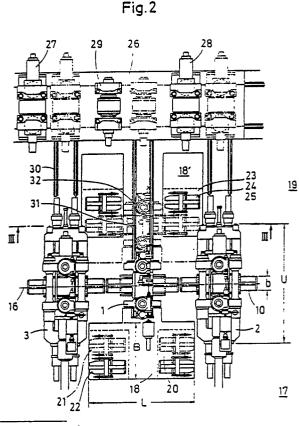
11 Veröffentlichungsnummer:

0 329 998 A2

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89101912.7

(51) Int. Cl.4: B21B 1/12 , B21B 31/10


2 Anmeldetag: 03.02.89

3 Priorität: 22.02.88 DE 3805476

Veröffentlichungstag der Anmeldung: 30.08.89 Patentblatt 89/35

Benannte Vertragsstaaten:
AT DE ES FR GB IT

- 71 Anmelder: SMS SCHLOEMANN-SIEMAG AKTIENGESELLSCHAFT Eduard-Schloemann-Strasse 4 D-4000 Düsseldorf 1(DE)
- © Erfinder: Svagr, Alexander Sudermannstrasse 22 D-4010 Hilden(DE)
- Vertreter: Müller, Gerd et al Patentanwälte HEMMERICH-MÜLLER-GROSSE-POLLMEIER--MEY-VALENTIN Hammerstrasse 2 D-5900 Siegen 1(DE)
- (54) Walzstrasse, insbesondere Walzstrasse in einem Formstahl-Walzwerk.
- Grüstgruppe (4) einer Walzstraße, insbesondere einer Walzstraße in einem Formstahl-Walzwerk weitgehend zu mechanisieren und zu automatisieren wird vorgeschlagen, daß aus einer aus mehreren Walzgerüsten (1, 2, 3) bestehenden Gerüstgruppe (4) vorzugsweise jedes zweite Walzgerüst (1) aus der Walzlinie (16) mindestens um die Breite der Führungsarmatur (10) verschiebbar, verfahrbar oder versetzbar ausgebildet ist, um die in Walzlinie mit engem Abstand zueinander angeordneten Führungsarmaturen für das Auswechseln leichter zugänglich zu Malzgerüste schneller austauschen zu können.

Walzstraße, insbesondere Walzstraße in einem Formstahl-Walzwerk

10

15

Die Erfindung betrifft eine Walzstraße, insbesondere eine Walzstraße in einem Formstahl-Walzwerk mit mindestens einer Gerüstgruppe bestehend aus n-Gerüsten in einer Gruppe, wobei die Walzgerüste wenigstens horizontale Führungsarmaturen aufweisen, die zumindest an den mittleren Gerüsten in Walzlinie mit engem Abstand zueinander angeordnet sind. Die Erfindung betrifft auch ein Verfahren zur Steuerung des Gerüstwechsels in der genannten Walzstraße

Für die rationelle Herstellung von Stahlprofilen unterschiedlicher Form und Größe in kombinierten Formstahl-Walzwerken ist das technische Gesamt-konzept für die Wirtschaftlichkeit des Walzwerkes maßgebend, insbesondere sind weitgehend mechanisierte Wechselsysteme für Walzgerüst, Walzen und Walzgerüstarmaturen ausschlagggebend für eine kostengünstige Anpassung der Walzstraße auf verschiedene Walzprogramme mit unterschiedlichen Losgrößen.

Um die Voraussetzung für höchst mögliche Nutzungszeiten einer Walzstraße zu schaffen, wurde bereits vorgeschlagen, komplette Walzgerüste über Verschiebebühnen mit Hilfe von Schnellkupplungen aus der Walzstraße auf separte Bauplätze zu verfahren und durch an das jeweilige Walzprogramm angepaßte Walzgerüste zu ersetzen, die auf dem Bauplatz vorgerichtet wurden und über die Verschiebebühnen in die Walzstraße gefahren werden. Der Einsatz von Wechselgerüsten erlaubt es ferner, Walzsysteme beliebig aufeinander folgen zu lassen. Diese Maßnahmen mächen es möglich, von einem Universal-Programm auf ein anderes oder von Universal-Walzbetrieb auf Duo-Walzbetrieb oder jeweils umgekehrt zu wechseln. Der Zeitaufwand für einen schnellen Programmwechsel konnte ganz beträchtlich verkürzt werden. Der Nachteil der Wechselgerüste besteht in den hohen Investitionskosten und in der Notwendigkeit, sehr viele anfällige Medien- und Elektrokupplungen zu haben.

