buffer and control means.

4. Multiprocessor system of claim 3, wherein
the remaining ones of said data and/or instructions

are stored non-sequentially in said second level.

cache directly from said queue means.

10

15

20

25

30

35

40

45

50

55

32

5. Multiprocessor system of claim 2, further
comprising:
addressing means (26A5) interconnected between
each of said second level store queue means
(26A2) and the single shared second level cache
(28B) for addressing said second level cache, said
data and/or instructions stored in a said second
level store queue means being stored in said single
second level cache in response to the addressing
thereof by said addressing means; and
buffer means (26A8) connected to an output of said
second level cache for storing said data and/or
instructions therein when said data and/or instruc-
tions are read out of said second level cache,
said data and/or instructions stored in said buffer
means of one processor invalidating corresponding
obsolete entries of said data and/or instructions in
the first level caches of other processors, the invali-
dation being accomplished before any of said other
processors have access to said corresponding ob-
solete entries of said data and/or instructions.

6. Muitiprocessor system of claim 1, wherein
each of the first level store queue means comprise
an address field means for storing an absolute
address (18A1(B)).

7. Multiprocessor system of claim 6, further
comprising:
starting field absolute address register means con-
nected to the address field means of each of said
first level store queue means for storing a starting
absolute address therein representing an initial ab-
solute address associated with a first of said data
and/or instructions to be stored in said first level
store queue means; and -
ending field absolute address register means con-
nected to the address field means of each of said
first level store queus means for storing an ending
absolute address therein representing the last ab-
solute address associated with a final one of said
data and/or instructions to be stored in said first
level store queue means.

8. Multiprocessor system of claim 5, wherein
each of said queue means of each said second
level store queue means (26A2) comprise:
an address field means for storing an absolute
address of said data and/or instructions within said
second level cache,

a data field means for storing said data and/or
instructions, and

a store byte flag field means for storing store byie
flags indicative of specific locations at said ab-
solute address within said second level cache
wherein said data and/or instructions is stored.

9. Multiprocessor system of claim 8, wherein
each said write buiffer (26A2(A)) and control means
(26A2(C)) further comprises:
control means including a plurality of line hold
register means connected to the address field

63 EP 0 329 942 A2 64

means of each of said queue means for storing the
absolute address of said data and/or instructions
within said second level cache;

a plurality of second level write buffer means inter-
connected between the data field means of each of
said queue means and the shared single second
level cache for storing said data and/or instructions
therein; and

a plurality of store byte flag register means con-
nected to the store byte fiag field means of each of
said queue means for storing the store byte flags
therein indicative of specific locations at said ab-
solute address within said second level cache
wherein the obsolete entry of said data and/or
- instructions is stored.

10. Multiprocessor system of claim 9, wherein:
a directory associated with each of said first level
caches (18A, B, C) of said other processors and
with the single second level cache (26B) is interro-
gated using the absolute address stored in one of
said line hold register means of said one proces-
sor,

the corresponding obsolete entries of said data
and/or instructions stored in the first level caches of
said other processors are invalidated if said ab-
solute address in said one of said line hold register
means of said one processor is found in the direc-
tories of said first level caches associated with said
other processors, and
the corresponding obsolete eniry of said data
and/or instructions stored in the single second level
cache is i:6ed if said absolute address in said one
- of said line hold register means of said one proces-
sor is found in said directory of said second level
cache.

11. Multiprocessor system of claim 8, wherein
said data and/or instructions stored in a said sec-
ond level write buffer means (26A2(A); 26A2(B))
over-writes the data and/or instructions stored in
the specific locations at the absolute address of
said second level cache (26B) wherein the cor-
responding obsolete entry of said data and/or
instructions is stored, the specific locations being
determined and identified in accordance with the
store byte flags stored in said store byte flag
register means.

12. A method of operating a multiprocessor
system including a first processor and at least one
second processor where each processor includes
an execution unit and a translation lookaside buffer
(TLB), a first level cache (L1 cache) (18B) con-
nected to each processor, a first level cache direc-
tory (L1 cache directory) associated with each said
L1 cache, a first level store queue (L1 store queue)
(18B1) connected to each processor and io its said
L1 cache, and a second level store queue (L2 store
queue) (26A2) connected {0 each said L1 store

" queuse, comprising the steps of:

70

15

20

25

30

35

40

45

50

55

33

(a) issuing a first storage request by said execution
unit of said first processor, said first storage re-
quest including a logical address and a new set of
data, said new set of data being associated with a
sequential store operation;

(b) locating an absolute address in said TLB using
said logical address in said first storage request;

(c) using said absolute address, searching said L1
cache directory to determine if corresponding data
is located at said absolute address of said L1
cache;

(d) if said corresponding data is found in said L1
cache, writing said new set of data into said L1
cache at said absolute address and writing said
new set of data into said L1 store queue;

(e} if said corresponding data is not found in said
L1 cache, writing said new set of data into said L1
store queue; and

(f) writing said new set of data from said L1 store
queue into said L2 store queue;

whereby, upon completion of step {a), said first
processor may issue a second storage request
including a further new set of data and repeat steps
(a) through (e) to write said further new set of data
into said L1 store queue, said further new set of
data being associated with said sequential store
operation.

13. Method of claim 12, wherein said mul-
tiprocessor system further inciudes at least two
second level write buffers (L2 write buffers) (26A2-
(A); 26A2(B)) connected to each said L2 store
queue, and wherein said method further comprises
the step of:

(g) writing said new set of data associated with said
sequential store operation from said L2 store queue
associated with said first processor into one of the
L2 write buffers,

whereby, upon completion of step (g), said further
new set of data may be written from said L1 store
queue into said L2 store queue.

14, Method of claim 13, wherein said mul-
tiprocessor system further includes a single second
level cache (L2 cache) (26B) connected to the L2
write buffers of each processor and shared by each
processor, a directory associated with said L2
cache (L2 cache directory), and a second level
control (L2 control) (26K) including an arbitrating
means for receiving requests from the processors
to access said L2 cache, and wherein said method
further comprises the steps of:

(h) using said arbitrating means in said L2 control,
requesting access to said L2 cache;

(i) when said access to said L2 cache is granted,
searching said L2 cache directory using said ab-
solute address to determine if corresponding ob-
solete entries of said new set of data are present in
said L2 cache; and)

() if an L2 cache hit occurs, writing said new set of

65 - EP 0 329 942 A2

data from said one of the L2 write buffers into a
location of said L2 cache defined by said absolute
address;

whereby, said further new set of data may be
written from said L2 store queue into another of the
L2 write buffers.

15. Method of claim 14, wherein said mul-
tiprocessor system further includes a third level
main memory (L3 memory) connected to said L2
cache, and wherein said method further comprises
the steps of:

(k) if an L2 cache miss occurs, during the writing of
said further new set of data from said L2 store
queue info said another of the L2 write buffers,
inpaging said corresponding obsolete entries of
said new set of data from said L3 memory into a
location of said L2 cache defined by said absolute
address; and

() following step (k), writing said new set of data
from said one of the L2 write buffers into said
iocation of said L2 cache defined by said absolute
address.

10

15

20

25

30

35

40

45

50

55

34

66

EP 0 329 942 A2

FIG. 1
L/A'j SYSTEM
PS/2 7/ R L4 MEMORY
L3 MEMORY |10
8,16,32,64 MB
P
STORAGE
CONTROLLER
(scL)
18
/
I/D CACHES
(L1
16 + 16 KB
| {22
INTEGRATED /14 I |
' —UNIT
I/0 20 FUNIT VP
SUBSYSTEM C/S (92 KB)
CONTROLS
i AR
INTEGRATED |- MULTISYSTEM
ADAPTERS AND CHANNEL
SINGLE CARD COMM-
CHANNELS UNICATION
UNIT

8M — EN 988 001

EP 0 329

942 A2

FIG. 2
108
10A\ L4 MEMORY
" SYSTEM L4 MEMORY
ps/2 \— /4— SUPPORT |—= — =
ADAPTER | = b
L3 MEMORY
— 13
STORAGE ——— | |MEMORY
SUBSYSTEM | L2 CACHE/ |
85— | swiTcrinG |
| uNIT (BSU) |
| _268/26A_|
1
- 7 l ‘
I/D CACHES | 18A I/D CACHES |[18B I/D CACHES | 18C
(L1 CACHE) (L1 CACHE) L (4 CACHE)
16 + 18 KB 16 + 16 KB 16 + 16 KB
22C
| /22A | 228 | /
-UNIT VP [~UNIT VP -UNIT VP
E-UNIT E-UNIT E-UNIT
C/S (92 KB) C/S (92 KB) C/S (92 KB)
Z = /
20A 208 20C I
SHCP-B
288 SHARED CHNL
PROC A (SHCP-A)
14 PARALLEL | socC
NTEGR
TR =2 | 28A_X | ""CHNLS | CHNLS
SUBSYSTEM
| | 1] e
18 ' ~
INTEGRATED |- MULTISYSTEM
ADAPTERS AND CHANNEL
SINGLE CARD COMM-
CHANNELS UNISAITION
NIT

FIG. 3

EP 0 329 942 A2

[-UNIT,E-UNIT, C/S 20,
| 20A, 20B,0R 20C

STORAGE BUS 8 BYTES~

]

1/D CACHES (L1 CACHE)
18,18A,18B, OR 18C+

20-1C 0-18 e — 1/
. ————-Fz—-————l—”Ha-m Y~ JoiA T6-PA 16-2D 7118
I PAGEABLE + it INPAGE INPAGE | | |18-2
: CTRL STORE [Y REGISTER | BUFFER | g |a—/
8kb 4-WAY T e 18-28B| T
~ DATA
| HIGH | | TRuCTION o= DA o | |
| S8 | sPeED || | CACHE R :
CONTROL I _ 18kb
{ BAL STORE 1 16kb 4-WAY L [=1 4 way g { 20-3 .
' INS-
| STK | FixeD I CACHE | R |
[| | TRUCTION
l (CSAR 84kb - Il |, BUFFER DATAFLOW |
{20-15) ¢ 20-1A 5= :::::____:}: = \E:::]_____
20-1D 18-1b 18-2C
: n 20-1 | ;55 18-1 ——} 2 |
I BUS, VECTOR BUS)|
| ~D BUS CMD BUS
| 2072 | 20-28 L2 CMD & piT[~20-3A | 20-3C pir] 20-38
} - RESS| DATADLAT & AGEN ' paapiae ||
¢E IRECTORY | ADDER | L1 DIRECTORY
TABLE 3
} 20-3E | SARS
<
| INSTR REG —> INSTR REG | CTRL | _ GPR COPY
Il SLoBAL D-BUS~ 20-3d° LA _20-3
| 2 - I/ 20-4D — 20-4A—__ ¢
- N ~
| 20-2A alis ROTATE MERGE UNIT | LOCAL STORE
| c R 20-4C 1 CONDITION
| Ig s ALU REGS .
| P I-BUS BRANCH BIT
; B g > INSTR REG | CTRL SELECT
I U y
S 4/ -
} S = 20-4__A 20-4E 20-4B
{ 20-5A
| 20-8 § 20-5 ,20-5E y /j20-5B ,20-5C ,20-5D
| EXTERNALS FLT T ' '
I <D< poNT | L CMD FiT | FIXED/ | SORT
l INTERRUPTS | comM & |PECODE | ‘o= | FLT PT| FLV/
& T
l2o-7| TIMERS | Bugs | WORK ADD | MULT- | FIXED
| CONTROL IPLY | DIV
1] IPC <t+— REGS

{BM — EN 988 0

01

EP 0 329 942 A2

10B
~ L4 MEMORY
Fig. 4 L/
10A\ L3 MEMORY
L4 MEMORY
L3 MEMORY
- - T |
INTD PRL l |
ADPTRS | CHNLS , STORAGE |
INTEGRATED 1/0 | SUBSYSTEM l
AND ADAPTER l 26 |
(SUBSYSTEM } }
| |
14,18 | |
| |
288 | : L2 CACHE/ :
BUS SWITCHING
~~ [sHcP-B | UNIT (BSU) '
SHARED CHNL } 26B/26A :
PROCESSOR-A — S
(SHCP-A) } e 7 AN }
SER | PRL e ' N
GHNLS | CHNLS "“J7 ——————— J}‘ ______ ‘l;‘ -
\ ~ J18A 8B /18C
28A 1 1 L1
CACHE CACHE CACHE
STORAGE STORAGE STORAGE
22A 228 22C
% /
i1 vP [] vP [| VP
I-UNIT I-UNIT I-UNIT
/7~ |E-UNIT E-UNIT E-UNIT
CTL [CTL CTL
STORE / STORE |~ / STORE
20B 20C

EP 0 329 942 A2

92
W3 LSASENS “l “ AN /Y0
39DYHOLS ~y ®<— on <7 sugig k— | >mommz >mo\§mz
. /61 aria

g ‘9l @)<—=8doHs <—=—0> viva ae/en !
lllllll n_ JNZZ(IO 4 _ D\(\O Q\(\O
92 <\oﬁ i A |
O
voz/d92
mﬂw_owmwm_Am TOLINOD — (ns\) LINN
TANNYHO | DNIHOLIMS Yo /¢ 7] GZ_MW.M_\SW
7 v e s ML /3HOVO 271
ree b B v/o 21 AN
v ¥1/e1 or1/e d d q
v vV Vv ¥V
] 92, 2dO 1dD 0dD
v samno |
SAIN t—1D AL
d TOHLNOD AIM TTOH1NOD SAanod TJOHLNOD
JOVHOLS AHONIN
e1 4 /883yaay SAano ¢l
7 vIo 31 SANWD
To2 A 55 |35t ol o8 5
H82 AVV_N_/.V_] » w Nw
/8 ¢
vl OIN mn_oxw Eozm\ v /0
W3isAsdns g8z g8} Nn_o Eo on_o
(OIN) _ 3JHOVD K1 0L
o/l aaivy g8-dOHS oL
lmum.._.Z_ oL vee 98l 8l
V=dOHS Ol 3HOVD K1 oL 3JHOVD 1 0L

