11 Veröffentlichungsnummer:

0 332 168 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89104108.9

(s1) Int. Cl.4: B65H 54/80 , B65H 51/16 , D01H 5/72

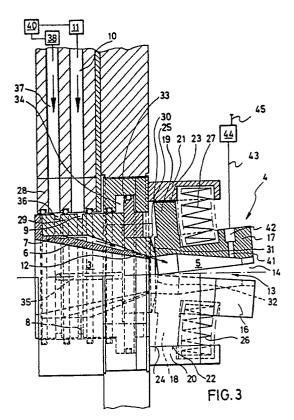
(22) Anmeldetag: 08.03.89

(30) Priorität: 08.03.88 DE 3807582

(43) Veröffentlichungstag der Anmeldung: 13.09.89 Patentblatt 89/37

Benannte Vertragsstaaten:
BE CH DE ES FR GB IT LI

71) Anmelder: HOLLINGSWORTH GMBH Rosenstrasse 5-7 D-7265 Neubulach 5(DE)


Erfinder: Gasser, Hermann Rosenhuben CH-8500 Frauenfeld(CH)

Vertreter: Patentanwälte Grünecker, Kinkeldey, Stockmair & Partner Maximilianstrasse 58 D-8000 München 22(DE)

- Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes.
- (37) Bekannte Vorrichtungen weisen eine Transportkanal (4), einen sich daran in Transportrichtung (T) anschließenden Mundstückskanal (5) und einen Strömungserzeuger zum Ausbilden einer Transportgasströmung in dem Transportkanal auf. Im Mündungsbereich des Mundstückkanales (5) ist eine seitliche Öffnung (13) vorgesehen, die das Abströmen des Gasstromes ermöglicht.

Um mit einer bekannten Vorrichtung nach Druckmessungen in einem Meßtrichter durchführen zu können, weist die Vorrichtung eine Steuerung (40) auf, über die die seitlichen Öffnungen (13) verschließbar sind. Nach Verschließen der Öffnung baut sich in dem sich verjüngenden Mundstückskanal ein Druck auf, der mit einem Drucksensor (42) gemessen werden kann. Der gemessene Druck entspricht der Dicke des Faserbandes und kann zur Regelung einer vorgeschalteten Karde herangezogen werden.

Die Vorrichtung findet Anwendung bei der Förderung von Kardenbändern.

EP 0

Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes

10

15

25

Die Erfindung bezieht sich auf eine Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes in einen Förderspalt, insbesondere einen Walzenspalt, mit einem Transportkanal, einem Strömungserzeuger zum Ausbilden eines Gasstromes im Transportkanal, und einem sich an den Transportkanal anschließenden Einführmundstück, das einen mit dem Transportkanal fluchtenden, sich in Strömungsrichtung verjüngenden Mundstückskanal sowie im Mündungsbereich wenigstens eine seitliche Öffnung für das Abströmen des Gasstromes aus dem Mundstückskanal aufweist.

Aus der US-A-43 18 206 ist eine Vorrichtung dieser Art bekannt, bei der in dem Mundstück eine Reihe von Öffnungen vorgesehen sind, durch die das Transportgas entweichen kann.

Eine solche Vorrichtung ist auch in der EP-OS 0 261 330. Bei der dortigen Anordnung ist die Öffnung im Mündungsbereich als sich von der Mündung des Mundstückskanales in dessen Längsrichtung in einer zur Ebene des Förderspalts im wesentlichen senkrechten Ebene erstreckender Längsspalt ausgebildet, wobei die mündungsseitige Kontur des Einführmundstücks beiderseits des Lenkspalts der Kontur der den Förderspalt begrenzenden Bauteile, insbesondere Walzen, angeglichen ist.

Für die Regelung bekannter Karden wird zur Erzielung eines gleichmäßig starken Faserbandes dieses durch einen Meßtrichter geführt, in welchem sich ein der Dicke des Faserbandes entsprechender Druck aufbaut. Dieser Druck wird gemessen und dient zur Regelung der Drehgeschwindigkeit der Speisewalze der Karde. Die bekannten Meßtrichter weisen einen sehr kleinen Mündungsquerschnitt auf, weshalb dort das Faserband von Hand eingeführt werden muß. Will man auf die bekannte und sich in der Praxis durchaus bewährte Regelung der Faserbanddicke mittels eines Meßtrichters nicht verzichten, so muß das Faserband zumindest an dieser Stelle von Hand eingezogen werden. Dadurch werden aber die Vorteile der selbsttätigen Einführvorrichtung praktisch wieder aufgehoben.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung der eingangs genannten Art zu schaffen, die ein selbsttätiges Einführen eines textilen Faserbandes ermöglicht und eine Verwendung als Meßtrichter zur Erfassung der Faserbanddicke gestattet.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die seitliche Öffnung mittels einer Steuerung verschließbar ausgebildet ist, wobei die Steuerung die seitliche Öffnung beim Einführen des Faserbandes offenhält und beim anschließenden Fördern verschließt.