Aus der EP-PS 2047 ist ferner bekannt, auch schwere Walzgerüste schnell und mit geringem baulichen Aufwand über lange Verfahrwege beim Gerüstwechsel zu bewegen, wozu das Walzgerüst einen eigenen Antrieb aufweist, der getrieblich mit Rollen verbunden ist, auf denen das Gerüst längs Verfahrbahnen direkt in die Walzlinie bzw. aus dieser bewegbar ist.

Zur Anpassung der Walzgerüste an verschiedene Walzprogramme ist auch bekannt, komplette Walzensätze aus den in einer Walzstraße stationären Walzgerüsten quer zur Walzbahn auszufahren. Hierzu werden die das Walzgut führenden Armaturen demontiert. Das geschieht mit Hilfe der Hallenoder Hilfskrane. Allerdings ist die Demontage, die

Montage und das Ausrichten der Armaturen sehr zeit- und personalaufwendig. Nicht zu letzt, weil der Zugang zu den Armaturen durch geringe Platzverhältnisse sehr erschwert wird.

Aufgabe der vorliegenden Erfindung ist es eine Walzstraße der eingangs genannten Gattung noch rationeller an die verschiedenen Walzprogrammme anpassen zu können, vornehmlich durch eine weitgehende Mechanisierung des Walzenwechsels und Armaturenwechsels am Walzgerüst, um den Zeitund Personalaufwand zu reduzieren, das für das Personal beim Walzenwechsel bestehende Gefährdungspotential zu vermindern und dabei auf Wechselgerüste zu verzichten.

Diese Aufgabe wird dadurch gelöst, daß aus der Gerüstgruppe jedes zweite Walzgerüst aus der Walzlinie zum Zwecke des Wechselns der Führungsarmaturen und/oder der Walzen mindestens um die Breite der Führungsarmatur verschiebbar, verfahrbar oder versetzbar ausgebildet ist; die jeweils benachbarten Walzgerüste können ortsfest in der Walzlinie angeordnet sein. So wird z.B. aus einer Gerüstgruppe bestehend aus drei Walzgerüsten das mittlere Gerüst zur Bedienungsseite so weit verschoben, daß genügend Montageraum entsteht, um die Führungsarmaturen von den Walzgerüsten abzuziehen, bzw. neue Führungsarmaturen an den Walzgerüsten zu montieren. Zweckmäßig ist, daß bei einer aus Universalgerüst, Stauchgerüst und Universalgerüst bestehenden Umkehr-Tandem-Gerüstgruppe das Stauchgerüst wenigstens um die halbe Breite des Universalgerüsts zur Bedienungsseite verschiebbar ausgebildet ist. Hier wird also das kleinste Gerüst, das Stauchgerüst aus einer Gerüstgruppe mit zwei schweren Universalgerüsten zur Bedienungsseite ebenfalls nur so weit verschoben, wie die beengten Platzverhältnisse zwischen den zwei schweren Universalgerüsten dies notwendig machen. Sobald das Stauchgerüst eine Verschiebeposition erreicht hat, die außerhalb der halben Breite des Universalgerüstes liegt, ist das Stauchgerüst von allen Seiten gut zugänglich und die Führungsarmaturen können schnell und leicht gewechselt werden. Durch das Verschieben des Stauchgerüstes aus der Walzlinie ist zwischen den Universalgerüsten ein Freiraum entstanden, in welchem Montage bzw. Demontageinrichtungen so eingesetzt werden können, daß auch die Führungsarmaturen der Universalgerüste schnell und kostengünstig ausgewechselt werden können.

In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß das Stauchgerüst auf einen eigenen Antrieb aufweisenden Rollen aus der Walzlinie zur Bedienungsseite verschiebbar ist. Auf diese Weise kann der Verschiebeweg des Walzgerüstes

schnell durchfahren werden, ohne daß es besonderer Verschiebestangen oder Verschiebehydrauliken bedarf. Zweckmäßig ist, daß die die Horizontal-Walzen tragenden Einbaustücke der Walzgerüste auf einen eigenen Antrieb aufweisenden Rollen aus dem Stauchgerüst bzw. aus dem Universalgerüst verlagerbar. Sobald die Führungsarmaturen von dem Walzgerüst abgezogen sind, lassen sich die in den Einbaustücken gelagerten Walzen ohne großen apparatativen Aufwand aus den Walzgerüsten zu einem gesonderten Bauplatz verlagern. Zum Einrichten eines neuen Walzprogramms lassen sich ebenso schnell und einfach neue Walzen in die Walzgerüste einsetzen und dort festlegen. In der zueinander versetzten Montageposition der Walzgerüste können schnell und einfach neue bzw. angepaßte Führungsarmaturen aufgezogen werden. Es wird deutlich, daß durch diese Maßnahmen der Montageaufwand ganz erheblich reduziert wird und daß auf teure Wechselgerüste verzichtet werden