— — — — — — — — — vt — — — r—— Wany (e — — — —— —— — — ot i} S et ittt St e S Garrees i SOty G G S n— S——— Wo—— @t Wy G Gt b

L e s i s e . e s Sy —— — — ——— —— T— ———. t— To—— — — —— —vn n— o— o~ w—

IBM — EN 988 001

EP 0 329 942 A2

L1 CACHE
FROM STORAGE
pRQCEs% ,— 18A EXECUTION UNIT 0
20 / OF FiG. 4 DATA ~~
' 18A2 [|
' INPG DATA| | !
| + 1
| |
| | '
CMD/
[U ADDR/ }DATA/STBF L1 CACHE | |
| STORE CTLS l |
| QUEUE I
| 1BAT 18A I I .
' FETCH DATA l
I 18A3~" | | '
] —_— = _ |
;‘ —————— [I
CMD/ ' 26A1 1
} L2 —1| ADDR/ {DATA/STBF v
l-STORE CTLS | i
QUEUE
{ l @ 1
l IS 26A1(A) .
l 28A1(C) /
| T~ L2wB | ¢ |
| CTLS l |
} L2WB-1
[| .
| N&-X 88—X X—N8 / X—88 ss—X og\f%m?
| | 26A1(B) L MERGE
l 1}
I]
|
‘ [}
|
L i
L2 CACHE/ //7 }
BSU - :
28B/26A FIG. 6A {
OF FIG. 5 |]
! .
FIG. | FIG. | FIG. l
6A | 6B | 8C { .
| H
FIG. 6 :

EP 0 329 942 A2

11 CACHE/
i ™~ ST%SS GE EXECUTION UNIT 1
PROCESSOR . ,
208 f T VY OFFIG.4 DAATS F1G. 6B
| cMD/ DATA 18B2 C |
} ADDR INPG DATA }
[
| |
| 188 \ l
‘ CMD/ | I
| U1\ ADDR/ |DATA/STBF 11 CACHE |
| STORE CTLS | l)
2 |
Pl | | '
L2 CACHE
o FETCH DATA | CACHE/|
l 1883 I } /26B/ 26A
'__.::::::::::.':_—::::__::::::::____A_Q_F_flg':_s_'
' CMD/ 26A2 i
L2 —] | ADDR/ I|DATA/STBF L
1 STORE CTLS |
QUEUE |
| —— |
26A2(A)
! ———— / .
28A2(C) e > WB-0
' ~_|owe| & | _26A2(B) '
, CTLS l |
L2 WB-1
. | '
N&6-X 88—X)‘(—NS)I(—SS ss—X
T
_~1 L2 CACHE WB
. 26A4 .
26A5 268
; —— L2 ADDR L2 CACHE |— .
I
L2 CACHE RB | 20A8 '
' 26AT: | ' | 26A9 |
' 1101 PB L11IPB 112 IPB .
' 26787 I P

IBM — EN 988 001

EP 03299

42 A2

FROM L1 CACHE
STORAGE 18C gxECUTION UNIT 2
procgeson 5 STOIAE P exeeumion
B 18C2 - i
} “NINPG DATA {
| |
' =
| CMD/
I u ADDR/ {DATA/STBF L1 CACHE |
| STORE CTLS | |
| QUEUE l
| 18C1 18¢" I I
' _I"FETCH DATA l
: 18C3 | | JI
________ T
CMD/ | 26A3 I
| L2 — | ADDR/ |DATA/STBF |~ |
STORE CTLS | |
, QUEUE I |
]
. 26A3(C) |
, 26A3(A) |
|
S8 L2WB-0 |
L2WB | |
CTLS l I
L2WB-1 |
[| |
N6-X 88—X X—N8 X-88 gg—X
| 26A3(B) | |/ {
|
|
' |
|
! |
|
! |
|
| }
e —————————
| L2 CACHE/
.~ BsU
|-~ 26B/26A
| OFFIG. 5
| FIG. 6C
|

EP 0329 942 A2

FROM FROM GENERATED
EXECUTION ADDRESS FROM ADDRESS
UNIT TRANSLATOR AND FIELD LENGTH
18A1(D)
\ 18A1(E)
| | P
LOGICAL | ABSOLUTE
ADDRESS | ADDREss |CMND DATA STBF
LEP TP
| -
1, 281 28{0 7|0 63l0 7
A\
/ /A B R A]
18A1(A) 18A1(B) 18A1(C)
TO PROGRAM STORE TO 11 /STORAGE
COMPARE AND OPERAND | SUBSYSTEM DATA
STORE COMPARE INTERFACE

IBM — FEN QRR nn1

TO L1/STORAGE SUBSYSTEM
COMMAND/ADDRESS INTERFACE

L1 STORE
QUEUE
ABSOLUTE
ADDRESS
18A1(B)

GATE IF

EP 0329 942 A2

1 STORE
QUEUE
EOP BIT

FIG. 8

GATE IF
SEQUENTIAL

START ™
SEQUENTIAL —
STORE

Cal

SFAA
01 28

TO OPERAND OVERLAP
DETECTION

TO PROGRAM STORE
COMPARE AND OPERAND
STORE COMPARE

STORE IN
, PROGRESS
AND NO EOP

L)

EFAA

o1

TO OPERAND OVERLAP
DETECTION

TO PROGRAM STORE
COMPARE AND OPERAND
STORE COMPARE

EP 0 329 942 A2

FIG. 9

FROM LI/STORAGE FROM L1/STORAGE

SUBSYSTEM SUBSYSTEM
COMMAND/ADDRESS TA INTERFACE
INTERFACE DATA INTERFA
26A1(D)
L~
ABSOLUTE
ADDRESS | CMND DATA STBF
L2EP L2DP
L 26A1(C) L
1 28/l0 7/0 83|0
N
L1 N\ |
26A1(A) 26A1(B)
TO L2 CACHE TO L2 CACHE
DIRECTORY AND L2
AND L1 STATUS WRITE BUFFER
TO LINE-HOLD
REGISTERS

IRV — FN afs Nnn1

EP 0 329 942 A2

(Devez —— “ (d)evez
Bt -
« \/ Y92 mﬂw__.m m_ m_z< “ _ _
JED EE) 00 gM IHOVO 21 01o3yIg) 10
2 4818 ame1 y31S193Y 3HoOvD 21 0oL I[{|oja]l 2 a1oH-3NI
1NdNI Vva _
T e | [FHovoeiol = _
_
(H)evee (@)evez
(HIZvee @zvee | (3)evae
— As%mm — aE%N _ (E)vee
_ _
1321 (81i8) 00 Let (83L1A8) 00} || |S 10
| 4618 M2 -H344N8 JLIEM 21 i| [9lA] + aloH-aNn
I ——
I ol i o o e o ol e i i ol O ol v ol i Sl ol ol S Sl ol e S “ _
Mwwm«wm {v)€voe “ (@)evez
(V)evee
Ag_&@N A<=.<®N | ﬁcm(mm
! v _ v | | (Qwvee
JEA EIE) 00 JED (§3LA9) ool|! [s)
0 4918 aM2 0-4344Ng 3LIHM 27 " 5lA| 0 aloH-3aNN
0y v e Sl v S S S Sl e s W N O o ol e il ol S Sl S S W o S Sl “ T i
I
oWz —_ | —]
1 vIva anano Y _
| @wez_ JHOLS 271 Woud / (V)vog — |
N\ _STOHLNOD §HvY14 ILA8 3n3N0 / ss3yaay ainiosay
311HM 3LA8 3HOLS 21 WOoX4 (0)evez ‘0)2vez . 3ININD FHOLS 21 WouA
3dHOVO 21 Ol ‘Oivee

ol

‘Ol

8710 8Me1 S8

EP 0 329 942 A2

PROCESSOR STORAGE STORE, TLB M
1 42 +3 +4 —5-+8 ~+7 —+8-+98—+10+114
— 1
F—

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

11 CACHE
1 CONTROL
TLB
L1 CACHE DIRECTORY
L1 STORE QUEUE
L1 CACHE '
11 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU

L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
O L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L.3 DATA BUSS
L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

L1 CACHE DIRECTORY
L1 CACHE

L1/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
11 STATUS

L2 CACHE

L3 MEMORY

IRM — FN QRrRgf nni

—_ 1 1 1

__ HT/MISS

. ENGBFR

-— e e em -
-— e . - e
-— mm ww eme e
— o= e em -

— o v e v
-— e e e we e e

FIG.

-— e s - e

— mm e mm e mm e mw ewm e e ==

— e mw e emm ems e Sem

EP 0 329 942 A2

PROCESSING STORAGE STORE, TLB H, AE

PROCESSING UNIT

INSTRUCTION REG —

INSTRUCTION DECODE b=
P—— 1 ! !

ADDRESS ARITHMETIC !

STORAGE ADDR REG !

E-UNIT INPUT REG l
L1 CACHE

14 CONTROL '

TLB !

1 CACHE DIRECTORY !
L1 STORE QUEUE !
L1 CACHE !
!
!

11 CACHE DATA BUFFER
Li/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL !

L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL
L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM
MEMORY CONTROL REG IN!
MEMORY CONTROL |
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

11 CACHE DIRECTORY
L1 CACHE

11/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

— e e e mme e eew

! 1 1 !
1 1 I 1

— 1 (I |
— ! [

l—g-TOIR E ! 1

_ HIT/MISS
NG, BFR

{—
|

1 ! ! !
v 2fORE

FIG.

~1-+2+-3 +4—+5-+6 +7 —+8—+98—+10-+11 4

|
, _HIT/ACCESS EXCERTION
i
1
|
|
i

12

— e em e e em e e

— s e e mm e

- ew e e e e e e

-— e e e e e e ew am ww e

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS, TLB H, NO AE, L1 H OR

M, STG LIEP>UTP OR W/L2 INTFC BUSY, L2 BUSY

PROCESSING STORAGE STORE, TLB H, AE

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E~-UNIT INPUT REG

L1 CACHE

L1 CONTROL
TLB
1 CACHE DIRECTORY
L1 STORE QUEUE
L1 CACHE
11 CACHE DATA BUFFER
/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

1= 2——3-—+4—+

it
1— =

l
I
1
!
1
|
1
1
1
1
1

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
L1 CACHE DIRECTORY
1 CACHE
Li/L2 ADDRESS BUSS
L1/L2 DATA BUSS
L2 CACHE DIRECTORY
U1 STATUS
L2 CACHE
L3 MEMORY

IRM —~ FN QRR NNt

l
!
!
!
!
1
1
i

-— s e s am e

P S T T T

l__}IH T/MISS
'ENQUEUE
WR'IFF HIT

Sy

—

—
’_S_"I'ORE
—

!

1

!

1

1

‘Wit

I

- em aw e -

FIG.

+NI-+N.2+N.3+N.4+N.5+4

13

- e ams el e

- e e s e we v e

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,

EP 0 329 942 A2

Lt H OR M, STQ EMPTY, LI/L2 INTFC FREE, L2 H
+1 +~2+434+4 4+54+6 -7+ 8+9 410 +-11+
|
——

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG

E-UNIT INPUT REG
14 CACHE

1 CONTROL

TLB

L1 CACHE DIRECTORY
1 STORE QUEUE
L1 CACHE
1 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL

L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN
MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

1 CACHE DIRECTORY
L1 CACHE

Li/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

#* IF THE STORE REQUEST ABSOLUTE

|l

- e et mm e e e

—_ !
—

STORE
= lRl-u'r

|
!
!
!
!
|
!
!
!
!
!
!

__ Hi/miss
ENQUEU
WR IFF HIT

1

!
CLEAR

DEQUEVE

FIG.

14

¥*
CMD/ADDREENQ LOCK # TFR L1 DEQ
| SEARCH, HIT |

-— e e -

—_
i

1 R
ADDRESS MATCHES THE

-a - —— -— e — —-m— —

1 =
CMD/ADDR

NQ 'jB_f’R

| SEARCH,

<8

\.}lRng‘ PAI?TIAQ L2

1
L2 SET

:ELLL_-[-:E.:ES

|
ol et

L2 CMD/HQETI_I_?Z,ST-HIT 1

1
i
!
|

I

SET C/ADDR ;Q—CC

1
CcT
EKi')’ﬁ/%:'
|

o |
—_

—t

LOCK REGISTER ADDRESS, THE LOCK IS CLEARED.

i
!
1
1
!
!

1 !
PROCESSOR'S

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H,
NO AE, L1 H OR M, STQ EMPTY, L1/L2 INTFC FEE, L2 H

PROCESSING UNIT
INSTRUCTION REG Pl
INSTRUCTION DECODE P
ADDRESS ARITHMETIC .

1o
o

STORAGE ADDR REG

E-UNIT INPUT REG
11 CACHE

L1 CONTROL |1 |

TLB ! ! !

L1 CACHE DIRECTORY

!
11 STORE QUEUE !
1 CACHE !
1
1

!
i
1
!
|

L1 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL
L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER

L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM
MEMORY CONTROL REG IN' ! 1

— s e e w
- - e e

- wms e et we mm wme s wws e mw e
- wmt oms emp e pm wmm s em @ s e
- et oum s e eme v m tas e G

MEMORY CONTROL 1 et
ADDRESS/KEY Al il
L3 MEMORY CONTROL 1o !
L3 MEMORY 1 |

BUSY INDICATORS
1 CACHE DIRECTORY
1 CACHE
Li/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

- ww em e e e e e
- mw s ms e o em e

IRM — FN 0AR NN

- e e e e eme mm mw Sme wm e e

—-— . e— e w—

— et e emm aas e wme ew e s W e

1
!
|
!
|

— e v wm et ews e e e e ew Gmam

- et o wms mp ems waf mas emw W = Gmm

FIG.