Durch diese Maßnahme kann in der Einführphase das Transportgas durch die seitliche Öffnung entweichen, wodurch das Faserband selbsttätig eingezogen werden kann, ohne daß sich ein das Einführen des Faserbandes behindernder Druckstau bildet. Sobald das Faserband von dem Förderspalt erfaßt und weitergefördert wird, wird die seitliche Öffnung mittels der Steuerung verschlossen, so daß sich nunmehr in dem verjüngenden Mundstückskanal aufgrund der von dem Faserband mitgerissenen Luft ein Druck aufbauen kann. Dieser Druck, der in Abhängigkeit von der Dicke des Faserbandes variiert, kann gemessen werden, und zur Regelung einer vorgeschalteten Karde benutzt werden.

In diesem Zusammenhang ist es günstig, wenn im Mündungsbereich des Mundstückkanals ein Drucksensor angebracht ist. An dieser Stelle ist der Druckaufbau am gleichmäßigsten und korreliert am besten mit der Faserbanddicke.

Günstig ist auch, wenn die seitliche Öffnung als sich von der Mündung des Mundstückkanals in dessen Längsrichtung in einer zur Ebene des Förderspalts im wesentlichen senkrechten Ebene erstreckender Längsspalt ausgebildet ist. Hierdurch wird dem Faserband während der Einführphase die Möglichkeit zur radialen Ausdehnung gegeben, was das Einführen des Faserbandes wesentlich erleichtert. In der anschließenden Förderphase, wenn der Längsspalt geschlossen wird, wird das Faserband in der Mündung noch stärker komprimiert, was den gleichmäßigen Druckaufbau im Mundstückskanal fördert.

Gemäß einer bevorzugten Ausführungsform ist das Einführmundstück in einer Ebene, in der im wesentlichen die Längsachse des Transportkanales liegt, in zwei Hälften geteilt, die zur Bildung von Längsspalten zumindest im Mundstückbereich voneinander wegbewegbar und feststellbar ausgebildet sind, wobei die Längsspalte durch Aneinanderlegen der Hälften verschließbar sind. Durch diese Ausbildung des Einführmundstücks wird eine Doppelfunktion erreicht. Während der Einführphase, in der das Faserband mit der Vorrichtung eingezogen wird, werden durch das Voneinanderwegbewegen der beiden Mundstückshälften nicht nur die Längsspalte gebildet, die zum Entweichen des Transportgases notwendig sind, es erweitert sich gleichzeitig der Querschnitt des Mundstückskanales, so daß das Einführen des Faserbandes wesentlich vereinfacht wird. Dieser Effekt kann dazu ausgenutzt werden, daß der Mundstückskanal im aneinandergelegten Zustand der beiden Mundstückshälften zumindest im Mündungsbereich einen sehr viel geringeren Querschnitt aufweist, als bei bekannten selbsttätigen Einführvorrichtungen. Durch diese Maßnahme wird im Förderbetrieb das Komprimieren des Faserbandes verbessert, wodurch sich zum einen ein verbesserter nachfolgender Transport und zum anderen ein gleichmäßigerer Drukkaufbau im Mundstückskanal ergeben.

Das Voneinanderwegbewegen und Aneinanderanlegen der Mundstückshälften kann auf baulich einfache Weise dadurch verwirklicht werden, daß die Mundstückshälften an ihrem dem Transportkanal zugewandten Ende schwenkbar gelagert sind. Hierdurch wird zugleich erreicht, daß insbesondere die Mündung es Mundstückskanales in der Einführphase des Faserbandes überproportional im Querschnitt vergrößert ist. Da der Mundstückskanal im geschlossenen Zustand der beiden Mundstückshälften konisch ausgebildet ist, läßt sich während der Einführphase ein fast gleichmäßiger Strömungsquerschnitt im Mundstückskanal erreichen.