Zur weiteren Mechanisierung des Armaturenwechsels in einer Gerüstgruppe wird vorgeschlagen, daß das Stauchgerüst auf der Antriebsseite mindestens eine verfahrbare Montagebühne aufweist. Zweckmäßig ist, daß die Montagebühne in Walzlinie eine Bühnenlänge aufweist, die in etwa dem Abstand zwischen den Universalgerüsten entspricht und daß die Bühnenbreite etwa dem Verschiebeweg des Stauchgerüstes entspricht. Durch diese Maßnahme kann von einer Montagebühne das Abziehen der Führungsarmaturen von beiden Universalgerüsten erfolgen, da die Montagebühne in dem Maß zwischen die Universalgerüste eingeschoben wird, wie das Stauchgerüst aus der Walzlinie verschoben wird. Auch die Montage der neuen Führungsarmaturen an den Universalgerüsten erfolgt in besonders günstiger Weise von der Montagebühne her. Ferner ist es zweckmäßig, daß zu beiden Seiten des verschobenen Stauchgerüsts auf der Bedienungsseite eine ortsfeste Arbeitsbühne angeordnet ist, so daß das Abziehen der Führungsarmaturen von dem Stauchgerüst und die Bestükkung des Stauchgerüsts mit neuen Armaturen in besonders günstiger Weise erfolgen kann und zwar zur gleichen Zeit, zu der der Armaturenwechsel an den Universalgerüsten vorgenommen wird.

In besonders vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß die Montagebühne und die Arbeitsbühne wenigstens eine Rüstgruppe aufweisen, bestehend aus mindestens einer in einem Gerüst vormontierten Führungsarmatur und einem vorzugsweise nebengeordneten Leergerüst. Durch diese Maßnahme wird die Zeit zum Armaturenwechsel nochmals ver kürzt, insbesondere, wenn die Führungsarmaturen auf der Montagebühne als Baueinheit vormontiert sind. Ohne Hallenoder Hilfskrane können die Führungsarmaturen auf

der Montage- bzw. Arbeitsbühne mit Hilfe des Leergerüstes demontiert werden und unmittelbar anschließend kann die vormontierte Führungsarmatur in das Walzgerüst eingefahren werden, wobei das Leergrüst zum Beispiel als verfahrbarer Wagen ausgebildet ist.

Eine weitere Rationalisierung des Armaturenwechsels in einer Gruppe von Walzgerüsten wird dadurch erreicht, daß auf der Montagebühne und auf der Arbeitsbühne vorzugsweise automatisch bedienbare Abziehvorrichtungen bzw. Montagevorrichtungen für die Führungsarmaturen angeordnet sind, so daß der Einsatz von Personal in den sicherheitsgefährdeten Zonen ganz erheblich eingeschränkt werden kann.

Zur besonderen Weiterbildung der Erfindung wird vorgeschlagen, daß das Stauchgerüst mit wenigstens einem den Verschiebeweg begrenzenden Positionsgeber so in Verbindung steht, daß das Leergerüst auf der Montagebühne den Führungsarmaturen des Universalgerüstes und daß das Leergerüst auf der Arbeitsbühne den Führungsarmaturen des Stauchgerüstes etwa mittig zubringbar ist. Dies ermöglicht eine weitgehende Automatisierung des Gerüstwechsels bzw. des Armaturenwechsels, da über eine automatische Programmsteuerung das Verschieben des Stauchgerüstes aus der Walzlinie eingeleitet werden kann und von dem Positionsgeber genau dort beendet wird, wo die Demontage der Führungsarmaturen auf der Arbeitsbühne bzw. Montagebühne mit Hilfe der automatisch arbeitenden Abziehvorrichtung erfolgen soll. Aus den gleichen Gründen ist es zweckmäßig, daß das Stauchgerüst mit wenig stens einem den Verschiebeweg begrenzenden Positionsgeber so in Verbindung steht, daß die auf der Montagebühne vormontierte Führungsarmatur dem Universalgerüst in Walzlinie und die auf der Arbeitsbühne vormontierte Führungsarmatur dem Stauchgerüst etwa mittig zubringbar ist.