- man e - s - G ot wmm eam s ww smm s e ww e

- . e e e e eme em

—— e ems e s e = ey e e et e

15

- o s et emp wme s e eme eme wm Smms

+12-+13 14 +15-+18—+17-+18 +19—+20-+214-22 |

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NX W/EOP, TLB H, NO AE, L1 H
OR M, LIEP=U1TP, L11/L2 INTFC FREE, L2EP>L2DP, L2 H FIG. 16

PROCESSING UNIT +—+2-+-3—+4—4-5—+8—4—7T— —+N—+N.14
INSTRUCTION REG | | |
INSTRUCTION DECODE = '—— ! 1
ADDRESS ARITHMETIC ! t— !
STORAGE ADDR REG ! ! =}
E-UNIT INPUT REG ! ! — 1

L1 CACHE STORE
11 CONTROL | | 1—i lHlTl | | l l]]
TLB ! ! ! ! 1 1 !

TMiss
L1 CACHE DIRECTORY ! "Ts‘i:o UEUE !
11 STORE QUEUE lFF fi
L1 CACHE '
1
1

!

1

!

4 CACHE DATA BUFFER I
Li/L2 DATA BUSS 1

L2 CACHE/BSU CMD/ADDR& CMD/ADDR&

ENQUEUE
L2 CONTROL P I ! I e I FROM_§1TQ

L2 CACHE DIRECTORY !
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
11 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL !

ADDRESS/KEY

L3 MEMORY CONTROL

L3 MEMORY

BUSY INDICATORS

1 CACHE DIRECTORY !

1 CACHE |

Li/L2 ADDRESS BUSS !

Li/L2 DATA BUSS !
1
1
|
!

l
1 1 SRARCH

ENQ IBHFR ENQUEUE

—
-
-
-
-
-

1 LI | |

___:l-_ _

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, L1 H
OR M, LIEP=UTP, L1/L2 INTFC FREE, L2EP>L2DP, L2 H FIG 17

PROCESSING UNIT +N.2FN.3+N.4+N.5HN.6HN.7HN.8FN.OHN.10HN 11N, 121
INSTRUCTION REG ; | T T |

INSTRUCTION DECODE !
ADDRESS ARITHMETIC !
STORAGE ADDR REG !
E-UNIT INPUT REG !

| l |
1 1 1 1 ! 1 !
! 1 1 1 ! ! !
1 | 1 1 1 1 1
1 | 1 1 ! 1 1

L1 CACHE
L1 CONTROL N T T AN ER N N H H B B
TLB 1 1 1 1 1 1 1 1 1 1 1 1
L1 CACHE DIRECTORY ! i 'DEQUEUE 1 1 ! 1 ! 1 |
1 STORE QUEUE ! | o 1 1 | 1 1 ! | 1
11 CACHE 1] 1 | 1 1 1 1 1 1 | 1
11 CACHE DATA BUFFER | l 1 | 1 ! 1 1 1 1 1 1
L1/L2 DATA BUSS ! 1 ! ! 1 I 1 i | ! 1 |
L2 CACHE/BSU

L2 CONTROL [IEB-IU DEQ i i | 1 1 1 1

HIT
L2 CACHE DIRECTORY ‘-gi - ! CHI ! ! ! | ! ! ! !
L4 STATUS APL . SET T
L2 CACHE/BSU CONTROL ! 1 | 1 1

CMD l_lZ_)'EQUEUF | | |

<8 BYTES
= TWRIT ‘ PARTIAL L2 LlNé

L2 DATA STORE QUEUE 'apH -
L2 CACHE WRITE BUFFER !
L2 CACHE 1
L2 CACHE READ BUFFER |
o L1 TRANSFER REGISTER !
- L2 INPAGE BUFFER !
L3 INTERFACE REGISTER '
L2/L3 DATA BUSS !
L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN +i L2 GMD/PORT ST-HIT . =

] | 1 1
MEMORY CONTROL Lo | o 1
ADDRESS/KEY ACC,CTL, _SETRC, , , ,
L3 MEMORY CONTROL SET.C/, READRIC, | | | 4 .
L3 MEMORY ADOR 0

BUSY INDICATORS

L1 CACHE DIRECTORY 1 |
11 CACHE | !
! 1
1 1

/L2 ADDRESS BUSS
U/L2 DATA BUSS
L2 CACHE DIRECTORY i

.
- amm s am e

L1 STATUS I I
L2 CACHE ! R ;

__._____.._
e m e =
e mmm e o
—————l———
e m— =
e m e -
e m e = -

L3 MEMORY N ! I

BM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,lUH F|G. 18
OR M, STQ EMPTY, LI/L2 INTFC FREE, L1 L, L2 H

PROCESSING UNIT 1+ 2+3+4-+5-+6-+7+8—+9 +10-+11-+
INSTRUCTION REG e I I B ! I
INSTRUCTION DECODE f——

ADDRESS ARITHMETIC !

STORAGE ADDR REG !

E-UNIT INPUT REG !

11 CACHE

L1 CONTROL

TLB !

L1 CACHE DIRECTORY]

11 STORE QUEUE !

1 CACHE !
1
!

1 CACHE DATA BUFFER
Li/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL

L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
11 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!
MEMORY CONTROL !
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
Ll CACHE DIRECTORY

L1 CACHE DIRECTORY
L1 CACHE

1
!
1
Li/L2 ADDRESS BUSS !
!
i
1
l

— et o e e mm e G s W e e

Li/L2 DATA BUSS

L2 CACHE DIRECTORY

L1 STATUS

L2 CACHE

L3 MEMORY I

— e e Gmp er s mme ema mm W wme e

STORE

S LA
~ HlT/MISS

| WR IFF HIT

CM

]
!
I
1
]
!
!
!
!
1
!
!

[

DEQUEVE

HIT,

ENQUEDE

'STORE L

P
CLEAR
/ADDRB}_I:JQ LOCK* _TFR U4 DEQ/

ke et

: SEARCH, GLEAR |
CMP/ADDR , L2 SET,

ENQ LB_’FRpEqu_SEUE DEQ EUE

WRITE, PARTIAL I,._1 l_er-,F

1
! 1
I 1 1 !
I 1 1 1
! 1 | 1
! ! 1 1
1 1 1 !

1
!
1
}
!
L2 CMD/ PORT 2, ST-HIT |

ool LCCCTL !

| SET | p/AqDR ‘READ Rc
! 1 t ! ! 1

—t—
—_—

- ot - —
— - - - o—

|

|

!

|

| i DR T !
| 1 1 —_
| 1 1 ! SR - |
I I | | | | |

1
!
1
!
!
!
|

* |[F THE STORE REQUEST ABSOLUTE ADDRESS MATCHES THE PROCESSOR'S
LOCK REGISTER ADDRESS, THE LOCK IS CLEARED.

. mmem e

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, 1H F|(
OR M, STQ EMPTY, L1/L2 INTFC FREE, U1 LI, L2 H ’
+12+13+14 +15-+16 -+ 17-+18 -+ 19-+-20+21+-22-

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E~-UNIT INPUT REG

11 CACHE

L1 CONTROL
TLB
1 CACHE DIRECTORY
4 STORE QUEUE
11 CACHE
U1 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

EP 0 329 942 A2

INV L1

.

TFR L1 L]
==

MEMORY CONTROL REG IN! 1 1
| __SET'RC!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

L1l CACHE DIRECTORY
1 CACHE DIRECTORY
U CACHE

/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

A —~ FN QAR Nni

QT e
1 ! |

a
m

———————_————o

R;EQ
!

"INV L1 CopY
1 v—if 1

- e em ww ww e mm em e ww M e

— e um mw e o e - ey

— e e e s et mn e wme

19

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, UH F|G, 20
OR M, STQ EMPTY, LI/L2 INTFC FREE, 11 LI, 4 XI, L2 H *

PROCESSING UNIT
INSTRUCTION REG H

INSTRUCTION DECODE ——
=
— 1
ol

STORE

ADDRESS ARITHMETIC 1
STORAGE ADDR REG !
E-UNIT INPUT REG 1

L1 CACHE
L1 CONTROL |
TLB !
L1 CACHE DIRECTORY
1 STORE QUEUE
L1 CACHE
L1 CACHE DATA BUFFER
/L2 DATA BUSS

L2 CACHE/BSU

L2 CONTROL

L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!
MEMORY CONTROL !
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
L1l CACHE DIRECTORY

1 CACHE DIRECTORY
1 CACHE

|
1
1
Li/L2 ADDRESS BUSS !
!
1
1
1

L1/L2 DATA BUSS

L2 CACHE DIRECTORY

L1 STATUS

L2 CACHE

L3 MEMORY |

!
1

- = am e e ear S

— . e e mw e

|
_HIT,
_Hmmiss

CMD/ADDREENQ LOCKx* _ TER L DEQ/
oReE] RCHIHIT | _IlgEQlJLI,I

CLEAR

SEARCHH|T,

SEARCH, CLEAR ,

, CMP/ADDR

WRITE

L2 CMD/PORT

3

|
!
!
!
1

i
!
1

DEQUEVE

2,SET,

L2 ST-HIT

1+ 2+3—+4+5+6-+7+8—+9 10411+

<8 BYTES

]
!
ENQ BFR, ENQUEUE \DEQUEUE
1
1
I
!
|
|
1

AcC CTL, _

ET C/ADDR , READ

| AW S—"
1

1 —_—l]

!
1

PARTIAL L2 LINE

R/C

—l
—_

!
1
!
!
!
1
1

IF_ THE STORE REQUEST ABSOLUTE ADDRESS MATCHES THE PROCESSOR'S
LOCK REGISTER ADDRESS, THE LOCK IS CLEARED.

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,UH F |G, 21
OR M, STQ EMPTY, LI/L2 INTFC FREE, L1 L}, L1 X, L2 H
PROCESSING UNIT —+12 +13 414 -+15+16+17-+18 +19-+20+21+22-

INSTRUCTION REG I I I | I I | I | I I |

INSTRUCTION DECODE ! 1 ! P ! I | 1 1 1

ADDRESS ARITHMETIC ! !] 1 1 1 1 1 ! | 1 |

STORAGE ADDR REG ! ! 1 1 ! 1 1 ! ! 1 !

E-UNIT INPUT REG ! | 1] | | |] | | | |
L1 CACHE

INV Ll REQ

11 CONTROL T e e T T T T T
1

TLB ' ‘W eopy V0N

L1 CACHE DIRECTORY NV Ll COPY

! 1

L1 STORE QUEUE 1 !

L1 CACHE ! 1

L1 CACHE DATA BUFFER 1 !

L1/L2 DATA BUSS ! !
L2 CACHE/BSU

L2 CONTROL

L2 CACHE DIRECTORY

L1 STATUS

L2 CACHE/BSU CONTROL

1 1
1 1
!]
L2 DATA STORE QUEUE ! '
L2 CACHE WRITE BUFFER ! !
L2 CACHE 1 !
1 i
1 1
1 1
| 1
1 1

m
(o)

TFR L1 LLXI
f——

L2 CACHE READ BUFFER
11 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN! ! ! !
MEMORY CONTROL | SET!R,C!
ADDRESS/KEY P—— il !
L3 MEMORY CONTROL 1 1 1 1
L3 MEMORY 1 | 1 1

BUSY INDICATORS

L1l CACHE DIRECTORY I f f
L1 CACHE DIRECTORY —t—t
1 CACHE ! !
/L2 ADDRESS BUSS —t
L1/L2 DATA BUSS ! 1
L2 CACHE DIRECTORY ! !
1 STATUS ! !

! I-

I !

— - et et Em» e e ——.-——-—-—m

i
!
!
1
1
1
1
1
1
1
1
!

— e e emm me emw mms e um e e e
- et e mw e ow mm mmm e me e e
— et ove e mwe e em ww s S e e
—— et e e e mw s mms e m e e
— m e s sw mms mm mw eme vw e e
- emp e me e ww mm e e e e e
— b b em e e mme ww e e mm s
-— - = —. — e ow em e we e e

- - s -
- . e mm .
J N
-— o e wme wm
— e . e ewe
- me am e -
- . - e ww

L2 CACHE
L3 MEMORY

— e e e am ew e = oale
— s s s am v e v e
— > e e e s e eas e
e R
- - e ew s mme mm mm e
—— vt e mm e emt. vew wme e

— v e mm e mE eas o e
— o Gmt mme mw s e e e

IM — FN aRrR nnM

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, FIG 22
L1 M, STQ EMPTY, L1/L2 INTFC FREE, L2 M, L2 ULR WO/l1 C
PROCESSING UNIT - +~2-+3-+4 +5+4+6 +7+8-+9-+0-+11+

INSTRUCTION REG — ! ! ! ! ! ! ! ! J ! !

INSTRUCTION DECODE l—- ! ! ! ! ! 1 ! ! 1 1

ADDRESS ARITHMETIC ! l—— | ! | t ! 1 1 | |

STORAGE ADDR REG ! ! — ! 1 ! ! 1 l l

E-UNIT INPUT REG | | o | | i | | | ! !
11 CACHE

L1 CONTROL i 1 — 1 HIT! 1 1 1 1 1 1 1

TLB

L1 CACHE DIRECTORY

1 STORE QUEUE

L1 CACHE

1 CACHE DATA BUFFER
L1/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN1!

MEMORY CONTROL !

ADDRESS/KEY !

L3 MEMORY CONTROL !