Um die beiden Mundstückshälften im Förderbetrieb aneinanderzulegen, ist es baulich besonders einfach, wenn die Mundstückshälften durch im Mündungsbereich im wesentlichen radial angreifende, federelastische nachgiebige Elemente, die Längsspalte verschließend, gegeneinander drückbar sind. Zum Öffnen der beiden Mundstückshälften brauchen diese lediglich in der Einführphase des Faserbandes gegen die Wirkung der federelastisch nachgiebigen Elemente bewegt zu werden.

Eine einfache Lagerung der beiden Mundstückshälften ergibt sich, wenn diese jeweils an ihrem dem Transportkanal zugewandten Ende einen radial nach außen vorstehenden und sich an einem äußeren Gegenlager abstützenden Vorsprung aufweisen, um den die jeweilige Mundstückshälfte gegen die Wirkung der federelastisch nachgiebigen Elemente verschwenkbar sind. Hierbei können sich die federelastisch nachgiebigen Elemente ebenfalls vorzugsweise an dem äußeren Gegenlager abstützen. Wird auf die dem Transportkanal zugewandten Enden der beiden Mundstückshälften ein in Förderrichtung wirkender Druck ausgeübt, so schwenken die beiden Mundstückshälften jeweils um den sich auf dem äußeren Gegenlager abstützenden Vorsprung und öffnen sich schnabelartia.

Der axiale Druck auf die dem Transportkanal zugewandten Enden der beiden Mundstückshälften zum Zwecke deren Öffnens in der Einführphase kann der Transportkanal vorzugsweise als ein in einem Gehäuse in seiner Längsrichtung gegen das Mundstück verschiebbarer Rohrkörper ausgebildet sein

Das Bewegen des Rohrkörpers in Richtung des Mundstücks kann auf einfache Weise dadurch bewirkt werden, daß der Rohrkörper auf seiner Außenseite mit einem Ringkolben versehen ist, der in einer ringförmigen Zylinderkammer des Gehäuses zusammen mit dem Rohrkörper verschiebbar angeordnet ist. Hierdurch kann der Rohrkörper in dem Gehäuse wie eine Kolben/Zylinderanordnung axial gegen das Ende der beiden Mundstückshälften bewegt werden, um so deren Öffnen zu bewirken

Günstig ist es, wenn die Zylinderkammer über Luftkanäle mit einer Druckluftquelle verbindbar ist. Diese Druckluftquelle kann die gleiche sein, die auch den Transportgasstrom in dem Transportkanal während der Einführphase des Faserbandes erzeugt. Das ist deswegen günstig, weil auch der Transportgasstrom nur während der Einführphase des Faserbandes aufrechterhalten werden muß und während der Förderphase abgeschaltet werden kann.

Es wird bevorzugt, daß die Mündung des Mundstückskanales im aneinandergelegten Zustand der Mundstückshälften einen rechteckigen Querschnitt aufweist. Dabei sind die Seitenlängen des Rechtecks vorzugsweise so gewählt, daß die Mündung im geöffneten Zustand der beiden Mundstückshälften im wesentlichen quadratisch ausgebildet ist. Das hat den Vorteil, daß beim Übergang von der Einführphase in die Förderphase, also beim Schließen der beiden Mundstückshälften auf das Faserband lediglich ein Druck in Schließrichtung der beiden Mundstückshälften aufgebracht wird, weshalb so auf einfache Weise verhindert werden kann, daß sich Randfasern beim Schließen zwischen den beiden Mundstückshälften festklemmen.

Die Erfindung bezieht sich auch auf eine Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes in einen Förderspalt, insbesondere einen Walzenspalt, mit einem Transportkanal, einem Strömungserzeuger zum Ausbilden eines Gasstromes im Transportkanal, und einem sich an den Transportkanal anschließenden Einführmundstück, das einen mit dem Transportkanal fluchtenden, sich in Strömungsrichtung verjüngenden Mundstückskanal aufweist.

Für eine solche Vorrichtung wird die Aufgabe erfindungsgemäß dadurch gelöst, daß im Mündungsbereich des Mundstückkanals ein Drucksensor angebracht ist.

Es ist denkbar, daß bei selbsttätigen Einführvorrichtungen der Querschnitt des Mündungsbereiches so gewählt wird, daß der Druckaufbau im Mundstückskanal so gering ist, daß ein selbsttätiges Einführen des Faserbandes möglich ist, daß andererseits der Druckaufbau groß genug ist, um über die Druckmessung im Bereich der Mündung Rückschlüsse auf die Dicke des Faserbandes ziehen zu können.

Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert.