Das Verfahren zur Steuerung des Gerüstwechsels in einer Walzstraße zeichnet sich gemäß der Erfindung dadurch aus, daß das Stauchgerüst aus der Walzlinie schrittweise verfahren wird und daß zunächst der Positionsgeber angesteuert wird für die Leergerüststellung zwecks Demontage der Führungsarmaturen von den Walzgerüsten und daß anschließend der Positionsgeber angesteuert wird für die Vormontagestellung zwecks Montage der vormontierten Führungsarmatur an den Walzgerüsten, bevor das Stauchgerüst in die Walzlinie zurückgefahren wird. Mittels einer geeineten Programmsteuerung und mit Hilfe der Positionsgeber, die als Endschalter oder als berührungslos arbeitende Kontaktgeber ausgebildet sein können, kann eine weitestgehende Automatisierung des Armaturenwechsels in einer Gerüstgruppe bspw. in einer Universal-Trägerstraße vorgenommen werden, so 15

25

30

35

daß der Zeitbedarf für den Wechsel der Führungsarmaturen in den Gerüsten von üblicherweise einer Stunde auf etwa zehn Minuten reduziert wird.

In weiterer Ausgestaltung des Steuerungsverfahrens wird vorgeschlagen, daß der Positionsgeber für die Leergerüststellung die Verriegelung für die in den Einbaustücken gelagerten Walzen der Walzgerüste freigibt und der Positionsgeber für die Vormontagestellung die Verriegelung schließt. Auf diese Weise ist ein vollautomatisch arbeitendes Wechselsystem für die Walzen und für die Führungsarmaturen in einer Gerüstgruppe geschaffen, insbesondere in Verbindung mit angetriebenen Einbaustücken, deren bspw. hydraulische Antriebe in Abhängigkeit von der Verriegelung der Einbaustükke in den Walzgerüsten eingeschaltet bzw. stillgesetzt werden.

Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1 eine Walzgerüstgruppe einer Universal-Trägerstraße mit in Walzlinie angeordnetem Universalgerüst, mittlerem verschobenen Stauchgerüst und nachfolgendem Universalgerüst, mit ein- bzw. aus gefahrenen Führungsarmaturen, teilweise im Schnitt,

Figur 2 eine Draufsicht auf die Walzgerüstgruppe gemäß Fig. 1 mit Montagebühne und Arbeitsbühne für den Armaturenwechsel und mit Verschiebebühnen für die Gerüstwalzen, in verkleinerter Darstellung, und

Figur 3 einen Schnitt durch das verschobene Stauchgerüst entlang der Linie III-III in Fig. 2 mit einer Ansicht auf die aus den Universalgerüsten gefahrenen Walzen.

Fig. 1 zeigt eine aus einem Stauchgerüst 1 und zwei Universalgerüsten 2, 3 bestehende Gerüstgruppe 4, die in einer Formstahl-Walzstraße 5 angeordnet ist. Das kleinere Stauchgerüst 1 ist zwischen den größeren Universalgerüsten 2, 3 angeordnet. Ein das Walzgut z.B. ein T-förmiger Träger transportierender Rollengang 6 ist zu beiden Seiten der Universalgerüste 2, 3 angeordnet.

In den jeweiligen Walzgerüsten 7 der Gerüstgruppe 4 sind in Einbaustücken 8 die Horizontalwalzen 9, gelagert. Im Bereich des Walzenspaltes zwischen den Horizontalwalzen sind das Walzgut führende Führungsarmaturen 10 angeordnet. Die die Horizontalwalzen tragenden Einbaustücke 8 sind auf Rollen 11 gelagert, die einen eigenen Antrieb aufweisen, wobei der Antrieb z.B. ein handelsüblicher hydraulischer Radnabenantrieb sein kann. Das Stauchgerüst 1 und die Universalgerüste 2, 3 sind bezüglich dieser Bauteile typengleich, weswegen für diese Bauteile die gleichen Bezugsziffern gelten sollen.

Das Stauchgerüst 1 ist auf Tragrollen 12 gelagert, die einen eigenen Antrieb aufweisen. Dieser

Rollenantrieb kann ebenso wie der Rollenantrieb an den Einbaustücken 8 aus einem handelsüblichen hydraulischen Radnabenantrieb bestehen. Das Stauchgerüst 1 und die Universalgerüste 2, 3 sind auf Sohlplatten 13 angeordnet, die ihrerseits mit dem Fundament 14 verbunden sind. Die Walzgerüste innerhalb der Gerüstgruppe 4 stehen in so geringem Abstand zueinander, daß sich deren Führungsarmaturen in Walzlinie zu berühren scheinen, um dem Walzgut eine möglichst ununterbrochene Führung zu geben. Am Universalgerüst 3 sind die Führungsarmaturen 10 von der Abziehvorrichtung 15 demontiert zu sehen.