L3 MEMORY !
BUSY INDICATORS

L1 CACHE DIRECTORY .
L CACHE roo
Li/L2 ADDRESS BUSS 1o
/L2 DATA BUSS roo
to
o
roo
1o

! 1
1 1
! 1
! i
| 1
1 1

- e mm e e ew
v
-

CMD/ADDR&FHQ SET FREEZE

—t
SEARCH MiSS
SEARCH
! CMb/AD' Mlss' !
ENQ ?_3_F'R ENQ E L3 ADDR

—— e emm em ees e s e
- s e s e me e e

| Bl
1 ! i t
1 1 1 |
I 1 1 1
! 1 i 1
1 i 1 !
1 t 1 1
1 1 1 1

L2 CMD/PORT, L2 ST-MISS

l‘l_a NPAGFEG Iﬁ - AGTIVATE

/ADD _
' TFR L3 ADI‘,;QREs READ|RIC,
| 1 1 1 ! ! 1

|
|
L2 CACHE DIRECTORY 1 | 1 —
L1 STATUS i 1 1 1 —_t
L2 CACHE ! 1 1 1 | —t—q
L3 MEMORY 1 1 1 1 1 1 | D e—

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,

EP 0 329 942 A2

L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

L1 CACHE

L1 CONTROL
TLB
1 CACHE DIRECTORY
41 STORE QUEUE
4 CACHE
1 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE

L2 CACHE READ BUFFER
1 TRANSFER REGISTER
L2 INPAGE BUFFER

L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L.3 MEMORY

BUSY INDICATORS
1 CACHE DIRECTORY
L1 CACHE
L1/L2 ADDRESS BUSS
L4/L2 DATA BUSS
L2 CACHE DIRECTORY
11 STATUS
L2 CACHE
L3 MEMORY

IBM — EN 988 001

FUUR UG Uil 8 S

I

o
S
}...___

&

1
'sE

AGE

PENP INPAG

|} 1 Tl R 1
——1 REP}D/AESDR
|] 1

BEAD ACCES]S

1
|
I
i
H
!
1
1

E-
[
1
REQ:
H
1
1
1
1

DD!’!
CMB/ADBRR

!
|
1
1
1
1

NORM ST

i
|
I
|
|
|
I
!
I
!
1

P

fe e e e em e e e

— s em mm

FIG. 23

+12-+13 14415 +18 417418 +19+20+21-+22+

- et em em s e
- ems em emm et aus

1 1 1
{ 1 1

1 |
lbUA VLD
1 | 1
1 1 1
1 1 1
1 1 1
1 1 1
1 B
. QWA
|IEBJQ.WE_

TFR QWA

e o mm mm e e e e
e = e e s e e -
e o e e aw e o= e

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,

L1 M, STQ EMPTY, L1/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C

+23+-24 +-25+26+27-+28 +-294+-30-+31+32+-33+
! 1 !

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E~-UNIT INPUT REG

L1 CACHE

L1 CONTROL
TLB
1 CACHE DIRECTORY
L1 STORE QUEUE
11 CACHE
1 CACHE DATA BUFFER
/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE

L2 CACHE READ BUFFER
1 TRANSFER REGISTER
L2 INPAGE BUFFER

L3 INTERFACE REGISTER

L2/L3 DATA BUSS
L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
L1 CACHE DIRECTORY
4 CACHE
L1/L2 ADDRESS BUSS
Li/L2 DATA BUSS
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE
L3 MEMORY

! 1 l 1 1 1 1 !

FIG. 24

1 ! 1
1 1 !
1 1 1
1 § !
! 1 !

CMD-COMPL CLEAR
INPAGE FREEZE
1 i H i i i [_ 1 i
. 1 1 1 1 1 1 CSEARCH UPDATE,
(QWB,QWC QWD QWE, QWF,QWGQWH SEARCH
VLD VLD VLD VLD VLD VLD VLD
P — b~ = — - 1 | 1 _ —i 1
1 1 1 i i 1 i 1 "}IPDAD E/ INL2 D
| 1 I 1 i 1 i | (A i HJ M
R T T T T T T N P T (o<
1 i | I | { 1 1 ! 1 1 1
'awa'aws'awcawd awelawFawdaws' ']
— e bt b b e b b 111
I-Q—-IWBI—l — b P = b | 1 L ! 1
WBawcAWDoweQWFawgWH oML, 1,2
TFR TFR TFR TFR TFR TFR INPQ/ ST-
QWC QWD QWE QWF QWG QWH, _, PORT, UNMOD
i 1 P 1 (L3 NOT, | 1
1 1 ! 1 I) BUSY | t
I 1 1 I 1 1 1 1o 1 L2,
i 1 1 1 i 1 1 1 I ! ISETI
| | 7 i 1 i] 1 1 1 1 1 i
1 i 1 | 1 1 i 1 i 1 1 i
1 I I ! 1 1 | 1 1 1 i !
I ! | i 1 | 1 1 | i | I
1 1 1 1 !] 1 1 } ! l i
1 | 1 | I 1 I 1 1 ‘ | ‘_
1 I i I ! 1 1 i 1
) 1 1 1 1 1 1 1 1
1 | I | 1 | 1 1 1

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, FIG 25
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C *

PROCESSING UNIT -+34-+35+36 +371+38-+39-+40-+41{-+42+43+44—
INSTRUCTION REG ! ! 1 ! 1 ! 1 1 ! 1 | !
INSTRUCTION DECODE ! ! l 1 ! ! ! | I] | 1
ADDRESS ARITHMETIC 1 1 | | 1 1 ! 1 | 1 | |

STORAGE ADDR REG | { 1 | ! 1 | to | | 1
E-UNIT INPUT REG ! ! i | | |] 1 | | | |
11 CACHE

11 CONTROL 1 | | | | | | | 1 | 1 1
TLB '
L1 CACHE DIRECTORY 1
4 STORE QUEUE !

1

i

!

U CACHE
L1 CACHE DATA BUFFER
Li/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

!

1

!

|

L2 DATA STORE QUEUE {

L2 CACHE WRITE BUFFER |
L2 CACHE 1 =

!

1

I

1

1

L2 CACHE READ BUFFER
11 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS '
L3/L4 SUBSYSTEM
MEMORY CONTROL REG IN | DBS[;REOR;Q L
MEMORY CONTROL L~P0 MDIRREQ
ADDRESS/KEY . — , = MDIR
1
]

A e
— e mme emt emn emw e e s aum e e
— omn s ot e e e mm mm Ame e e
- n e m e mm e e emp s mw =
- ems mw e e e Gm e e = o w

L3 MEMORY CONTROL ;| UPD, UPDATE
L3 MEMORY . MPR
BUSY INDICATORS
L1 CACHE DIRECTORY
L1 CACHE
L1/L2 ADDRESS BUSS
L4/L2 DATA BUSS
L2 CACHE DIRECTORY
11 STATUS +—t
L2 CACHE At
L3 MEMORY . I

- e e em e
-— o e e e
- e e e e

— e - e e

! 1 !
1 1 1
[1 t
! I 1
1 I !
! | 1
1 !
! !

IBM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, FIG. 26
L1 M, STQ EMPTY, Li/L2 INTFC FREE, L2 M, L2 MLR WO/U1 C

PROCESSING UNIT +r{+2+3-+4 +5-+¢-+7-+8-+9-H0-+11+
INSTRUCTION REG Ly 1 ! ! ! ! ! ! P ! !
INSTRUCTION DECODE f— ! ! ! ! ! ! o 1 1
ADDRESS ARITHMETIC ! l—— ! 1 P ! P 1 |
STORAGE ADDR REG ! 1 —_ 1 ! i | | (I 1 |
E-UNIT INPUT REG | 1 —i 1 1 1 1 ! 11 ! !

11 CACHE STORE
14 CONTROL | i i 1 Hn.l 1 1 | 1 1 1 1
TLB 1 | 1~ ' 1 | ! t 1 1
11 CACHE DIRECTORY Lo l——;Ei;Ni-' Sisu' oo
1 STORE QUEUE ! ! 1 ! v-—9 F 1 ! tot 1 1
11 CACHE 1 1 ! 1 1 ! ! 1 1 1 | 1
L1 CACHE DATA BUFFER ! ! 1 ﬂc’iﬁRl le 1 (I |]
L1/L2 DATA BUSS ! 1 1 ! —— 1 1 1 Y 1

L2 CACHE/BSU

S
D/ADDR&FNQ ET FRE'E’ZEl

L2 CONTROL

L2 CACHE DIRECTORY SEARCH_,,_\SS g
L1 STATUS 1 eubAG IQE_A1RC l
L2 CACHE/BSU CONTROL CMD/ADDR L2 MSS

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!
MEMORY CONTROL !
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

L1 CACHE DIRECTORY !
L1 CACHE !
Li/L2 ADDRESS BUSS 1
1/L2 DATA BUSS !
L2 CACHE DIRECTORY !
I
!
!

i
[}
1
—i 1
I:ENQ Egnl [ENQUEUE' L3 ADDR
1
1
H
1
1
]
1

2 CMD/PORT, L2 ST-MISS

T il

| TFR L3 ADDR READ, R/C,
1 1 1 ! 1 1

e)

- e mm e ew ew ew =
- e et s me e =

1
|
1 ! 1 | R |
L1 STATUS ! ! ! 1 —_
L2 CACHE ! | ! 1 ! —_—y
L3 MEMORY | | ! ! ! | fr—t——

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE, F‘lG 27
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/L1 C *

PROCESSING UNIT ~+12-+13+14+15 18 +17-+18 419 +20-+21-+22+
INSTRUCTION REG A
INSTRUCTIONDECODE ' ' v ' 1 ¢t &1 1 &t 1 1 1
ADDRESS ARITHMETIC ! ¢ ' 1 = 1t t 1 1 &t 1 1

STORAGE ADDR REG ! ! ! ! ! ! J ! | o !
E-UNIT INPUT REG ! t i ! 1 ! 1 1 1 1 I 1
1 CACHE

L1 CONTROL ! 1 1 1 1 1 1 1 1 1 1 1
TLB !
4 CACHE DIRECTORY !
1 STORE QUEUE !
1 CACHE !

1

1

U CACHE DATA BUFFER
L4/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY] I i |

L1 STATUS I !
L2 CACHE/BSU CONTROL '___I’NF:AGElREQl

1
1
|
1
L2 DATA STORE QUEUE :
L2 CACHE WRITE BUFFER n
L2 CACHE .
L2 CACHE READ BUFFER .
I3 TRANSFER REGISTER .
L2 INPAGE BUFFER |
L3 INTERFACE REGISTER . .
L2/L3 DATA BUSS CMI/ADDPR L
L3/L4 SUBSYSTEM .
1
1
1
i

PEND INPAGE-NORM ST
o I I

O - === =
\>-._..__..

MD/ADDR

I
!
l
1
1
!
1
I
l
i
by !

- - e e e e e em e e e
- s e mm e e mm en et e ew ma

1

MEMORY CONTROL REG IN1 1 ! 1 1 1 1

MEMORY CONTROL 1 'SET'R ! 1 1 |

ADDRESS/KEY] —i] { 1 1

L3 MEMORY CONTROL 1| 1 ggﬁg”f%ﬁ g !

L3 MEMORY w . BEADAGCCESS ,_ . __ . _
BUSY INDICATORS

L1 CACHE DIRECTORY !
L1 CACHE !
LI/L2 ADDRESS BUSS I
L1/L2 DATA BUSS !
L2 CACHE DIRECTORY !

!

1

4 STATUS
L2 CACHE
1.3 MEMORY } +—t } t } } } } t t +

[1 I 1 ! I
! ! ! [! 1
l | l 1 1 !
1 1 | l ! 1
1 { 1 1 1 !
l (| ! 1 1
! l | l ! !

IBM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,
1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/L1 C

FIG. 28

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG
11 CACHE

L1 CONTROL
TLB
1 CACHE DIRECTORY
11 STORE QUEUE
L1 CACHE
11 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE

L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER

L3 INTERFACE REGISTER

L2/L3 DATA BUSS
L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN 1

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

L1 CACHE DIRECTORY
L1 CACHE

/L2 ADDRESS BUSS
Li/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

1

1 1

) I |
1 !

1 1

4QWBQWCQW DQW_E;Q FawgQWw

“+23+24+25+26 +27-+28+29+30+31 +32+33+

I 1
1 1 1 ! 1 1 1
1 ! T 1 ! i 1
1 I | 1 1 ! 1
1 1 ! 1 ! 1 l

— e e e = -
- e e s e -
- s e s e e
— e e s e e

- e o e e

1 }
1 !
1 !
] !
1 !
1 1

1 !
CMD-COMPL CLEAR
lNPAGE FREEZE

SEARCH q_pATE
~SEARCH

!
owa awc owolowg QWF,QWGQ "\
VLD VLD VLD VLD VLD VLD VLD

MLozd

kS

INPAGE/
'ADD)

—i

i 1 1

1 1 1

1 1 ! l

1 I 1 1

wA'aws' awcawd owéﬂv \
l——l

[g ="~
Ig‘

—

b—i
1
1
i
1 | t
Faw v
b i 1 | 1
—_ i] H 1 1 1

4
NP
PORT_MOD

1 i
og?P GE
ADDR/L2

SET

i

1

1

!
—

.

TFR TFR TFR TER TFR TFR
QWC QWD QWE QWF QWG QW

e

L3
B

28

— - =
- ew e e -
- e o - -
- e e ew e
- o
- e e

-y mr e e s we ww e
e - . - - e em e
— e e e e we
— e e e o e -
—tn s mw me s e e o

L3 MEMORY

B -—-%—2'

— e et ww ow e e
— e et e e v e
ade e mm gy e e am eme

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NO AE,
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/L1 C

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

L1 CACHE
- 1 CONTROL
TLB

4 CACHE DIRECTORY
1 STORE QUEUE
4 CACHE '
1 CACHE DATA BUFFER
L/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE -
L2 CACHE READ BUFFER
I TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

11 CACHE DIRECTORY
U CACHE

L1/L2 ADDRESS BUSS
L1/1.2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

[BM — EN 988 001

EP 0 329 942 A2

FIG. 29

1341351361371381391401 41142 143 1441
I . 1 ! S T R P

! 1 } ! 1 1 1 ! ! i 1 1
[! ! 1 1 ! 1 ! ! 1 1 1
l 1 i 1 I ! 1 1 I t 1 1
1 1 1 1 } 1 ! 1 1 1 ! 1

I l l 1 1 1 } 1 ! 1 ! !
1 ! 1 1 !