45

10

15

25

30

Es zeigen:

Fig. 1 eine erfindugsgemäße Vorrichtung in einer Seitenansicht vor einem Förderwalzenpaar,

Fig. 2 eine teilsweise, entlang der Linie II-II geschnittene Draufsicht auf die Vorrichtung aus Fig. 1,

Fig. 3 die Vorrichtung in der gleichen Ansicht wie in Fig. 2, jedoch mit geöffneten Mundstückshälften, und

Fig. 4 eine Ansicht auf die Vorrichtung in Richtung der Pfeile IV-IV.

In den Fig. 1 bis 4 ist eine Vorrichtung dargestellt, die zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes in einen Förderspalt 1 dient. Der Förderspalt 1 wird bei dem hier dargestellten Ausführungsbeispiel durch ein in Pfeilrichtung gegensinnig angetriebenes Förderwalzenpaar 2 gebildet. Die Vorrichtung liegt, in Transportrichtung T gesehen, vor dem Förderwalzenpaar 2.

Wie besser aus Fig. 2 ersichtlich ist, umfaßt die Vorrichtung einen sich in Transportrichtung T konisch verjüngenden Transportkanal 3 und ein sich in Transportrichtung T daran anschließendes Einführmundstück 4. In dem Einführmundstück 4 schließt sich fluchtend an den Transportkanal 3 ein sich ebenfalls in Transportrichtung T verjüngender Mundstückskanal 5 an.

In dem Transportkanal 3 ist eine konisch zulaufende Hülse 6 angeordnet, die mit ihrem Außenumfang einen Gasraum 7 begrenzt, der einerseits über eine Radialbohrung 8, eine Ringnut 9 und eine Druckluftleitung 10 mit einem Strömungserzeuger. beispielsweise einer Druckluftquelle 11, und andererseits über Spiralnuten 12 mit dem einführseitigen Ende des Mundstückkanals 5 verbunden ist. Hierdurch wird in Mundstückskanal und im Transportkanal eine Gasströmung in Transportrichtung T erzeugt.

Wie besser aus Fig. 3 ersichtlich ist, weist das Einführmundstück 4 im Mündungsbereich seitliche Öffnungen 13 zum Abströmen des Gasstromes aus dem Mundstückskanal 5 auf. Die seitlichen Öffnungen 13 erstrecken sich als Längsspalte von der Mündung 14 des Mundstückkanales 5 in dessen Längsrichtung entgegen der Transportrichtung T in einer zur Ebene des Förderspalts 1 im wesentlichen senkrechten Ebene.

Die Außenkontur 15 des Einführmundstückes 4 ist an den Außenumfang des Förderwalzenpaares 2 sich anschmiegend angepaßt, wobei, wie durch die gestricheite Linie dargestellt ist, die Außenkontur 15 auch den gleichen Krümmungsradius wie die Walzen des Förderwalzenpaares 2 aufweisen kann.

Die Längsspalte in dem Einführmundstück 4 werden bei dem hier dargestellten Ausführungsbeispiel dadurch gebildet, daß das Einführmundstück

4 in einer Ebene E-E, in der im wesentlichen die Längsachse des Transportkanales 3 liegt und die senkrecht zur Ebene des Förderspaltes 1 liegt, in zwei Mundstückshälften 16 und 17 geteilt ist. Die beiden Mundstückshälften weisen an ihrem dem Transportkanal 3 zugewandten Ende radial abstehende Vorsprünge 18 und 19 auf, mit denen sich die Mundstückshälften jeweils an einem radial außenliegenden Gegenlager 20 bzw. 21 abstützen. Die Vorsprünge 18 und 19 weisen an ihrem dem Gegenlager 20 bzw. 21 zugewandten Ende jeweils eine Schrägfläche 22 und 23 auf, die zusammen mit dem Gegenlager 20 bzw. 21 einen Anschlag für eine Öffnungsstellung der beiden Mundstückshälften 16 und 17 bildet. Im aneinanderangelegten Zustand stützen sich die beiden Mundstückshälften 16 und 17 über Kanten 24 und 25 der Schrägflächen 22 und 23 an dem Gegenlager 20 und 21 ab. Die beiden Mundstückshälften 16 und 17 sind um diese Kanten im begrenzten Maße schwenkbar.