Fig. 2 zeigt eine Draufsicht auf die Gerüstgruppe 4 bestehend aus Universalgerüst 2, Stauchgerüst 1 und Universalgerüst 3 in verkleinerter Darstellung. Auch hier ist erkennbar, daß die Führungsarmaturen 10 in Walzlinie 16 gesehen in sehr engem Abstand zueinander stehen. Das Stauchgerüst 1 weist auf der Antriebsseite 17 eine vorzugsweise zusammen mit dem Gerüst verfahrbare Montagebühne 18 auf. In Walzlinie 16 gesehen hat die Montagebühne eine Länge L, die in etwa dem Abstand zwischen den Universalgerüsten 2, 3 entspricht. Die Breite B der Montagebühne entspricht etwa dem Verschiebeweg des Stauchgerüstes. Die Universalgerüste 2, 3 der Gerüstgruppe 4 sind ortsfest in der Walzstraße 5 angeordnet, während das Stauchgerüst 1 aus der Walzlinie 16 heraus zur Bedienungsseite 19 verschoben werden kann. Die verschobene Position des Stauchgerüstes ist in Fig. 2 in gestrichelter Linienführung dargestellt. Es ist erkennbar, daß das Stauchgerüst etwa um die halbe Breite U des Universalgerüstes 2 aus der Walzenlinie verschoben ist. Zu beiden Seiten des verschobenen Stauchgerüstes 1 befindet sich eine Arbeitsbühne 18.

Auf der Montagebühne 18 ist den jeweiligen Universalgerüsten 2, 3 gegenüberliegend je eine Rüstgruppe 20 für die Führungsarmaturen 10 der Universalgerüste 2, 3 installiert. Die Rüstgruppe 20 für die Montage und Demontage der Führungsarmaturen 10 und deren Träger 10 besteht aus einem Leergerüst 21 für eine Führ ungsarmatur (gestrichelte Linienführung) und aus einer in einem Gerüst vormontierten Führungsarmatur 22. Auf der Arbeitsbühne 18 ist jeweils eine Rüstgruppe 23 angeordnet, die eine in einem Gerüst vormontierte Führungsarmatur 24 für das Stauchgerüst 1 und ein entsprechendes nebengeordnetes Leergerüst 25 enthält. Im Anschluß an die Arbeitsbühne 18 ist ein Bauplatz 26 eingerichtet, auf dem die Walzensätze 27, 28 für die Universalgerüste 2, 3 sowie der Walzensatz 29 für das Stauchgerüst 1 vorgerüstet werden. Die Walzensätze 27, 28, 29 der Gerüstgruppe werden von den Walzgerüsten auf einer mit Schienen 30 versehenen Verschiebebühne zum Bauplatz 26 verlagert bzw. vom Bauplatz 26 zu den

15

20

Walzgerüsten transportiert. Die Verlagerung der Walzen sätze erfolgt mit Hilfe eigener Rollenantriebe 11.

Wird nun das Stauchgerüst 1 aus der Walzlinie 16 zur Bedienungsseite 19 mittels des Positionsgebers 31 um die halbe Breite U des Universalgerüstes 2 in die gestrichelt markierte Position in Fig. 2 gefahren, dann stehen die Leergerüste 21 auf der Montagebühne 18 in Längsrichtung zu den Führungsarmaturen 11 der Universalgerüste 2, 3 und das Leergerüst 25 auf der Arbeitsbühne 18 steht in Längsrichtung zu den Führungsarmaturen 10 des Stauchgerüstes 1. Mit Hilfe der vorzugsweise automatisch bedienbarer Abziehvorrichtungen 15 können in dieser verschobenen Position des Stauchgerüstes die Führungsarmaturen aus den Universalgerüsten und zugleich die Führungsarmaturen aus dem Stauchgerüst abgezogen werden und auf der Montagebühne 18 bzw. auf der Arbeitsbühne 18 abgesetzt werden. Die verschobene Montageposition des Stauchgerüstes 1 ist in Fig. 3 dargstellt. Von den Abziehvorrichtungen 15 bzw. Montagevorrichtungen 15 sind die Führungsarmaturen 10 auf der Arbeitsbühne 18 demontiert bzw. an den Einbaustücken 8 montiert zu sehen. Die Walzen 9 der Universalgerüste 2, 3 sind mit Hilfe des Rollenantriebs 11 längs der Arbeitsbühne verlagerbar.