: ! 'OUT'PAGI::' ADDR

2

I

Foed | wRee
!

i

]

!

1

!

| IWR 32 !

1 |] 1 |
1 1 CMD/ 1OPB-~ OPB+0OP
1 1 ADRR, WO, QW1 QW
(L3 CGMD/ADDR, 1 1
TFR TFR TFR

QWO Qw1 Qw2 Qw3
! 1 1 !

1
i
|
!
}
!
|
1
B~OP

N

!
Rt |t
jggR UPD ., (QWo Qw12 ays oy aws awe

MDIR WRITE/,_

ADDR E ACCESS'

U PV FUs T
WRITE ACCESS

At e e e eme e

o e e ew aw = ew me
e v e e e e e -
fe v e e e e e
-.._——-T——
I
Ao e e ew e e ew =
e e ew e e e e e

- o e e e o -

EP 0 329 942 A2

PROCESSOR STORAGE STORE, NS W/EOP, TLB H, NQ AE, FI G 20
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/L1 C *

PROCESSING UNIT —+45 +46-+47-+48+49-+50-+51+52+53+54-+-55+
INSTRUCTION REG L !
INSTRUCTION DECODE ! ! I ! ! ! i ! ! ! ! !
ADDRESS ARITHMETIC ! ! ! ! ! 1 ! ! 1 ! 1 !
STORAGE ADDR REG ! ! ! vl ! ! 1 i ! ! !
E-UNIT INPUT REG ! 1 1 I 1 ! 1 ! 1 1 I 1

L1 CACHE

11 CONTROL 1 1 1 | 1 1 1 1 1 1 ! 1
TLB
11 CACHE DIRECTORY
1 STORE QUEUE
1 CACHE
1 CACHE DATA BUFFER
1/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL 1 1 1 1 1 1 1 1 1 1 1 1
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

e e e wt e e ew me e e
— oty it b s e em mmw e w me
- e e aw e emt mw ew mme s e
- em e ew Ew e s mw e mw e
- s s e e Ew emt e mw e
- em w s e e e e ww et e

MEMORY CONTROL REG IN1 &Y FOF [L3 NpT BUSY =~ = =
MEMORY CONTROL ! 1 1 1 | 1 1 1 1 1 1 1
ADDRESS/KEY awT 1 | 1 1 |] !]]]
L3 MEMORY CONTROL — 1 | 1 1 1 1 1 ! ! 1 |
L3 MEMORY t——t——t——t——t—— 1 1 1 1 1 1

BUSY INDICATORS
L1 CACHE DIRECTORY ! !
4 CACHE ! !
L1/L2 ADDRESS BUSS I !
L1/L2 DATA BUSS 1 !
! 1
! !
! !

L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE
L3 MEMORY A

L T R
o emt mms e et e, e e
- e i e et um e e

EP 0 329 942 A2

PROCESSOR STORAGE STORE, sQ(e4)/1 L2 LN, TLB H, OR M, F‘G 31
STQ EMPTY, L1/L2 INTFC FREE, L2 H

PROCESSING UNIT 1 —+4+2+3+4-+5+86 —~+74+8-+9-+10-+11-+
INSTRUCTION REG o | ! l ! | (. !
INSTRUCTION DECODE 1—— { UPD: UPD1 UPDi UPD1UPDI UPDI UPDH ! !

SFA +8 +8 +8 +8 +8 +8 +8_'

| | 1
ADDRESS ARITHMETIC ™ SFA SFA SFA SFA | SFA SFA SFA EFA,

STORAGE ADDR REG oo "28 +1a*1b4 "'52 +40':18 '

E-UNIT INPUT REG ! ! !
W 3 W5 DWB
11 CACHE DWO DW1 DW2 DW DW4 D DW7

OR STORE STPR E STORE
11 CONTROL | sﬁ’—ds Parda el |

TLB L HIT HIT HlT HIT HlT LHIT (HIT (HIT
11 CACHE DIRECTORY = :’:‘ H/M1 JH/M H/M :/M HIM H/M gm
11 STORE QUEUE ¢ ENQ,O,FENQ Y, E__Q%_N N__,H,_f‘NQ_Q, NG 7

I 1
I 1
1 !
14 CACHE | | WRITE IF AND ONLY [FHITS =0 2 15 17 1 oy
1 1
i {

§TORE|_ITORE STQQE STORE)JOMTQBESTQEE
E /(E’Z\C[‘; A%r P[\D gTS SBSUFFER . TFR TF}LTFB_*TFB_* TF_R;’TFR STORE

'DWO' DW1 DW2 DW3 DW4 DW5 TFR
L2 CACHE/BSU

L2 CONTROL T e v ClA 2 QA 35—' r—lf‘ ‘rf
Lo CACHE DIRECTORY ' ' ' o ! SEA—CHs—!T SETEA 4,
11 STATUS ., SEARCHTO
L2 CACHE/BSU CONTROL {1 TDWB/RE REFY, REF’/ REP/;

lENQ BFR| /\DDR +8 +8 :

ENQ O ENQ‘\l 7_‘1—-1 '_Q4II?O1
(ENa 2 /. pwWo, DW1

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE)
L2 CACHE READ BUFFER
4 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L.3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN !

MEMORY CONTROL !

ADDRESS/KEY !

L3 MEMORY CONTROL !

L3 MEMORY !
BUSY INDICATORS

L1l CACHE DIRECTORY
L1 CACHE DIRECTORY
11 CACHE

!
!
!
L1/L2 ADDRESS BUSS !
L1/L2 DATA BUSS 1
!
!
!
!

e e o e e e ea e 70

— s e w wms omm

!
1
!
I
{

- - - e me

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

— - e e wms e ewa e mes

R e s i

IBM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(64)/1 L2 LN, TLB H, OR M, F]G 392
STQ EMPTY, LI/L2 INTFC FREE, L2 H - .

PROCESSING UNIT —+12+13+14-+45+16+17-+18+19 +20-+21+4-22

INSTRUCTION REG x
INSTRUCTION DECODE |
ADDRESS ARITHMETIC '
STORAGE ADDR REG !
E-UNIT INPUT REG |

11 CACHE INV LIl REQ <
11 CONTROL | | |

|]
TLB Lo INV'Ll CopYk
11 CACHE DIRECTORY Lo .—.
1]
1 1

o
:on
:

- - -

B0
11 STORE QUEUE

4 CACHE
3 CACHE DATA BUFFER T':R dW7 !

14/L2 DATA BUSS ' dLeak TFR
L2 CACHE/BSU C/A TWEOP 1HO Xl

L2 CONTROL dilg™ nsgAhCHt-* MRealty |
L2 CACHE DRECTORY °°, bATE'REC))“E |

1=
1

- EFY 1REFY \RE

1 STATUS 'Rm"" "1‘3"’:_'”' SEARCH' '_C.‘LEAF{-'- :

L2 CACHE/BSU CONTROL ‘1o talo, REP% whAoSR L2 sET! !

—i

W 7

-1

.I.

L2 DATA STORE QUEUE Y5hs'"pda 3 b_' EQ7 'D '—*-;Q 'WBO

WR'ge/
-
1
1
!
!
!

L2 CACHE WRITE BUFFER
L2 CACHE :DWZ:E"',',?,F Bwe

L2 CACHE READ BUFFER EQYDO4 WR 32/,
]
1
!
!

WBo 'BY 1
11 TRANSFER REGISTER

1o

1o

L2 INPAGE BUFFER U

L3 INTERFACE REGISTER I !

L2/L3 DATA BUSS I
L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN'!

MEMORY CONTROL 1

ADDRESS/KEY !

L3 MEMORY CONTROL |

L3 MEMORY !
BUSY INDICATORS

Ll CACHE DIRECTORY | |

L1 CACHE DIRECTORY bt
1 CACHE P

!
!
|
Li/L2 ADDRESS BUSS —+— !
L1/L2 DATA BUSS - !
1
!
!
|

m
. S
a

L2 CMD/PORT L2 ST—HIT | | |

i 1
I READ RIC 1
I S}ET C(ADDh—n A¢C LS S
! 1 1 1 1 SETRC,
! I

! 1
! 1
! 1
! 1
1 !
t 1

L[]

L2 CACHE DIRECTORY

| !
L1 STATUS | 1
L2 CACHE | 1 ' t } |
.3 MEMORY I | | l | | |
L ACTIONS PERFORMED

ONLY IF L1 CACHE COPIES EXIST WITHIN THE CONFIGURATION.

< ACTIONS PERFORMED ONLY IF L1 LI; QUANTITY AND OCCURENCE OF
L1 INVALIDATE CYCLES DEPENDENT ON SFA.

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(80)/2 L2 LN, TLB H, NO AE, FIG 3 3
L1 H OR M, STQ EMPTY, LI/L2 INTFC FREE, L2 H .

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

11 CACHE
L1 CONTROL

TLB
o 4 CACHE DIRECTORY
= L4 STORE QUEUE
L1 CACHE
L1 CACHE DATA BUFFER
L1/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE/BSU CONTROL
L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
1 TRANSFER REGISTER
i L2 INPAGE BUFFER
: L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN !

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
L1l CACHE DIRECTORY
LI CACHE DIRECTORY
L1 CACHE
Li/L2 ADDRESS BUSS
L1/L2 DATA BUSS
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE
L3 MEMORY

IBM — EN 988 001

H -+2+-38+4—+5-+6 +7+8-+9-+10-+11+

i | I | | | I ! I 1 !

l——i 1UPD: UPD1UPD1UPD1UPD1 UPD1 UPD1 UPD1UPD;

. (SFA4B_+8_18_ 48 4B 48 18 +8_+8

SFA SFA SFA SFA SFA SFA SFA SFA SFA

P e T4 +1e'_é4'_éz 340" +48 "+88 w64 '
! qu’T)\No'_’D\J'E‘ DWOF DW10 DW11'DW12 DV DWH4'

RE_ GTORE | STDRE , STOR RE,
Lo 57—9551 TP_‘s'rb'rlE m’cﬁem
L HIT HIT 1_1_-111_ HIT | HIT (HIT (HIT (HIT |
o H/M H/M /M H/M H/M H/M HM HM
ENO'OC ENQOD ENQOF EEQ“O ENq12

WRITE IF AND, QNLY |F HITS E 0?: l E:O'ﬂH' Nat

§TORE, STORE STORE STORE, STORE GTQRESTORE

' 1 JER TFB_'TFB_'TFR_* TFR TFB_* __’R_E

0C 0D 'OE 'OF 10 ' 1 TR
GfA 0C_G/A 0D G/A OE C/A OF s

l
seg_can SET, GA 10
! |
: : | SEARCH, 1H0 SEARCH

o srR D,WB/ L-'f”t—?”’l-?”’u
FNQ PR, e
' EQOC Noopﬁ 10,

3

!]
1 !
! ! ! !
! 1
! 1
1 |

,L2 CMD/RORT,_,
' Lo
| !
! 1

I I ! | | | I I

o1
P
o
oo
.
1
1o
1o
.

— = = = = - -

il

— o e em e s e ol

PROCESSOR STORAGE STORE, SQ(80)/2 L2 LN, TLB H,
NO AE, L1 H OR M, STQ EMPTY, L1/L2 INTFC FREE, L2 H

+12+13-+14-+15-+16+17 +18+19+20+21+22+

PROCESSING UNIT

INSTRUCTION REG !
INSTRUCTION DECODE !
1

ADDRESS ARITHMETIC !gra

EP 0 329 942 A2

STORAGE ADDR REG B‘Wﬁ
E-UNIT INPUT REG /1

L1 CACHE STORE
L1 CONTROL mh- lHlTl
TLB "T-I/TA HIM

4 CACHE DIRECTORY -
11 STORE QUEUE
L1 CACHE
L1 CACHE DATA BUFFER
L4/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
Lt STATUS-

‘é_'ORE_lSTpRE

TER 13 ,TFR 14 TF,,R 15

CIA 12 C/A 13

HIT
f_lse

L2 CACHE/BSU CONTROL A"EﬁR s

L2 DATA STORE QUEUE ENR L
L2 CACHE WRITE BUFFER
L2 CACHE

L2 CACHE READ BUFFER 1
4 TRANSFER REGISTER !
L2 INPAGE BUFFER |
L3 INTERFACE REGISTER !
L2/L3 DATA BUSS l

L3/L4 SUBSYSTEM

| q__gl ENQ NG, ENQ

!—I l——l
DWOE PWOF DW10lDW11

1
|
1
!
1

1
!
!
!
l

o
T‘1H1 '

|
!
1
l
I

— - - . —

ST-HIT

MEMORY CONTROL REG INFt = 7' 1
MEMORY CONTROL L2 CMD/PORT *
ADDRESS/KEY Lo
L3 MEMORY CONTROL 1t 1 1
L3 MEMORY 1 1 1 1

BUSY INDICATORS

L1l CACHE DIRECTORY Lo
1 CACHE DIRECTORY = —+—i 1 |
I3 CACHE —
/L2 ADDRESS BUSS = —>L —1 1
L4/L2 DATA BUSS —
L2 CACHE DIRECTORY —+— 1 1
L1 STATUS i |
L2 CACHE | —t—
L3 MEMORY Lo

+-ACTIONS PERFORMED

- e . it et e wma

Fig Mg 4

9 0500

I

DwW12

!