In Transportrichtung T hinter den Vorsprüngen 18 und 19 werden die beiden Mundstückshälften 16 und 17 durch Schraubendruckfedern 26 und 27, die sich ebenfalls an dem Gegenlager 20 bzw. 21 abstützen, radial zusammengedrückt. Die Schraubenfedern 26 und 27 bilden zugleich einen Anschlag für die Vorsprünge 18 und 19 und verhindern somit ein Verschieben der Mundstückshälften 16 und 17 in Transportrichtung T.

Die den eigentlichen Transportkanal bildende Hülse 6 ist in einem in Transportrichtung T in einem Gehäuse 28 längsverschieblichen Rohrkörper 29 angebracht. Der Rohrkörper 29 liegt mit einer in Transportrichtung T weisenden Stirnfläche 30 an den dem Transportkanal 3 zugewandten Enden 31 und 32 der Mundstückshälften 16 und 17 an.

An dem Außenumfang des Rohrkörpers 29 ist ein Ringkolben 33 angebracht, der in einer ringförmigen Zylinderkammer 34 des Gehäuses 28 zusammen mit dem Rohrkörper 29 hin und her verschieblich angeordnet ist. Die Zylinderkammer 34 ist auf der dem Mundstück 4 abgewandten Seite des Ringkolbens 33 über eine Axialbohrung 35 in dem Rohrkörper 29, eine äußere Ringnut 36 und eine Druckluftleitung 37 mit einer Druckluftquelle 38 verbunden.

Die Außenseite des Rohrkörpers 29, an der auch die Ringnut 9 für den Transportgasstrom ausgebildet ist, ist mittels Dichtringen 39 gegenüber dem Gehäuse 28 abgedichtet. In gleicher Weise weist auch der Ringkolben 33 einen Dichtring 39 auf

Die Druckluftquelle 38 und die Druckluftquelle 11 sind mit einer Steuerung 40 verbunden, mit der das Einleiten von Druckluft in die Druckluftleitung 10 bzw. die Druckluftleitung 37 gesteuert werden kann.

15

Wie besonders gut aus den Fig. 2 und 3 ersichtlich ist, ist im Bereich der Mündung 14 des Einführmundstückes 4 eine Radialbohrung 41 vorgesehen, in der ein Drucksensor 42 angeordnet ist. Der Drucksensor 42 ist über eine Signalleitung 43 mit einer Regeleinrichtung 44 verbunden, die einen Ausgang 45 zum Anschluß des Motors einer nicht dargestellten Speisewalze einer Karde aufweiset. Solche Drucksensoreinrichtungen sind bekannt. Die Signalleitung kann beispielsweise auch aus einer Druckluftübertragungsleitung bestehen, wobei der Sensor dann erst in der Regeleinrichtung angeordnet ist. Durch die Druckluftübertragungseinrichtung kann durch Einspeisen von Druckluft die Radialbohrung 41 von Zeit zu Zeit von Faserrückständen und dergleichen gesäubert werden.

Wie gut aus Fig. 4 ersichtlich ist, weist die Mündung 14 einen rechteckigen Querschnitt auf. Die Hauptsymmetrieachse des Rechteckes liegt dabei in der Teilungsebene E-E des Einführmundstückes 4.

Im folgenden wird die Wirkungsweise der erfindungsgemäßen Vorrichtung näher erläutert.

Vor dem Einführen eines textilen Faserbandes befindet sich die Vorrichtung in dem in Fig. 2 und dem in Fig. 4 in durchgezogener Linie gezeigten Zustand. Soll nun ein Faserband eingezogen werden, so werden über die Steuerung 40 und die beiden Druckluftquellen 11 und 38 die Druckluftleitungen 10 und 37 mit Druckluft beaufschlagt. Die in die Druckluftleitung 10 eingespeiste Druckluft gelangt über die Ringnut 9 und die Radialbohrung 8 in den Gasraum 7 und strömt von dort in Pfeilrichtung durch die Spiralnuten 12 in den Mundstückskanal 5. Hierdurch wird auch in dem Transportkanal 3 eine Gasströmung in Transportrichtung T erzeugt.

Die in die Druckluftleitung 37 eingespeiste Druckluft gelangt über die Ringnut 36 und über die in dem Rohrkörper 39 ausgebildete Axialbohrung 35 in die Zylinderkammer 34 und zwar auf der dem Einführmundstück 4 abgewandten Seite, wodurch der Ringkolben 33 zusammen mit dem Rohrkörper 29 in Richtung des Einführmundstücks 4 verschoben wird. Dieses Verschieben bewirkt, daß, wie in Fig. 3 ersichtlich ist, die beiden Mundstückshälften 16 und 17 sich schnabelartig öffnen, indem sie um die Kanten 24 und 25 der Vorsprünge 18 und 19 gegen die Wirkung der beiden Schraubendruckfedern 26 und 27 schwenken. Die Schwenkbewegung wird erst gestoppt, wenn die beiden Schrägflächen 22 und 23 der Vorsprünge 18 und 19 an den Gegenlagern 20 bzw. 21 anliegen. Die Druckluftzufuhr aus der Druckluftquelle 11 zur Erzeugung des Transportgasstromes bleibt in dieser Phase aufrechterhalten.