Sofern die Walzensätze 27, 28, 29 der gesamten Gerüstgruppe 4 gewechselt werden sollen , kann von dem Positionsgeber 31 die nicht näher dargestellte Verriegelung für die in den Einbaustükken 8 gelagerten Walzen der Walzgerüste freigegeben werden, so daß die Walzensätze mit Hilfe der angetriebenen Rollen 11 auf den Schienen 30 der Verschiebebühne zu dem Bauplatz 26 gefahren werden können. Von dem Bauplatz 26 werden die neuen und den ieweiligen Walzgerüsten zugeordneten Walzensätze auf den Schienen 30 der Verschiebebühne in die Walzgerüste eingefahren und dort in bekannter Weise justiert. Anschließend wird das Stauchgerüst mit Hilfe des Tragrollenantriebs 12 in eine neue Montageposition verschoben, die von dem Positionsgeber 32 so angesteuert wird, daß die auf der Montagebühne 18 vormontierte Führungsarmatur 22 in etwa mittig zu den Universalgerüsten 2, 3 gebracht ist und zugleich die auf der Arbeitsbühne 18 vormontierte Führungsarmatur 24 in etwa mittig vor den Walzen des Stauchgerüstes steht. In dieser Montagestellung des Stauchgerüstes werden die vormontierten Führungsarmaturen 22, 24 mit Hilfe der automatisch bedienbaren Montagevorrichtungen 15 mit dem Stauchgerüst 1 bzw. mit den Universalgerüsten 2, 3 verbunden. Gleichzeitig kann von dem Positionsgeber 32 die jeweilige Verriegelung der Walzensätze in den Walzgerüsten angesteuert werden. Anschließend wird das Stauchgerüst 1 aus der Bedienungsseite 19 zurück in die Walzlinie 16 gefahren, so daß die gesamte Gerüstgruppe eingerichtet ist, um ein Walzprodukt mit geänderter Profilform zu walzen. Mit den oben beschriebenen Maßnahmen zur weitgehenden Mechanisierung und Automatisierung des Walzen-und Armaturenwechsels in einer Gerüstgruppe in einem Formstahl-Walzwerk ist es möglich, den Zeit- und den Personalaufwand für die Demontage, für die Montage und das Ausrichten der Armaturen sowie für den Walzenwechsel an den einzelnen Gerüsten auf einen Bruchteil des bisher bekannten Aufwandes zu reduzieren.

Bezugszeichenliste

- 1 Stauchgerüst
- 2 Universalgerüst
- 3 Universalgerüst
- 4 Gerüstgruppe
- 5 Walzstraße
- 6 Rollgang
- 7 Walzgerüst
- 8 Einbaustück
- 9 Horizontalwalzen
- 10 Führungsarmatur
- 10 Träger der Führungsarmatur
- 11 Rollenantrieb
- 12 Tragrollenantrieb
- 13 Sohiplatte
- 14 Fundament
- 15 Abziehvorrichtung bzw. Montagevorrich-

tung

35

40

45

50

- 16 Walzlinie
- 17 Antriebsseite
- 18 Montagebühne
- 18 Arbeitsbühne
- 19 Bedienungsseite
- 20 Rüstgruppe
- 21 Leergerüst für Universalgerüst
- 22 Vormontierte Führungsarmatur für Universalgerüst
 - 23 Rüstgruppe
- 24 Vcrmontierte Führungsarmatur für Stauchgerüst
 - 25 Leergerüst für Stauchgerüst
 - 26 Bauplatz
 - 27 Walzensatz für Universalgerüst
 - 28 Walzensatz für Universalgerüst
 - 29 Walzensatz für Stauchgerüst
 - 30 Schiene der Verschiebebühne
 - 31 Positionsgeber
 - 32 Positionsgeber

10

15

20

25

30

40

50

55

Ansprüche

1. Walzstraße, insbesondere Walzstraße in einem Formstahl-Walzwerk mit mindestens einer Gerüstgruppe bestehend aus n-Gerüsten in einer Gruppe, wobei die Walzgerüste wenigstens horizontale Führungsarmaturen aufweisen, die zumindest an den mittleren Gerüsten in Walzlinie mit engem Abstand zueinander angeordnet sind,

dadurch gekennzeichnet,

daß aus der Gerüstgruppe (4) vorzugsweise jedes zweite Walzgerüst (1) aus der Walzlinie (16) zum Zwecke des Wechselns der Führungsarmaturen (10) und/oder der Walzen (9) mindestens um die Breite der Führungsarmatur (10) verschiebbar, verfahrbar oder versetzbar ausgebildet ist.

2. Walzstraße nach Anspruch 1,

dadurch gekennzeichnet,

daß bei einer aus Universalgerüst (2), Stauchgerüst (1) und Universalgerüst (3) bestehenden Umkehr-Tandemgerüstgruppe das Stauchgerüst (1) wenigstens um die halbe Breite (U) des Universalgerüsts (2, 3) zur Bedienungsseite (19) verschiebbar ausgebildet ist.