— e et e mw e amt e

—

- - s -

P

SET

!
!
I
!
|

DW‘13l DW1

| REQ, 11
INV -

H
4 DW15 — w_ge/w

ez,

l
!
!
!

CLEAR I1H1 1

i
!
1
|
!

1
ol

8T WB,
5 o,_%a}_é
w

WBO :

1
L
1
!

1
1
1
1
i

FIG. 34

EQ 1.1 INVL

'R

C/A 15 CLEAR 1HO dl'
WAE""SEARch UPDATE SEARCH UF‘DATE‘
SEARCH bLE_.ﬁhJ-SE C
LD we/ REF/ REF/ REP/ REP/ REP/ ST WB/,

+8 ADDR

EAR -l-
R 2!

SETI

\ HST-:!_{T L2 CMD/PORT
L2 CMD/PORT
C/ADDR

<

SET C/ADDR '
| —i

1
!

= 1
ST-HIT

1

}
1
!
1
!

1
1
l

"ONLY IF L1 CACHE COPIES EXIST WITHIN THE CONFIGURATION,
< ACTIONS PERFORMED ONLY IF L1 LI; QUANTITY AND OCCURENCE OF

L1 INVALIDATE CYCLES DEPENDENT ON SFA.

EP 0 329 942 A2

PROCESSQR STQRAGE STORE, 8Q(80)/2 L2 LN, TLB H,NO AE, FIG 35
1 H OR M, STQ EMPTY, LI/L2 INTFC FREE, L2 H .

PROCESSING UNIT +238+244 25426 +27+ 28 4+29-+4+-30+-314-32+33

INSTRUCTION REG 1.1 l | | | |
INSTRUCTION DECODE ! 1 ! 1
ADDRESS ARITHMETIC ! ! ! !
STORAGE ADDR REG ! ! ! !
E-UNIT INPUT REG | 1 1 |

| | l ! !
1 1 1 ! ! 1 1 !
! 1 ! ! 1 ! ! !
! ! 1 1 ! ! ! !
1 I 1 1 1 1 ! !

4 CACHE DATA BUFFER ' ! !

Li/L2 DATA BUSS i !
L2 CACHE/BSU F

L2 CONTROL

L2 CACHE DIRECTORY

 STATUS

L2 CACHE/BSU CONTROL

]

]

1

1
L2 DATA STORE QUEUE »9h
L2 CACHE WRITE BUFFER 1y
L2 CACHE :
L2 GACHE READ BUFFER 1
11 TRANSFER REGISTER !

1

1

1

L1 CACHE INV L1l REQS INV U REQ<
{1 CONTROL —] l'"'(| | | | | | |
LLCB:ACHE DIRECTORY ! IN‘V 1_11' copy " ! INV' 1l coPY'< : : : :
1 STORE QUEUE ,__go WED,1 oo |
1 1 i |
1 i 1 !
1 H | 1

; 1

1 I 1 i

{ 14 CACHE N
! 1 | !

] 1 ! 1

L X REQ

'-—I

L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN! 1 ! ! 1 |
MEMORY CONTROL ISET R,C 'SET'R,C!
ADDRESS/KEY 1 = ! 1 !
L3 MEMORY CONTROL | | 1 1 | 1
L3 MEMORY 1 1 1 1 1 1

BUSY INDICATORS

L1l CACHE DIRECTORY
1 CACHE DIRECTORY
L1 CACHE
L1/L2 ADDRESS BUSS
Li/L2 DATA BUSS !
L2 CACHE DIRECTORY !
1 STATUS +—t ! !
!
|

£
E.

4
=

a

A

A

__..._{--_

1
T
1
!
1 ——
}
1

L2 CACHE T+t
L3 MEMORY I | l

+ ACTIONS PERFORMED
ONLY IF L1 CACHE COPIES EXIST WITHIN THE CONFIGURATION.

< ACTIONS PERFORMED ONLY IF L1 Ll; QUANTITY AND OCCURENCE OF
L1 INVALIDATE CYCLES DEPENDENT ON SFA.

IR . N oRs NN

EP 0 329 942 A2

PROCESSOR STORAGE STORE, 8Q(64)/1 L2 LN, TLB H, NO AE, FIG. 36
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C

PROCESSING UNIT 1 —+2-+3+4—+5-+6-—+7 +8 +9—+10+1{1+
INSTRUCTION REG — 1 ! 1 i ! ! ! ! 1 ! 1
j——t 1UPD: UPDUPD:1UPDIUPDi UPDIUPDI 1 !
INSTRUCTION DECODE SFA 48 +8 4+8 +8 +8 +8 .48
ADDRESS ARITHMETIC | —_——t e e = e e = =] —] 1 1
SFA SFA SFA SFA SFA SFA SFA '_E‘FA |
STORAGE ADDR REG ! 1 i +8 +18 '_54 '_52 “orn !

E-UNIT INPUT REG ' ' "Swdbwi'Dw2"Dwa'Dwa'Dws'owe'DW?
14 CACHE
STORE S8TORE 8TORE STORE

L1 CONTROL | 1 tgioRe FeToRE [sTode T etoRe! !

TLB I HlT HlT HIT HIT HIT HIT HIT ’__!T,
L1 CACHE DIRECTORY 1 I__LMIBS MIBB‘_ISBII_MSQ_ISBMIBBLIBSHSQ
11 STORE QUEUE r 1 ENQQ, ‘?N—ﬂl '%-91 ﬁE._fﬂl?nEm
1 CACHE | |
!
}

11 CACHE DATA BUFFER WRW°LST%EBL“EE°RE?TQR—E.BT° E

TFR_TFR TFR TFR TFR TFR I _'_R_E
L4/L2 DATA BUSS U 'owo'Dw1'DW2 DW3' DW4 ' DW6 'TFR

L2 CACHE/BSU SET FREEZE DW8

C/A O C/M C{A‘ZQA 3 CA b

L2 CONTROL |

CA 4
L2 CACHE DIRECTORY | SEARC’; “r‘fs S5 \
11 STATUS . 1 1 SEARCH, 5 \es na ADDR
L2 CACHE/BSU CONTROL Lo - 1D‘fn 1RE +8P/ »—g” n—FP/:
L2 DATA STORE QUEUE F

L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!
MEMORY CONTROL !

| e 1 B L l-—l
T ENoOENG Y /T EQupat
| Ego 2 1DWO; DW14
I D%g I

-2 CMD/RORT, L2 ST-MIS§
PRIORITIZE 1 A AC_'I_"Né\TE

| !
ADDRESS/KEY | o1 L3
L3 MEMORY CONTROL ! oo W%Agg/ nTFRu |
L3 MEMORY | Coa B L3 ADDR

BUSY INDICATORS
L1 CACHE DIRECTORY b
L1 CACHE P
L1/L2 ADDRESS BUSS o
Li/L2 DATA BUSS o
L2 CACHE DIRECTORY ! ;
1
I !
1o

i
[[
3
1

-~ -t7L-

1
!
1

!
L1 STATUS ! ! —_—t
L2 CACHE] i | R B |
L3 MEMORY ! ! | 1 PR T T

EP 0 329 942 A2

PROCESSOR STORAGE STORE, §Q(84)/1 L2 LN, TLB H, NO AE, FIG 37
14 M, STQ EMPTY, Li/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C .

PROCESSING UNIT —+12-+13-+14—+15—+18—+17+18-+19+4+-20+21-+22+
INSTRUCTION REG ! ! ! ! 1 ! ! 1 1 ! 1 1
INSTRUCTION DECODE [1 I T B R R
ADDRESS ARITHMETIC | ! ! ! ! 1 ! 1 ! | ! 1
STORAGE ADDR REG ! I | ! | J t | ! !

E-UNIT INPUT REG | ! | | | | 1 1 ! i | 1
11 CACHE
11 CONTROL

1
- TLB |
L 11 CACHE DIRECTORY !
1
1
1

I STORE QUEUE
4 CACHE
L1 CACHE DATA BUFFER
/L2 DATA BUSS
L2 CACHE/BSU

! 1
! I
I 1
| !
! !
! 1
_TFR,DW7

PEND IMPAGE-NORM ST
C/A, 8, C/A 7 W/EOR

L2 CONTROL 1 1 1 1 ! 1 1
L2 CACHE DIRECTORY 1 | 1. . oo
L1 STATUS REF/ "’%lNPAlGE REQ R TR B !

REP/+8 REF/+8' REF/+8 bwo'vLo

L2 CACHE/BSU CONTROL B bt ot b 1201 4 1 1 e

L2 DATA STORE QUEUE = 2*5113“0’04':@;35 DEAT

— — 1 1 1 1 1 1

L2 CACHE WRITE BUFFER IoivoioWa,DWADWSDWEDW: 1+ 1 1 1 1

(2 CAGHEREADBUFFER ! ' ! ' + t 1 1 1t 1o

; 1 TRANSFER REGISTER ' ! ! ! t 1 1 t 1 1 1 1
: L2 INPAGE BUFFER Y AT T S S B T B W
L3 INTERFACE REGISTER ! 4 cn?ﬁqﬁ S R T R TR =
L2/L3 DATA BUSS (L3 CMD/ADOR | | | |, TFR QWO,QWi_

L3/L4 SUBSYSTEM TFR

MEMORY CONTROL REG IN! ! ! ! !
MEMORY CONTROL ! lSET' R ! !
ADDRESS/KEY Y g~y

|]
{]
1 1
REA_D[AQDR
L3 MEMORY CONTROL 1 1 1 |
L3 MEMORY 1 ... _,_READ,ACGESS _ |
1
1
1
1
1
1
|

BUSY INDICATORS
I CACHE DIRECTORY ! I
1 CACHE { 1
/L2 ADDRESS BUSS +—
Li/L2 DATA BUSS a—

L2 CACHE DIRECTORY Pt
L1 STATUS , o
L2 CACHE ool
L3 MEMORY —

de wm - -— . ms - e
o = e — - w— oy
o wm - - e wm e
de - - L
o - - - s mm e e
‘e - e - e wmm e e
L T - et wmm e s
e - o s -

N . FA aaga N1

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(84)/1 L2 LN, TLB H, NO AE, FIG 38
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C .

PROCESSING UNIT +23+244-25+28 +27-+28-+29+30 +31+32+33+

INSTRUCTION REG ! ! 1 1 ! ! ! ! ! | ! !

INSTRUCTION DECODE ! 1 ! 1 | 1 ! 1 ! ! ! |

ADDRESS ARITHMETIC ! ! ! ! ! ! ! ! ! ! ! !

STORAGE ADDR REG ! ! ! ! 1 1 1 ! 1

E-UNIT INPUT REG | ! | 1 | | | 1 1
L1 CACHE

L1 CONTROL 1 | 1 | | | | | | 1 | 1

TLB

11 CACHE DIRECTORY

11 STORE QUEUE

11 CACHE

L1 CACHE DATA BUFFER
L4/L2 DATA BUSS

I
1
|
!
! 1
SEQ, COMPL RTNE

— e e e ew e
- wm em ee es -
- wem e e mm
e
- em wm ww ee -
-~ e s e e .

CMD-COMPL CLEAR
L2 CACHE/BSU INPAGE FREEZE
L2 CONTROL 1 1 1 1 1 1 — 1 — =
L2 CACHEDIRECTORY ' t t+ 1 1 1 1 PEARCH UPDATE,
14 STATUS ;QW1,0W2,aw3,aw4,aws,aweaw7, , SEARCH,
VLD VLD VLD VLD VLD VLD VLD L2
L2 CACHE/BSU CONTROL V— M 1 W I~ — +— | 1 L’WM D
L2DATASTOREQUEUE ! ! I ' 1t 1 1 1 'NPQSE/ 9
L2CACHEWRITEBUFFER ! ! ¢t ¢t 1 1t 1 1 R o1
L2 CACHE t 1 1 1 1t 1 1 1 1 1 RDZ3
L2CACHEREADBUFFER ! ' ' 1 & 1 1 1+ &t 1t 1 1
1 TRANSFER REGISTER lqwo|0w1low210w310 1 w] } | 1 |
L2 INPAGE BUFFER Yt bt i l—vl“l-Q—l S&WB"E\:J'I‘ 1 | 1
L3 INTERFACE REGISTER F=h, b=t #=t = 4=~ = = 1 1 1 1 1
QW1 QW2 QW3 QW4 QW5 QW8 QW7
L2/L3 DATA BUSS TER'TERTERTFRTERTER ! ! OMPL L3

L3/L4 SUBSYSTEM QW2 QW3 QW4 QW5 QW8 QW7 INPQ/ ST~

MEMORY CONTROL FEG IN1 1 1 1 & 1 kgt PORT, UNMOD
MEMORY CONTROL ! ! ! ! ! ! 1 ! 1 !
ADDRESS/KEY ' 1 1 1 1 1 BUSY , LZ;E.ET:
L3 MEMORY CONTROL |] | i 1 1 | 1 | 1 i '
L3 MEMORY 1 | | | ! 1 1 ! 1 1 1 1
BUSY INDICATORS
L1 CACHE DIRECTORY 1 | 1 | 1 | 1 1 1 ! ! |
L1 CACHE 1 1 |] ! ! 1 1 1] 1 !
Li/L2 ADDRESS BUSS 1 |] | 1 ! ! 1 | | ! !
L1/L2 DATA BUSS | ! 1 ! ! 1 ! 1 1 1 1 1
L2 CACHE DIRECTORY ! ! ! ! 1 | ! ! } 1 1 }-
Ll STATUS 1 | 1] ! ! 1 1 ! —t—t
L2 CACHE !] | | | | 1 1

L3 MEMORY +

PROCESSOR STORAGE STORE, 8Q(84)/1 L2 LN, TLB H, NO AE,
1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 ULR WO/L1 C

+-34-4-354+-36+-37+38 +39+40 +41-+-42-+43+44-

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC

STORAGE ADDR REG
E-UNIT INPUT REG
L1 CACHE

L1 CONTROL

< TLB
L1 CACHE DIRECTORY
L1 STORE QUEUE
L1 CACHE

4 CACHE DATA BUFFER
L1/L2 DATA BUSS

L2 CACHE/BSU

EP 0 329 942 A2

1 | 1
1 I

o
1 1 |
1] |

CLEAR 1HQ_TER DFQ

L2 CONTROL —

L2 CACHE DIRECTORY CoYARCH URDATE
L1 STATUS ' ar! %E_?RCZH - t
L2 CACHE/BSU CONTROL ! S 488 2

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUES

L3/L4 SUBSYSTEM

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
U CACHE DIRECTORY
1 CACHE
L/L2 ADDRESS BUSS
L1/L2 DATA BUSS
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE
L3 MEMORY

P FN apa A

1 1 1 1 i
WR 32 , WR32/,
'WR 96 WBO) WBO

Bsu gop '

L2 CMD/PORT
MEMORY CONTROL REG IN ' ;5 H

molR'ReQ

| s |
URD
MDIR

ET C/ADDR

RFQ WBP
WRa6/

T2 §T-HIT |

'\!_ READ R/G
DIR \UPDATE |,

— e de e o e = e

1
1]
¥

- e dw s ew me e

- s . e e -

— e et em s ew o -

FIG. 39

EP 0 329 942 A2

- PROCESSOR STORAGE STORE, 8Q(B4)/1 L2 LN, TLB H, NO AE, F'IG 4 0
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/l C

PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

L1 CACHE
L1 CONTROL

TLB
L1 CACHE DIRECTORY
L1 STORE QUEUE
L1 CACHE
L1 CACHE DATA BUFFER
L1/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
11 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN !

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

L1 CACHE DIRECTORY
L1 CACHE

Li/L2 ADDREBS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

H +2 +3 +4 +—5-+6 -7 —+8 +9 —+40 +11 -+
e T 1 ! i 1 1 1 1 1 ! !

1—— 1UPD1UPD1UPD1UPDI1UPDIUPDIUPD, 1
SFA +8 +8 +8 +8 +8 +8 +8

!

1 t— !
T'SFA SFA SFA SFA SFA SFA SFA | EFA

1 = Hg +16"'é4*1§2 +40'T4’ o

1

"' 'Dlo'DW1'Div2'Diva'Diva Divs'De D7
GTORE GTORE STORE STORE

v FGore et e etoRe
L — L HIT HIT HIT HIT | HIT l_"“T lﬂ']'_ (HIT
— _ MISSMISSMISSMISEMISGMISEMISEMISS
. ENQp_ENQ] FNogENog _FNos ,ENQ‘{
! Fidg
Wﬂéﬁmﬂﬁ e s ST g ,gmh
E

JFR_ TFR TFR TFR TFR TFR
' U 'Dwo'Dwi'Dwi2 DWa'Dwa DW5' TER

L0 4 . CAD, CMCh2CRICM

SEARGH_Miss F_|;T IC/AS

1HO
 SEARCH, M0 o 113 ADDR

P WB/ADEB BEFt0, (REH1S
MQ .BFR. EMQ1 EMQ2 DW1,
|

! ! ! DW(‘) I

1 EQ¥/DQQ
] 1

- e o oems em e Flleme e - .

,L2 cMD/?‘Qg $T-M|T' e
L3 INP)}GEII__I?R —READ _ge_/c

I T AIDDR P

I R A A T
P — , :
1 1 1 1 1 1] 1 1 1 1]
S ——t——— 4 -
L e T T T S —
oo ——
T ey S S
L I T T PR T
I L e B s

EP 0 329 942 A2

PROCESSOR STORAGE STORE, 5Q(84)/1 L2 LN, TLB H, NO AE, FIG A1
L1 M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/ uc .

PROCESSING UNIT +12-4+-13—4-14 415 416 ~-17-4-184+-19+-204-21-1-22+
INSTRUCTION REG ! U 1 I I |
INSTRUCTION DECODE ! ! '
ADDRESS ARITHMETIC ! !
STORAGE ADDR REG ! !

1 |

E-UNIT INPUT REG
L CACHE

11 CONTROL ! !] ! ! ! ! ! ! 1 1 1

TLB

L1 CACHE DIRECTORY
L4 STORE QUEUE

1 CACHE

L1 CACHE DATA BUFFER L J ! I R ! 1 I

TFR DW7
L4/L2 DATA BUSS
L2 CACHE/BSU ~ PEND IMPAGE-NORM 8T

L2 CONTROL q_ﬂs C/A' T WEOR

L2 CACHE DIRECTORY ! '
14 STATUS gp/+§ INPAGE ,REQ

; REF/+8 R P/+8 RE +8
L2 CACHE/BSU CONTROL EI' !

L2 DATA STORE QUEUE E'_.Q_ngl’@beal i%’i@kgé?e sl

t‘; gﬁgﬂg WRITE BUFFER | Sloinlvai DW4I DW5IDWSIDW?

L2 CACHEREADBUFFER ' ' ' ' ' 1
11 TRANSFER REGISTER ! ! | |
L2 INPAGE BUFFER MDJADDR

L3 INTERFACE REGISTER ' —
L2/L3 DATA BUSS L3 CMD/ADOR TFR QWO _

L3/L4 SUBSYSTEM o
MEMORY CONTROL REG IN! 1t ! '
MEMORY CONTROL ' 'seTR !

- ADDRESS/KEY o —{ .A,Q(AthR |
L3 MEMORY CONTROL 1 1 BF AD' ACdESS'
L3 MEMORY 1 1 p——t——t——p——t — —+—

BUSY INDICATORS
L1 CACHE DIRECTORY o
L1 CACHE oo
/L2 ADDRESS BUSS +—
Li/L2 DATA BUSS +—
L2 CACHE DIRECTORY |
1 STATUS |
L2 CACHE ! _
L3 MEMORY — i~

L. s = e e e o
S e
e o e e we e - -
— ey e wm e = w
- e wm s e e e
fe = e e e cw ww
e v e e aw am o e
e = o o e e e e
- e mm e e .

P . N 089 NN

PROCESSOR STORAGE STORE, SQ(64)/1 L2 LN, TLB H, NO AE,
L1 M, STQ EMPTY, L1/L2 INTFC FREE, L2 M, L2 MLR WO/L1 C

—+23-+24+25+28-+27-+28-+28 +30-+31-+32-+33+

PROCESSING UNIT
INSTRUCTION REG !
INSTRUCTION DECODE !
ADDRESS ARITHMETIC !

!
I

STORAGE ADDR REG
E-UNIT INPUT REG
L1 CACHE

1 CONTROL !
TLB |
11 CACHE DIRECTORY 1
1 STORE QUEUE |
1 CACHE !
L1 CACHE DATA BUFFER
L1/L2 DATA BUSS 1

L2 CACHE/BSU
L2 CONTROL !

L2 CACHEDIRECTORY ' 1 1 1 1 1 1 PEARCH UPDATE,
U1 STATUS \QW1,QW2 QW3 QW4 QWS QW8,aw7, SEARCH,
VLD'VLD'VLD'VLD'VLD'VLD'VLD L2
L2 CACHE/BSU CONTROL V= 1 i i i i 1 1 e v
L2DATASTOREQUEUE 1 1 1 1 1 1 1 1 PG/ MO
L2 CACHEWRITEBUEFER @ ' ¢+ 1 &1 a1 o i@=&nh
L2 CACHE L e e -
L2CACHEREADBUFFER ' ' ! ' 1 1 1 1 &t 1 1
11 TRANSFER REGISTER 'mwn'murt'nurs! mwe'mure vt cwrdegs! 4 0!
awo'awi'aw
L2 INPAGE BUFFER W0 QW Ow2 Qwsowe ows aweawr, | |
L3 INTERFACE REGISTER =i b= b=t bt b=t bt b= 1 1 1 1 1
L3/L4 SUBSYSTEM QW2 QW3 QW4 QW5 QW8 QW7 INEQ/ oD
MEMORY CONTROL REGIN! t 1t 1 1 1 = 1 __1 PO AN
MEMORY CONTROL 1ot 0 1 o g L8NoT, o,
ADDRESS/KEY 1 i 1 1 1 1 1 BUIS Y 1 i 1
LAMEMORY CONTROL 1 1 1 1 1 1 1 1 1 QUTFAGE,
L.3 MEMORY 1 1 1 1] 1 1] 1 ng % 1/. 1
BUSY INDICATORS
11 CACHE DIRECTORY R T T TR S R SN S SN S SR
L‘] CACHE ! }] 1 |] | 1 1 i 1 !
/L2 ADDRESSBUSS ' ! 1 U 1 1 1 1 v 1
U/LZ DATA BUSS 1 ! 1 1 1 1] 1 1 1 1 1
L2 CACHEDIRECTORY 1 ' 1 1 1 1 1 1 p+——r—+t
L1 STATUS L e e S B i B
L2 CACHE S T T T S S S T

EP 0 329 942 A2

FIG. 42

CcMD-COMPL' CLEAR'
INPAGE FREEZE
1 [I | by 1}

L3 MEMORY

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(84)/1 L2 LN, TLB H, NO AE, FIG. 43
L M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/U1 C

PROCESSING UNIT +34-+35-+36+ 37-+38-+39+40-+41+42-+H43-+44+
INSTRUCTION REG e
INSTRUCTION DECODE ' !
ADDRESS ARITHMETIC ' !
STORAGE ADDR REG Lo
E-UNIT INPUT REG e R

L2 CACHE WRITE BUFFER RDge ' '

11 CACHE
u CONTROL 1 1] 1 !) |} 1 1 1 1 1
L TLB) 1 1) 1) 1) 1 1) 1
11 CACHE DIRECTORY I T T i S N S R T
L1 STORE QUEUE S T T T = S T T R
I3 CACHE 1 | 1 ! | ! | 1 1 i 1 |
13 CACHE DATA BUFFER 1 | ! | 1 1 1 1 ! ! 1 !
Li/L2 DATA BUSS gg‘h)ﬁP‘L | I] I 1 ! 1 1 ! |
L2 CONTROL T gt R T T T
SEARGH_ TFR DEQ
L2 CACHE DIRECTORY ! —F=T 'y =™ T T S S T
EARCH UPDATE

11 STATUS T r——sz o Lo o 1 1
L2 CACHE/BSU CONTROL ! LAt 1oy =5 § ey b
L2 DATA STORE QUEUE 1 ABDR ADDR! LFweo .,
1 !] 1

1 } ! 1

H]] 1

L2 CACHE kgt BT }E:”whw 1 WES 93/ WRo

L2 CACHE READ BUFFER ' 'WR® ! !

L1 TRANSFER REGISTER I | l lOPB—IOPB-:OPB—:OPB—L)F’B-I()P OPB-0OPB-

L2 INPAGE BUFFER Lt omy ! B

L3 INTERFACE REGISTER 'La QMg[/)IB;_'DR (20, OW1 QW2 QW3 QWA Qw5 awe w7,

Lﬁg‘;ﬁ 4DQ3|\388YUSSTSEM T TER TER TFR TFR TERTFR TER TER'
L2 cMD/PoRT O QWO QW1 QW2 QW3 QW4 QW5 QW8 QW7

MEMORY CONTROL REG IN PD VDIR 'FTElQ » T-HILI' ! 1 1 I l 1

MEMORY GONTROL Ptk oe e dEAD e feeThe |

L3 MEMORY CONTROL Amm .upn. n—; n_"."° J“ P_"!Z °W3-_‘1"4 u_‘a"sd’e

L3 MEMORY MDIR WRITE/ |

BUSY INDICATORS ADDR '~ WRITE ACCESS
L1 CACHE DIRECTORY
1 CACHE

1 | | !
1 1 1 1
/L2 ADDRESS BUSS ! ! ! !
Li/L2 DATA BUSS ! ! ! i
L2 CACHE DIRECTORY
L1 STATUS }
L2 CACHE B — 1]]
.

L3 MEMORY

Je

IBM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(84)/1 L2 LN, TLB H, NO AE, FIG. 44
L M, STQ EMPTY, LI/L2 INTFC FREE, L2 M, L2 MLR WO/U11 C *
PROCESSING UNIT —+45+-46-- 474 48-+49-+ 50+ 51—+ 525354+ 55—

INSTRUCTION REG 1 1 i 1 | 1 1 | 1 1 1
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

L1 CACHE

1 CONTROL 1 | 1 I 1 | | i 1] | |
TLB !
4 CACHE DIRECTORY !
I3 STORE QUEUE !
1 CACHE !
11 CACHE DATA BUFFER 1 ! o ot o 1 1 | 1
L1/L2 DATA BUSS ! ! ! ! 1o (B | ! 1]
L2 CACHE/BSU

L2 CONTROL

L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

- o - - e ows e e - - — —
- s e - ewew @ Em s e - -
— s - um s W ww ew = - —
- s e - emam @ o= - . - -
— S am s e W wmm s s - -
- e e - o mw W e - = — -
- = e - mmem W e - .. - —
- ww . - emem W e - es - -

MEMORY CONTROL REG IN! E§ Ul EOI? 1 L3,Ll_p Tl BU§Y i ! ! !
MEMORY CONTROL 1 1 1 1 | | I | 1 ! 1 |
ADDRESS/KEY | ovn' 1 1 1 | 1] 1 ! 1 |
L3 MEMORY CONTROL i ! 1 ! 1 ! 1 ! ! 1 1
L3 MEMORY b — o ——— 1 1 1 1 1 1

BUSY INDICATORS

11 CACHE DIRECTORY
L1 CACHE

L1/L2 ADDRESS BUSS
Li/L2 DATA BUSS

L2 CACHE DIRECTORY
i STATUS

L2 CACHE

L3 MEMORY —“+—

- aaw amw mm ewa e v
— et e e wew sem

1
!
!
!
!
!
!
1

- e am e em ee em ew
- em en ws e e -
P
- em em ew wm ew o= an
- e ew w e en e e
- e % am es e em

PROCESSOR STORAGE STORE, 8Q(84)/2 L2 LN, TLB H, NO AE,
STQ EMPTY, LI/L2 INTFC FREE, LN1: L2 M, L2 'ULR WO/L1 C,

LN2: L2 H
PROCESSING UNIT
INSTRUCTION REG
INSTRUCTION DECODE
ADDRESS ARITHMETIC

STORAGE ADDR REG

E-UNIT INPUT REG
L1 CACHE

1 CONTROL

TLB

4 CACHE DIRECTORY
4 STORE QUEUE

1 CACHE

1 CACHE DATA BUFFER
L4/L2 DATA BUSS
L2 CACHE/BSU

L2 CONTROL
L2 CACHE DIRECTORY
11 STATUS
L2 CACHE/BSU CONTROL
L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
L2 CACHE
L2 CACHE READ BUFFER
L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS

L3/L4 SUBSYSTEM

MEMORY CONTROL REG IN!