In der in Fig. 3 gezeigten Stellung ist die Vorrichtung für die Einführphase vorbereitet. Durch

das Auseinanderschwenken der beiden Mundstückshälften bildet sich in der Teilungsebene E-E beidseitig des Mundstückkanales 5 jeweils ein Längsspalt 13 aus, durch den das Transportgas seitlich entweichen kann. Zugleich wird durch die Schwenkbewegung der Querschnitt der Mündung 14 erweitert. Wie aus der gestrichelten Linie in Fig. 4 hervorgeht, ist der Mündungsquerschnitt nunmehr nahezu guadratisch.

In dieser Phase wird ein Faserband eingezogen. Das Faserband wird am einführseitigen Ende des Transportkanales durch die Transportgasströmung erfaßt und durch den Mundstückskanal 5 hindurchgeblasen und von dem Förderwalzenpaar 2 erfaßt. Sobald der Transport des Faserbandes durch dieses Förderwalzenpaar 2 sichergestellt ist, wird über die Steuerung 40 die Druckluftquelle 38 abgeschaltet und die Luft aus der Druckluftleitung 37 abgelassen. Damit steht die Zylinderkammer 34 mit der Umgebungsluft in Verbindung. Die Schraubendruckfedern 26 und 27 bewirken nun ein Zurückschwenken der beiden Mundstückshälften 16 und 17, wobei der Rohrkörper 29 entgegen der Transportrichtung T zurückgeschoben wird. Die Längsspalte 13 schließen sich und die Mündung 14 nimmt die in Fig. 4 mit durchgezogener Linie dargestellte rechteckige Querschnittsform an. Beim Schließen der beiden Mundstückshälften 16 und 17 wird das Faserband quer zur Teilungsebene E-E zusammengedrückt. Über die Steuerung 40 kann nun auch die Druckluftquelle 11 abgeschaltet wer-

Bei dem laufenden Betrieb der Vorrichtung wird nun das Faserband in dem Mundstückskanal 5 und insbesondere in dessen Mündung 14 komprimiert, wobei die mitgerissene Luft sich in dem Mundstückskanal 5 staut. Der dadurch erzeugte Druckaufbau wird über den Drucksensor 42 gemessen und über die Signalleitung 43 der Regeleinrichtung 44 zugeführt. Der gemessene Druck korreliert mit der Faserbandstärke und kann daher zum Regeln der vorgeschalteten Karde verwendet werden. Hierzu ist an der Regeleinrichtung 44 der Ausgang 45 vorgesehen, an den in bekannter Weise Antriebe der Karde angeschlossen werden können.

Obwohl bei dem hier beschriebenen Ausführungsbeispiel zwei getrennte Druckluftleitungen 10 und 37 jeweils für die Erzeugung des Transportgasstromes bzw. das Öffnen und Schließen der Mundstückshälften vorgesehen sind, ist es auch möglich, nur eine Druckluftleitung vorzusehen.

Schließlich kann es vorteilhaft sein, die Mündung des Mundstückskanals gegenüber dessen zentraler Längsachse exzentrisch anzuordnen, jedoch nur soweit, daß die gedachte Längsachse noch durch die Mündungsfläche verläuft.