3. Walzstraße nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß das Stauchgerüst (1) auf einen eigenen Antrieb aufweisenden Rollen (12) aus der Walzlinie (16) zur Bedienungsseite (19) verschiebbar ist.

Walzgerüst nach mindestens einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß die die Horizontal-Walzen (9) tragenden Einbaustücke (8) der Walzgerüste (3) auf einen eigenen Antrieb aufweisenden Rollen (11) aus dem Stauchgerüst (1) bzw. aus dem Universalgerüst (2, 3) verlagerbar sind.

Walzstraße nach mindestens einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

daß das Stauchgerüst (1) auf der Antriebsseite (17) mindestens eine verfahrbare Montagebühne (18) aufweist.

Walzstraße nach mindestens einem der Ansprüche 1 bis 5.

dadurch gekennzeichnet,

daß die Montagebühne (18) in Walzlinie (16) eine Bühnenlänge (L) aufweist, die in etwa dem Abstand zwischen den Universalgerüsten (2, 3) entspricht und daß die Bühnenbreite (B) etwa dem Verschiebeweg des Stauchgerüstes (1) entspricht.

7. Walzstraße nach mindestens einem der Ansprüche 1 bis 6,

dadurch gekennzeichnet,

daß zu beiden Seiten des verschobenen Stauchgerüstes (1) auf der Bedienungsseite (19) eine ortsfeste Arbeitsbühne (18) angeordnet ist.

8. Walzstraße nach mindestens einem der Ansprüche 1 bis 7,

dadurch gekennzeichnet,

daß die Montagebühne (18) und die Arbeitsbühne (18) wenigstens eine Rüstgruppe (20, 23) aufweisen, bestehend aus mindestens einer in einem Gerüst vormontierten Führungsarmatur (22, 24) und einem vorzugsweise nebengeordneten Leergerüst (21, 25).

9. Walzstraße nach mindestens einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

daß die Rüstgruppe (20) auf der Montagebühne (18) die vormontierte Führungsarmatur (22) für das Universalgerüst (2, 3) und die Rüstgruppe (23) auf der Arbeitsbühne (18) die vormontierte Führungsarmatur (24) für das Stauchgerüst (1) enthält.

10. Walzstraße nach mindestens einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß auf der Montagebühne (18) und auf der Arbeitsbühne (18') vorzugsweise automatisch bedienbare Abziehvorrichtungen bzw. Montagevorrichtungen (15) für die Führungsarmaturen (10, 22, 24) angeordnet sind.

11. Walzstraße nach mindestens einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß das Stauchgerüst (1) mit wenigstens einem den Verschiebeweg begrenzenden Positionsgeber (31) so in Verbindung steht, daß das Leergerüst (21) auf der Montagebühne (18) den Führungsarmaturen (10) des Universalgerü stes (2, 3) und das Leergerüst (25) auf der Arbeitsbühne (18) den Führungsarmaturen (10) des Stauchgerüstes (1) etwa mittig zubringbar ist.

12. Walzstraße nach mindestens einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß das Stauchgerüst (1) mit wenigstens einem den Verschiebeweg begrenzenden Positionsgeber (32) so in Verbindung steht, daß die auf der Montagebühne (18) vormontierte Führungsarmatur (22) dem Universalgerüst (2, 3) in Walzlinie und die auf der Arbeitsbühne (18) vormontierte Führungsarmatur (24) dem Stauchgerüst (1) etwa mittig zubringbar ist.

13. Walzstraße nach mindestens einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß die Positionsgeber (31, 32) mit der Verriegelung für die in den Einbaustücken (8) gelagerten Walzen (9) der Walzgerüste in Verbindung stehen.

14. Verfahren zur Steuerung des Gerüstwechsels in einer Walzstraße nach mindestens einem der Ansprüche 1 bis 13, insbesondere nach Anspruch 11 und 12,

dadurch gekennzeichnet,

daß das Stauchgerüst (1) aus der Walzlinie (16) schrittweise verfahren wird und daß zunächst der Positionsgeber (31) angesteuert wird für die Leergerüststellung zwecks Demontage der Führungsarmaturen (10) von den Walzgerüsten und anschließend der Positionsgeber (32) angesteuert wird für die Vormontagestellung zwecks Montage der vormontier ten Führungsarmaturen (22, 24) an den Walzgerüsten, bevor das Stauchgerüst (1) in die Walzlinie (16) zurückgefahren wird.