MEMORY CONTROL
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS

4 CACHE DIRECTORY
L1 CACHE

L1/L2 ADDREES BUSS
/L2 DATA BUSS

L2 CACHE DIRECTORY
L1 STATUS

L2 CACHE

L3 MEMORY

IBM — EN 988 001

1—

EP 0 329 942 A2

FIG. 45

1 —+2—+ 3—+4 +5-+86 -7 -+8-+9+10-+11—+
— 1 1 ! 1 1 1 1 | ! 1 1

IUPDIUPD! UPD UPDIUPDIUPDIUPD! ! 1

[SFA,;+8_,+8 +8_,+8 ,+8 48 +8_, i .
SFA SFA SFA SFA SFA SFA SFA EFA

1 I 1

Dwoo 38 +1e‘ k4‘1’32 40) g

! 1 1
DWODDWOEDWOFDW‘IO DW11 DW12 DW13

STORE STORE STORE = STORE
F SToRE Fetode M 'stoRe ! !
L HIT HIT Hr_r_ (HIT_, HIT , HIT | HIT HIT ,
MISS MISS M MISS MISS H/M H/M H/M H/M'
ENO oc ENO 1o ENQ 12 JENQ 13

ENQ 11
1 1 WRITE IR ANDIONLYI IF %] HIT !

quL °L3'T$E55L“E£Y°R_?T QRE m%m
. 1 1 1 ,TFR,TFR,TFR,TFR,TFR,TFR E

OC OD OE OF 10 11 TFR
SET FREEZE 12

hoC, 0P CACE” GAQF G0 Gt
| (SEARCH MBSSET |

1HO
o ST
lglle HAIDt—il | 8 I+£-|:
' ! ENQI ENQ' '___'

+, ENQ
10C 10D /" [owoc pw’q
1 EBENQ !

1 QE |ENO| 1
e OF
TR T TR T
TS T SRS S

! I
ENQ

- - - st W mm mm wm - -—
-~ e = - e e o e ww e - -
- - —-— — —— — - ewa -~ e -
-— -— - mm et w em e e o -

L2 CMD/RORT ,_L2, ST-MISS,
i 1 RRIORITIZE ACTIVATE
L3 INPAGE/ADDR,_ _,__,

: 1 1 1 J1FRL3 AQDR
1 1 1 1 HEADR/C,

il

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(84)/2 L2 LN, TLB H, NO AE,
STQ EMPTY, LI/L2 INTFC FREE, LN: L2 M, L2 ULRwo/i ¢, . FI1G. 46
LN2: L2 H

PROCESSING UNIT ~+12-+-13—+14—+-15—4-16 41718 +-49—+20+21-+22 4+
INSTRUCTION REG ! ! o | P ! 1 R

INSTRUCTION DECODE J ! U ! P ! ! [
ADDRESS ARITHMETIC ! ! P ! P ! ! o !
STORAGE ADDR REG ! 1 o ! 1o ! ! I B

E-UNIT INPUT REG | 1 | 1 ! | t 1 | 1 1 1
1 CACHE

11 CONTROL 1 1 1 1 1 1 1 ! 1 1
TLB]
4 CACHE DIRECTORY !
1 STORE QUEUE !

!

|

4 CACHE
L1 CACHE DATA BUFFER
Li/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY
1 STATUS
L2 CACHE/BSU CONTROL

L2 DATA STORE QUEUE ErN ?1 EN ?

1

1

E 1
L2 CACHE WRITE BUFFER J—t i 1 !
L2 CACHE OWOE, DWPF |
}

i

i

1

TFR 13

PEND INPAGE-NORM §T
clA"Tz 'CIA 13 W/EOP ¥

INFJEND 'RE]

L2 CACHEREADBUFFER ! I 1 1
1 TRANSFER REGISTER ! | 1 1
L2 INPAGE BUFFER ' eMAbDR!

L3 INTERFACE REGISTER !
L2/L3 DATA BUSS \ 118,CM/ADDR
L3/L4 SUBSYSTEM TFR Q
MEMORY CONTROL REGIN! ' t 1 1 1 1
MEMORY CONTROL t gepR !t ! i
i

el «
5 _
<
~—

g

B S -

-—r---—--
=
o

o~
1=

7

ADDRESS/KEY . ——i e
L3 MEMORY CONTROL | 1 ggAg/ﬁg'; .
L3 MEMORY L A g |||

BUSY INDICATORS
1 CACHE DIRECTORY ! ! !
Lt CACHE 1 | !
Li/L2 ADDRESS BUSS -t 1
L1/L2 DATA BUSS —p—p |
1
|
1

---~-=- £

1o

L2 CACHE DIRECTORY ! !
L1 STATUS I !
L2 CACHE ! !

!
!
!
1
!
1
|
L3 MEMORY !

EP 0 329 942 A2

PROCESSOR STORAGE STORE, §Q(84)/2 L2 LN, TLB H, NO AE,
STQ EMPTY, L1/L2 INTFC FREE, LN%: L2 M, L2ZULRwo/ui e, FIG. 47
LN2: L2 H

PROCESSING UNIT —+ 23424 +25-+28-+27—+28-+29 +30-+-31 +-32-+33+
INSTRUCTION REG S T T T T S T R R

INSTRUCTIONDECODE ¢ ¢ ' 1 1 & 1t 1 & 1 't
ADDRESS ARITHMETIC ¢ ¢ ' ¢t 1 1t 1 1t & 1 1 1
STORAGE ADDR REG 1 1 1 | 1 1 [1 [| 1 1
E-UNIT INPUT REG | 1 1 1 | 1 1 I 1 1 1 1
L4 CACHE

11 CONTROL
TLB
L1 CACHE DIRECTORY
L1 STORE QUEUE
L1 CACHE
L1 CACHE DATA BUFFER
L4/L2 DATA BUSS

L2 CACHE/BSU cOMPL CLEAR
L2 CONTROL ' S T T T
Lo CACHE DIRECTORY ' 1 1+ 1 1 1 1 PEARCH UPRATE,
14 STATUS QW7,QW4,QW5,QW2,QW3,aW SEARCH
L2 CACHE/BSU CONTROL AL

L2 DATA STORE QUEUE

1
L2 CACHE WRITE BUFFER !
L2 CACHE !
!
1

- e e wms s s e
- em s e em e ew
- ms e e wmm e
o ww s e ws em we

! 1

| 1

! 1

L2 CACHE READ BUFFER ! !

3 L4 TRANSFER REGISTER O -
L2 INPAGE BUFFER ,QW6, QW7 W4, AWS |

| o |
L3 INTERFACE REGISTER awr,apsaws a2z absajo gl <

At ed e e de 1} |
L2/L3 DATA BUSS TFR TFR TFR TFR TFR TFR m%l;'

L3/L4 SUBSYSTEM QW4 QW5 QW2 QW3 QW0 Qw1
MEMORY CONTROL REG IN!
MEMORY CONTROL !
ADDRESS/KEY
L3 MEMORY CONTROL
L3 MEMORY

BUSY INDICATORS
L1 CACHE DIRECTORY
L1 CACHE
L1/L2 ADDRESS BUSS
L4/L2 DATA BUSS
L2 CACHE DIRECTORY
L1 STATUS
L2 CACHE
L3 MEMORY $ t 3 t } t } 4 t } } 4

aw2'aws'awo’ awt’

1 ! 1 I 1

} 1 1 1 ! 1

I 1 ! ! 1 l BusY ! 1 lJNMI D
1 1 1 1 1 !

! ! 1 1 1 t

IBM — EN 988 001

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(64)/2 L2 LN, TLB H, NO AE,
STQ EMPTY, Li/L2 INTFC FREE, LN%: L2 M, L2 ULR Wo/i ¢, FI|G. 48
LN2: L2 H

PROCESSING UNIT +34+35-+36-+37-+38-+39-+40 +41-+ 42+43+44 +
INSTRUCTION REG L e e
INSTRUCTIONDECODE ' ' ' & 1 1 1 1 1 1 1 1
ADDRESS ARITHMETIC ' ! 1 't 1 1 1 1 1 1
STORAGE ADDR REG T L I T T R T R
E-UNIT INPUT REG ! 1 | 1 ! !] 1]

L1 CACHE
L1 CONTROL 1 1 ! | 1 1 1 1 1 1 1 1
TLB 1 1
11 CACHE DIRECTORY ! DEQ IWBO 1
1 STORE QUEUE !
1

U CACHE
1 CACHE DATA BUFFER
L1/L2 DATA BUSS
L2 CACHE/BSU
L2 CONTROL
L2 CACHE DIRECTORY

ST wB/ApDR

| SEQ COMPL RTNE CLEAR 1HD/ CLEAR H1 | TFR,DEQ,
SEARCH HIT \SET H1 SEARGH |\ SEARCH URDATE,

1 STATUS | SEE REP/IR?EIED;\ Rc;'5'/'—“1“'123 T 'EEARIC.:: SET
L2 CACHE/BSU CONTROL ' _ *=t g Ly che PET
L2 DATA STORE QUEUE ! /APDR | 85%9 r&w.a; e PROWBO , DEQWRI,
L2 CACHE WRITE BUFFER i g | HD\W Eq @Rse)weo‘ bt
=il 1 U L
tg gﬁggg READ BUFFER ! WR Sa 1 1 1. WR32/|WBOI WRSZI'WB'lI
L1 TRANSFER REGISTER ' ' 't ! %S‘IR?/ R T TR B
L2 INPAGE BUFFER oo oroor o
L3 INTERFACEREGISTER ' ! P I bt 1 1 b b
L2/L3 DATA BUSS v 'lé$ s ! 'g% U
L3/L4 SUBSYSTEM - cMp/ ST-
HIT HIT
MEMORY CONTROL REG IN!_ BRUEQP ',a%fTMﬂ — o1 R |
MEMORY CONTROL g ! ! ! Lo
ADDRESS/KEY MDIR L ! —il 1 ED'B T —i
L3 MEMORY CONTROL Req 'UPDI MDR_ , , 88T TCh SET RC
L3 MEMORY \ MDIR UPQATE, —, AQDR , ,

BUSY INDICATORS

L1 CACHE DIRECTORY
11 CACHE

Li/L2 ADDRESS BUSS
L1/L2 DATA BUSS

L2 CACHE DIRECTORY A
L1 STATUS 1 1 1
L2 CACHE —t t i
L3 MEMORY | ! ! !

{ 1
1 1
! !
1 1

T
fo bt e e e e
e fo = e o -
T

!
!
!
!
]
1

i U

EP 0 329 942 A2

PROCESSOR STORAGE STORE, SQ(64)/2 L2 LN, TLB H, BO AE,
STQ EMPTY, Li/L2 INTFC FREE, LN%: L2 M, L2 ULR wo/ii ¢, F1G. 49
LN2: L2 H

PROCESSING UNIT —+45+4-464-47--48-449-4-50 +51+524+63 4654455
INSTRUCTION REG | | | 1 | !
INSTRUCTION DECODE
ADDRESS ARITHMETIC
STORAGE ADDR REG
E-UNIT INPUT REG

1 CACHE
L1 CONTROL
TLB

L1 CACHE DIRECTORY
L1 STORE QUEUE

4 CACHE

L1 CACHE DATA BUFFER
L/L2 DATA BUSS

L2 CACHE/BSU
L2 CONTROL

L2 CACHE DIRECTORY b r P
L1 STATUS
L2 CACHE/BSU CONTROL
L2 DATA STORE QUEUE
L2 CACHE WRITE BUFFER
- L2 CACHE =
i~ L2 CACHE READ BUFFER
L L1 TRANSFER REGISTER
L2 INPAGE BUFFER
L3 INTERFACE REGISTER
L2/L3 DATA BUSS
L3/L4 SUBSYSTEM
MEMORY CONTROLREG IN; 1 |

1
MEMORY CONTROL 1 ISET'R.C! |
ADDRESS/KEY R TR

1
1

- e e mm e e e
- emm wm em s ww e
- e we ew e e e
- mm mw wme s s e
- e e s s mm e
- e ew mm om ew e
- s mw mm em s e

< - - -
©
<
=
o

-
- - we ww e e wmm em s
- e mw emm e ems e ww em e
- w e e me s eew e mp

L3 MEMORY CONTROL b
L3 MEMORY oo
BUSY INDICATORS
1 CACHE DIRECTORY

14 CACHE

L/L2 ADDRESS BUSS
Li/L2 DATA BUSS

L2 CACHE DIRECTORY
11 STATUS |
L2 CACHE —
L3 MEMORY Lo

- e et me wm e
— e eme s s

!
1
i
1
!
1
!
1

IBM — EN 988 001

	bibliography
	description
	claims
	drawings