55

15

25

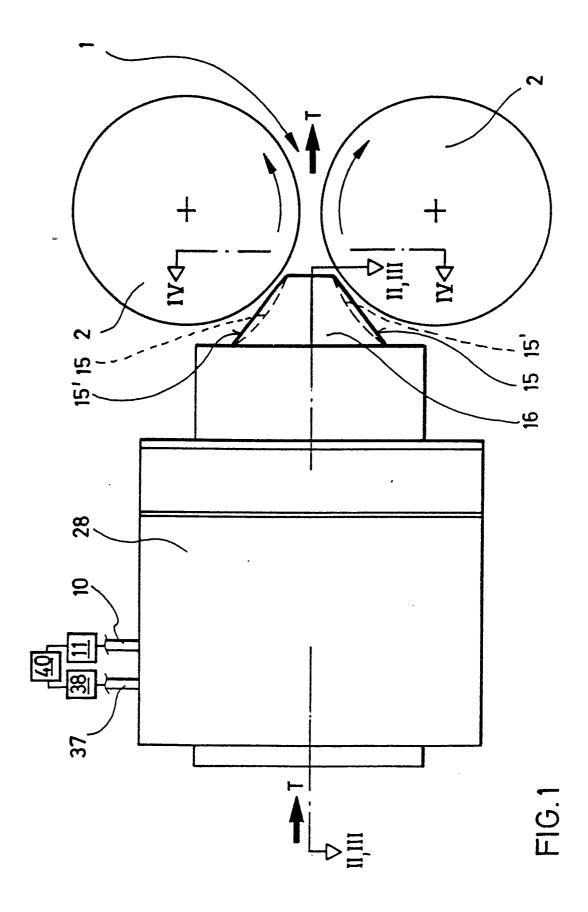
40

45

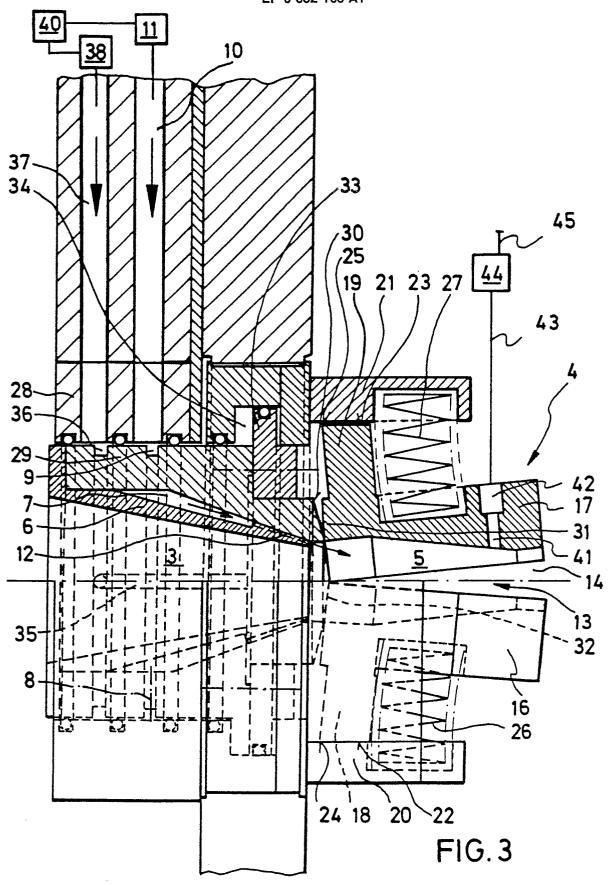
50

Ansprüche

1. Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes in einen Förderspalt (1), insbesondere einen Walzenspalt, mit einem Transportkanal (3), einem Strömungserzeuger (11) zum Ausbilden eines Gasstromes im Transportkanal (3), und einem sich an den Transportkanal anschließenden Einführmundstück (4), das einen mit dem Transportkanal (3) fluchtenden, sich in Strömungsrichtung (T) verjüngenden Mundstückskanal (5) sowie im Mündungsbereich wenigstens eine seitliche Öffnung (13) für das Abströmen des Gasstromes aus dem Mundstückskanal (5) aufweist.


dadurch gekennzeichnet,

daß die seitliche Öffnung (13) mittels einer Steuerung (40) verschließbar ausgebildet ist, wobei die Steuerung (40) die seitliche Öffnung (13) beim Einführen des Faserbandes offenhält und bei anschließenden Fördern verschließt.


- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Mündungsbereich des Mundstückkanals (5) ein Drucksensor (42) angebracht ist
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die seitliche Öffnung (13) als sich von der Mündung (14) des Mundstückkanals (5) in dessen Längsrichtung in einer zur Ebene des Förderspalts (1) im wesentlichen senkrechten Ebene (E-E) erstreckender Längsspalt ausgebildet ist.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Einführmundstück (4) in einer Ebene (E-E), in der im wesentlichen die Längsachse des Transportkanales (3) liegt, in zwei Hälften geteilt ist, die zur Bildung von Längsspalten (13) zumindest im Mundstücksbereich voneinander wegbewegbar und feststellbar ausgebildet sind, wobei die Längsspalte (13) durch Aneinanderlegen der Hälften (16, 17) verschließbar sind.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mundstückshälften (16, 17) an ihrem dem Transportkanal (3) zugewandten Ende (31, 32) schwenkbar gelagert sind.
- 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Mundstückshälften (16, 17) durch im Mündungsbereich im wesentlichen radial angreifende, federelastisch nachgiebige Elemete (26, 27), die Längsspalten (13) verschließend gegeneinander drückbar sind.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Mundstückshälften (16, 17) jeweils an ihrem dem Transportkanai (3) zugewandten Ende (31, 32) einen radial nach außen vorstehenden und sich an einem äuße-