15. Verfahren nach Anspruch 14,

dadurch gekennzeichnet,

daß der Positionsgeber (31) für die Leergerüststellung die Verriegelung für die in den Einbaustücken (8) gelagerten Walzen (9) der Walzgerüste freigibt und der Positionsgeber (32) für die Vormontagestellung die Verriegelung schließt.

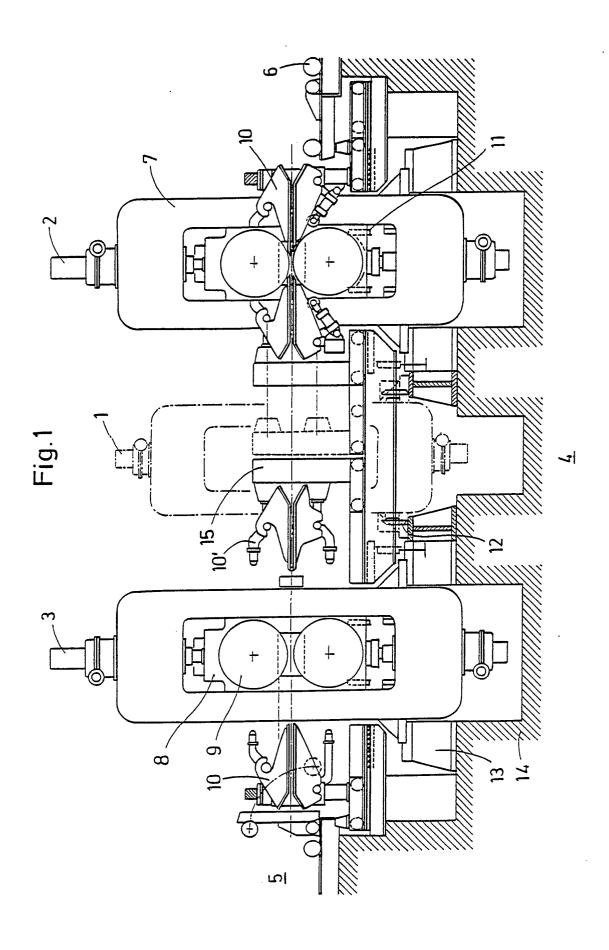
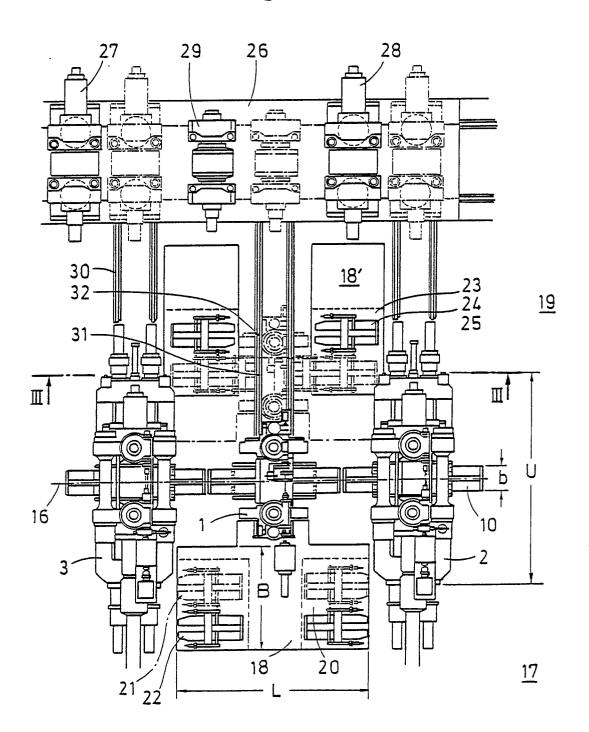
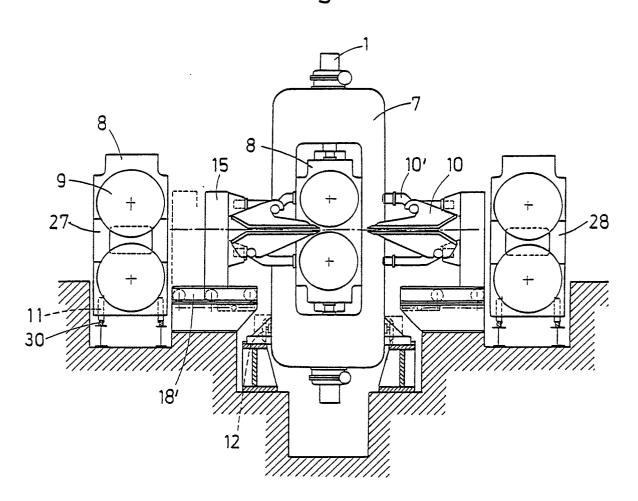




Fig.2