ren Gegenlager (20, 21) abstützenden Vorsprung (18, 19) aufweisen, um den die jeweilige Mundstückshälfte (16 bzw. 17) gegen die Wirkung der federelastisch nachgiebigen Elemente (26 bzw. 27) verschwenkbar ist.

- 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Transportkanal (3) als ein in einem Gehäuse (28) in seiner Längsrichtung gegen das Mundstück (4) verschiebbarer Rohrkörper (29) ausgebildet ist.
- 9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Rohrkörper (29) auf seiner Außenseite mit einem Ringkolben (33) versehen ist, der in einer ringförmigen Zylinderkammer (34) des Gehäuses (28) zusammen mit dem Rohrkörper (29) verschiebbar angeordnet ist.
- 10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Zylinderkammer (34) über Luftkanäle (35, 36, 37) mit einer Druckluftquelle (38) verbindbar ist.
- 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Mündung (14) des Mundstückskanales (5) im aneinandergelegten Zustand der Mundstückshälften (16, 17) einen rechteckigen oder vieleckigen Querschnitt aufweist.
- 12. Vorrichtung zum Komprimieren und selbsttätigen Einführen eines textilen Faserbandes in einen Förderspalt, insbesondere einen Walzenspalt, mit einem Transportkanal, einem Strömungserzeuger zum Ausbilden eines Gasstroms im Transportkanal, und einem sich an den Transportkanal anschließenden Einführmundstück, das einen mit dem Transportkanal fluchtenden, sich in Strömungsrichtung verjüngenden Mundstückskanal aufweist, dadurch gekennzeichnet,
- daß im Mündungsbereich des Mundstückkanals ein Drucksensor angebracht ist.
- 13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mündung des Mundstückskanales zur Längsachse des Transportkanales exzentrisch angeordnet ist.

•

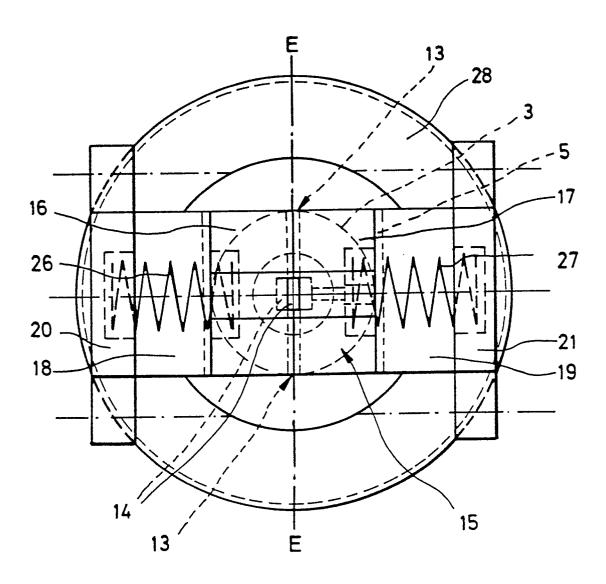


FIG.4

EUROPÄISCHER RECHERCHENBERICHT

ΕP 89 10 4108

	EINSCHLÄGIG	SE DOKUMENTE		
Kategorie	,	ents mit Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	GB-A-2059474 (SACM) * das ganze Dokument *		1, 12	B65H54/80 B65H51/16 D01H5/72
A	FR-A-2601661 (SCHLUMBE * das ganze Dokument *		1, 6	Bollisy 72
A	DE-A-3624742 (ZINSER)		1	
	* das ganze Dokument *			
				RECHERCHIERTE
				SACHGEBIETE (Int. Cl.4
				B65H D01H
			_	
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
Recherchenort DEN HAAG		Abschlußdafum der Recherche 24 MAI 1989	RA	Prüfer YBOULD B.D.J.

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselhen Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenharung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeidedatum veröffentlicht worden ist
 D: in der Anmeidung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EPO FORM 1503 03.82 (P0403)